首页> 中国专利> 在用于加工热轧板材或热轧带材的厚板轧机的控制的范围内对热轧板材或热轧带材的物理状态进行跟踪的方法

在用于加工热轧板材或热轧带材的厚板轧机的控制的范围内对热轧板材或热轧带材的物理状态进行跟踪的方法

摘要

本发明涉及一种用于在轧机的控制的范围内对热轧板材或热轧带材(3)的物理状态进行跟踪的方法,所述轧机用于对热轧板材或热轧带材(3)进行可逆加工,所述轧机包括至少一台用于对所述热轧板材或热轧带材(3)进行可逆轧制的机架(9),所述方法包括以下步骤:在起点在模型(19)中确定所述热轧板材或热轧带材(3)的初始的状态,从所述状态中能够推导出至少一个物理的状态参量;在对所述热轧板材进行加工的过程中在使用所述热轧板材或热轧带材(3)和厚板轧机的模型(19)的情况下对所述状态进行周期性更新,其中考虑到所述热轧板材或热轧带材的行程跟踪以及影响和/或反映所述状态的运转参数。

著录项

  • 公开/公告号CN101522325A

    专利类型发明专利

  • 公开/公告日2009-09-02

    原文格式PDF

  • 申请/专利权人 西门子公司;

    申请/专利号CN200780037770.1

  • 发明设计人 M·库茨;B·施米特;K·韦因兹尔;

    申请日2007-10-02

  • 分类号B21B37/00(20060101);G05B13/04(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人曹若;梁冰

  • 地址 德国慕尼黑

  • 入库时间 2023-12-17 22:36:00

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-09-18

    未缴年费专利权终止 IPC(主分类):B21B37/00 授权公告日:20140219 终止日期:20171002 申请日:20071002

    专利权的终止

  • 2016-09-07

    专利权的转移 IPC(主分类):B21B37/00 登记生效日:20160818 变更前: 变更后: 申请日:20071002

    专利申请权、专利权的转移

  • 2014-02-19

    授权

    授权

  • 2009-10-28

    实质审查的生效

    实质审查的生效

  • 2009-09-02

    公开

    公开

说明书

技术领域

本发明涉及一种用于在轧机的控制的范围内对热轧板材或热轧带材的物理状态进行跟踪的方法,所述轧机用于对热轧板材或热轧带材进行可逆加工,所述轧机包括至少一台用于对所述热轧板材或热轧带材进行可逆轧制的机架。

背景技术

在厚板轧机中,通过在多个道次中的轧制将具有指定长度的板坯轧制成板材。因为对所述板坯进行加热,所以在总体上也涉及热轧板材或者热轧带材。为了对所述热轧板材或者热轧带材进行轧制使用至少一台机架,通过该机架使所述热轧板材或热轧带材往返运动,直至达到必需数量的道次,也就是说,获得所期望的板材厚度。这个过程也称为可逆操作。

对于热轧带材来说,为此尤其使用斯蒂克尔轧机,在所述斯蒂克尔轧机中,一台或多台机架布置在两台卷取机之间,带材能够卷绕在所述卷取机上。

在此也已知,设置两台机架,其中第一台机架用于粗轧并且第二台机架用于精轧。在两台机架中所述热轧板材或者热轧带材可逆地来回运动。

这一点不同于连续的作业线,在连续的作业线中金属带以前进的方式穿过先后布置的机架。在作业线的末端将加工完毕的带材卷绕到所谓的带卷(Coils)上。

为了在轧机中如此实现自动化,从而尽可能精确地达到板材或者带材的所期望的目标参数(比如目标厚度、宽度等),在特定的位置上比如借助于模型或者通过温度测量比如通过高温计来确定热轧板材或者热轧带材中的温度分布。在此,能够在所述热轧板材或者热轧带材的多个点上确定所述温度,从而最终获得温度分布。然后使用所述厚板轧机和热轧板材或者热轧带材的模型,用于如此确定各个轧机部件的工作参数也就是比如除鳞设备、冷却或加热装置以及当然还有机架的工作参数,从而在具有所期望的材料性能时达到所期望的板材参数。在这种情况下,尤其考虑到所述厚板轧机的各个部件的温度影响。在所谓的预先计算的范围内,相应地在特定的位置上尤其在厚板轧机的部件的作用位置上依赖于假定的将来的温度影响来确定热轧板材或者热轧带材的温度,并且从中确定必要的参数,必须利用所述参数来触发所述部件。

虽然如此,在实际的轧制过程中还会出现偏差,因为无法完美地预先计算所有的影响。因此通常在轧制过程中记录和保存反映温度影响的运转参数比如也包括传感器数值。此外,公开了跟踪系统,借助于跟踪系统能够实现所述热轧板材或热轧带材的每个单个的点的行程跟踪。借助于这些信息通常在所提到的作用位置上或者说在其上面或者前面的不远处或者在其它特定的位置上用实际的运转参数但也用相同的模型进行再计算。从这种再计算中得到当前的温度,而当前温度则用作用于再度的预先计算的基础。在很少的情况下,也通常在再度进行预先计算之前将当前的温度与预先计算的温度进行比较并且仅仅在有显著的差别时才再度进行预先计算。但实际上事实已经表明,在大多数情况下会出现偏差,从而基本上在没有事先的比较过程的情况下再度进行预先计算用于更新工作参数。这样的再度的预先计算经常也称为重新计算。

不仅所述基于所记录的反映温度影响的运转参数的再计算而且所述重新计算都需要不可忽视的可达到秒范围的时间。在这个时间里失去了用于热轧板材或热轧带材的有效的处理时间,此外所述热轧板材或热轧带材停止并且会不期望地进一步冷却。对于所述再计算和再度的预先计算来说,额外地需要极端的计算功率。

尽管以往仅仅谈及所述热轧板材或者热轧带材的温度,但这仅仅是多个可以这样说对热轧板材或者热轧带材的状态进行描述的状态参量之一。对加工性能来说同样重要的比如是同样能够通过模型及合适的测量来确定的相分布、残余冷作硬化(Restverfestigung)或者粒度。

发明内容

因此,本发明的任务是,说明一种方法,该方法能够实现更为有效的计算并且由此实现更快的生产时间以及更低的计算开销。

为解决该任务,按本发明在开头所述类型的方法中设置以下步骤:

-在起点在模型中确定热轧板材或热轧带材的初始的状态,从所述状态中能够推导出至少一个物理的状态参量;

-在对所述热轧板材或热轧带材进行加工的过程中在使用所述热轧板材或热轧带材和厚板轧机的模型的情况下对所述状态进行周期性更新,其中考虑到所述热轧板材或热轧带材的行程跟踪以及影响和/或反映所述状态的运转参数。

这种所说明的“状态监控”能够有利地用于控制轧机。尤其在出现至少一个预先确定的事件时能够在预先计算的范围内在事先求得的、尤其当前的状态的基础上重复求得经过预先计算的状态以及从中求得将来的板材处理参数。

所述热轧板材或热轧带材的状态基本上是指对所述热轧板材或热轧带材的加工来说重要的尤其热的性能,所述性能借助于数学模型来描述。借助于这种数学的描述必要时与所述模型一起能够推导出描述热轧板材或热轧带材的性能的状态参量,更确切地说有利地对其进行位置分解。这样的状态参量比如可以是温度和/或残余冷作硬化和/或相份额和/或粒度和/或焓。即使下面经常将温度作为实例来引用,但大多数陈述适用于所有可设想的状态参量。

所述状态最终至少通过以足够的精度来描述在所述热轧板材或热轧带材内部所述状态参量的数值的分布情况的参数来定义。在此首先能够设想两种可能性。一方面所述状态能够通过参数化的状态函数来描述。这里,比如可以设想三元的特定阶的多项式,该多项式的系数用作参数并且比如反映温度分布或残余冷作硬化分布。作为替代方案或补充方案,所述状态也可以通过至少一个状态参量或者在所述热轧板材或热轧带材的不同板材点上的状态参量来描述。在这种情况下,比如可以在测量点上记录测量值并且必要时作为关于厚度的分布图将其分配给所述板材点时通过测量装置进行比较简单的初始化。在一种有利的实施方式中比如可以规定,所述状态通过在不同的板材点上的局部的温度分布图来描述。在不同的板材点上的初始的温度分布图不应该仅仅反映点状的温度信息,而是包含深度信息,所述深度信息则反映在所述热轧板材或热轧带材的厚度范围内的变化。

在这种情况下,不是-即使这在理论上是可能的-仅仅研究热轧板材或者热轧带材上的一个唯一的板材点,而是研究多个在所述热轧板材或热轧带材上分布的点,从而能够推导出在所述热轧板材或热轧带材上的状态参量分布。在有利的设计方案中,所述板材点可以包括多个沿所述板材或带材的长度布置的点和/或多个沿所述板材或带材的宽度布置的点。由此最终获得由状态参量构成的区,其中能够在各个点之间模拟所述状态参量分布尤其温度分布。所述板材点的特征通常在于其在所述热轧板材或热轧带材上的相对位置。

自起点起,如在后面的方法步骤中所说明的一样周期性地对这种初始的状态进行更新。相应地,作为用于所述更新的出发点必须在起点上也就是在周期性的更新开始时提供尽可能接近实际的、关于在所述热轧板材或热轧带材中的状态尤其状态参量分布的信息。这些信息反映在所述初始的状态中。

所述初始的状态尤其初始的温度分布图基本上可以通过两种也能够彼此组合的方式来确定。因此,可以通过测量装置或者借助于模型来确定,但也可以借助于测量装置的测量数据以及模型来确定。在通过模型来确定的范围内,如此对所述起点前面的方法步骤及其对状态参量的影响加以考虑,从而可以确定当前的初始的状态。在这种情况下所考虑到的参数比如可以是前置的炉子的炉子参数、冷却装置的参数、在辊道上的运行时间、运行距离或运行速度及类似参数。作为补充方案或替代方案,可以进行状态参量测量尤其温度测量,所述状态参量测量在使用替代解决方案的情况下确定所述初始的状态,在用模型计算的情况下提供额外的参数。

作为起点,能够设想沿轧机的不同位置。因此能够在可能对炉中的板坯进行加热之前就已经进行起初的温度测量,其中在这种情况下必须已经清楚了解所述炉子的效果。更为常见的是,作为起点在离开这样的炉子之后测量或者说确定温度。但是也可以设想,在机架中的第一个道次之前确定所述初始的状态比如初始的温度分布图。

然后能够在初始的预先计算的范围内求得在轧制过程中在所述热轧板材或热轧带材的特定的位置上的状态比如温度分布图,用于确定板材处理参数。所述初始的预先计算在此不必基于初始的状态,而是也可以只有在几个更新周期之后根据已经更新的状态来进行。初始事件比如炉子翻板的关闭确定这个时刻,其中也可以设想其它的方案。在此涉及基本上已知的在使用热轧板材或热轧带材及厚板轧机的相同的模型的情况下进行的预先计算。在此根据特定的板材处理参数对理论上进行的状态影响进行模拟,其中所述位置尤其能够包括机架和/或冷却装置和/或除鳞装置的对热轧板材或热轧带材的作用点。

自所述起点起,在加工过程的进行过程中在使用所述热轧板材或热轧带材及厚板轧机的模型的情况下对所述状态进行周期性更新,其中对热轧板材或热轧带材尤其板材点的行程跟踪以及影响或反映所述状态尤其温度的运转参数加以考虑。在这个重要的周期性重复的方法步骤中,相应地在轧制过程的进行过程中不断地对比如通过所述温度分布图来描述的状态进行更新,这意味着,几乎实时地对其进行跟踪。相应地在每个时刻在每种情况下都基于所述模型根据上一次已知的状态来计算新的比如通过当前的温度分布图来描述的状态。如果所述厚板轧机的部件对所述热轧板材或热轧带材产生影响,那么也考虑到当前的实际的运转参数并且将这些运转参数是否对当前的状态比如当前的温度分布产生影响以及产生何种影响考虑在内。相应地,所述当前的状态反映在更新时刻所述热轧板材或者热轧带材的状态尤其因而也反映能够从中推导出来的状态参量。在温度的实例中因此比如检查,是否由于当前的实际的工作参数已经产生温度影响并且比如相应地如此对所述温度分布图进行调整,使得其反映在更新时刻在热轧板材或热轧带材中的温度分布。能够通过所谓的温度监控对温度进行这样的连续的即时的再计算。在此所述更新能够作为独立的过程来进行,也就是说,如果比如同时进行所述初始的或者再度的预先计算,那么也进行所述更新。这比如能够通过将计算负荷分配到多个处理器上这种方式来达到。

反映所述状态的运转参数也能够纳入所述更新中。这样的通过比如在测量过程中记录的作为运转参数的测量值来进行的更新在标准的周期中实施,但经常在概念上与纯粹基于模型的更新分开。这样的基于实际的测量数据对当前状态进行的校正和调整经常称为适应(Adaption),并且代表按本发明的方法的特别有利的特征,因为这样的检查和校正通过实际的测量数据确保所述方法的更高的可靠性。

在比如进行的再计算中或者说为了与预先计算进行比较或者为了完成新的预先计算,必须相应地根据所述状态的连续的跟踪为各个板材点仅仅保留当前状态比如温度分布图的当前量。描述状态影响的或者反映所述状态的运转参数仅仅必须一直保留在存储器中,直到其通过所述状态的更新进入当前状态中。相应地不必保留大量的数据。这种比如通过“温度监控”进行的周期性更新的另一个优点是,为进行再计算作为起点只须依据最后更新的状态。这意味着,不必为状态的每次再计算或者说更新考虑自起点起的大量过去的运转参数,考虑这些会导致长时间的且麻烦的计算。取而代之,计算时间最终在轧制过程的时间内划分为小区段,从而不再会出现费时的计算。更新的周期可以有利地在0.5和2秒之间,但优选为1秒。总之,相应地降低了计算时间,通过计算过程的时间上的划分减少了受托进行计算的计算装置的顶峰负荷,并且通过在总体上更快地实施计算这种方式可以使轧制过程的整个时间流程得到加速。

作为影响或者反映热轧板材或者热轧带材的状态的运转参数,如已经表明的一样可以使用大量参数。首先可以在至少一个不同于起点的特别有利的位置上进行必要时另外的温度测量,其结果作为运转参数用于对所述状态尤其温度分布图进行校正并且由此用于对其进行更新。在此涉及上面所提到的适应之一。这样的温度测量比如能够在所述至少一个机架的前面和/或后面进行,从而在相应的道次之间得到一个数值,该数值说明了在相应的点上热轧板材或热轧带材的实际温度。这样的通常多数以光学方式比如通过高温计进行的温度测量一般不能用作直接的输入值,因为在轧制过程中经常会比如因氧化铁皮或者溅到热轧板材或热轧带材上的水而出现热轧板材或者热轧带材的平面覆盖情况。但是,这样的温度测量值作为运转参数包含足够好的信息,从而可以借助于这样的测量对所述状态进行更新(适应)。

如果这样的温度测量装置邻近机架布置,那么,因为所述热轧板材或热轧带材已经出于效率原因没有离开工作辊太远,所以可以仅仅为热轧板材或热轧带材的一部分进行所述温度测量,其中从所测量的部分的校正中推断出未测量的部分的校正。如果相应地比如在所测量的板材部分中发现偏差,那就从中推断出在未测量的部分中的偏差。尤其可以将平均值用于对在所述热轧板材或热轧带材的未测量部分中的状态进行校正。在这种情况下假设,所发现的偏差平均也在未测量的板材部分中存在,随后进行相应的更新(适应)。

除了属于所述反映状态的运转参数的温度测量值之外,也能考虑各个厚板轧机部件的运转参数。因此能够规定,对机架的依赖于状态参量的轧制力或扭矩进行测量并且用作运转参数。

同样有利的是,作为影响所述状态的运转参数使用冷却装置和/或除鳞装置和/或所述机架和/或加热装置的参数和/或板材速度。尤其运转参数如水量和水温、马达功率、轧制速度和其它参数属于所述运转参数。在理想情况下,在按本发明的方法中测量所有为求得所述热轧板材或热轧带材的每种状态影响尤其温度影响而必需的运转参数并且使其相应地纳入所述状态的更新中。

最后,按本发明的方法还可以包括这样的步骤,即在出现至少一个预先确定的事件时在再度的预先计算的范围内尤其在当前状态的基础上求得将来的板材处理参数。所述初始的预先计算,也就是第一次预先计算已在上文作过讨论。在出现特定的必要时其它的事件时,在初始的预先计算之后实施再度的预先计算。所述状态比如温度分布图的再度的预先计算是必需的,以便必要时能够调整/更新所述板材处理参数,如果以往确定的板材处理参数不再适合于达到目标参数也就是比如目标厚度和目标质量。作为用于所述再度的预先计算的出发点,能够使用当前状态,从而在这里也节省计算时间并且充分利用通过按本发明的方法实现的数据压缩。这尤其在时间紧要的情况中比如在一个道次之后在可逆操作的情况下需要对板材处理参数进行调整时是有利的。在这样的情况下,可以借助于按本发明的方法节省宝贵的数秒时间,从而提高产量并且不会出现在计算过程中因不必要的停机时间而继续对热轧板材或热轧带材进行冷却的情况。

比如在加工过程中所述热轧板材或热轧带材到达特定的位置尤其到达与机架和/或冷却装置和/或除鳞装置对所述热轧板材或热轧带材的作用点邻近的位置这种情况和/或使用者指令可以用作预先确定的尤其用于再度的预先计算的事件。在加工过程中所述热轧板材或热轧带材的当前位置通常由行程跟踪装置来提供。相应地可以进行简单的检查,所述热轧板材或热轧带材是否已经到达特定的点。在到达这个位置时自动地在所述当前状态的基础上进行再度的预先计算。如早已在导言中所提到的一样,通常在出现所述事件时直接进行预先计算并且由此实现所述板材处理参数的更新。一种用于起动重新计算的替代方案或补充方案是使用者指令。在这种情况下,在比如对过程进行监控的使用者的操纵台上设置操作元件,借助于所述操作元件比如能够根据使用者的观察来起动重新计算。

但是如果比如出于计算时间原因不应该总是进行再度的预先计算,那么所述当前状态的与以前预先计算的经过预先计算的状态之间的间接或直接比较的失败可以用作预先确定的事件。在此尤其也能与所述热轧板材或热轧带材到达特定的位置尤其到达与所述机架和/或冷却装置和/或除鳞装置对所述热轧板材或热轧带材的作用点邻近的位置这种情况进行比较,所述位置又可以通过行程跟踪来检测。在这种实施方式中,相应地没有直接用这样的位置的到达情况来进行再度的预先计算,而是首先检查,再度的预先计算究竟是否有必要,其中仅仅在存在预先确定的偏差时才进行再度的预先计算。在温度分布图的实例中,在此在一些位置上与即时跟踪的和由此当前的温度分布图进行比较,从这些位置中已经从以前的预先计算中知道温度分布图。这种比较能够直接进行,但是也能间接进行。因此比如轧制力和扭矩这样的参数依赖于所述温度分布图。因此为进行间接比较也可以设想,从当前的温度分布图中确定轧制力和扭矩,然后将其与测量的轧制力和测量的扭矩进行比较。在这种情况下也应该注意,当然总是将所述当前状态与在刚刚过去的预先计算中求得的在所述位置上的状态进行比较,所述刚刚过去的预先计算可以相应地是再度的预先计算。

所述板材处理参数如上文早已说明的一样也能够是冷却装置和/或除鳞装置和/或所述机架和/或加热装置的参数和/或板材速度。板材速度在本申请的范围内不应该只是指进入机架中的穿入速度,而且也应该是指在所述厚板轧机的不同部件之间的输送速度。这里所提到的和所指的参数是相应的工作参数,利用所述工作参数触发相应的部件。前面所提到的运转参数当然也可以包括工作参数,其中所述运转参数也比如通过测量结果或类似数据得到补充。

所述板材处理参数的更新以及由此轧制过程的控制的更新可以以不同的方式方法进行。原则上所述调整包括如何实施下一个道次的方式。这意味着,连接在机架前面的除鳞装置的轧制速度、穿入速度和工作参数可以相应地得到更新。在这种情况下尤其可以设想,所述板材处理参数的更新包括所述机架的上面的和下面的工作辊的非对称触发。有利的是,这类的情况在按本发明的方法中是可能的,如果在所述热轧板材或热轧带材的深度范围内观察状态参量分布图。根据这种信息,可能有必要非对称触发所述机架的上面的和下面的工作辊,用于达到所期望的成品质量。

作为后续的道次的参数的更新的补充也可以规定,所述板材处理参数的更新包括停机时间的确定和/或额外的冷却或加热过程和/或板材速度的变化。由此最终进行温度调整。在此比如可以规定,在低于允许的过程温度时又对所述热轧板材或热轧带材进行加热,或者可以使其冷却到对残余变形来说重要的开始温度。

在所述方法的另外的设计方案中,将当前状态或者从中推导出来的参量尤其状态参量向操作人员显示出来,随后尤其可以由所述操作人员进行板材处理参数的调整。因此,比如除了在所述热轧板材或热轧带材的某个点上的平均温度之外,还能向操作人员提供关于在深度的范围内的温度变化的信息,比如在所述热轧板材或热轧带材的上侧面上、中心和下侧面上的温度。借助于这样的信息,操作人员也可以将板材处理参数的手动调整比如所述机架的上面的和下面的工作辊的非对称触发识别为必要的工作并且亲自进行处理。

有利的是,可以将所述状态和/或从中推导出来的参量尤其校正参量的时间上的变化保留在存储装置中,用于以后在其它的热轧板材或热轧带材的处理方面进行分析。由此能够发现所述预先计算的系统误差并且能够对所述模型进行相应调整。

此外,本发明也涉及一种能够按照按本发明的方法来控制的轧机。为此尤其能设置中央控制装置,在该中央控制装置中收集数据并且对其进行相应处理。

附图说明

本发明的其它优点和细节从下面所说明的实施例中并且借助于附图来获得。其中:

图1是按本发明的厚板轧机,

图2是在热轧板材上的板材点的可能的位置,并且

图3A和3B是按本发明的方法的过程的流程图。

具体实施方式

图1示出了一台厚板轧机1。通过辊道2使热轧板材3穿过所述厚板轧机1,这里为简明起见从热轧板材3中仅仅示出两块热轧板材。首先在炉子4中再次对所述热轧板材3进行加热。在离开炉子4之后,借助于高温计5进行第一次温度测量。在除鳞装置6中尽可能完全将氧化铁皮从所述热轧板材上去除。此后设置了冷却装置7,该冷却装置7用于对所述热轧板材3进行温度调整。第二高温计8测量在机架9之前所述热轧板材3的温度,另外的高温计10测量在所述机架9之后的温度。根据所需要的道次的数目,如通过箭头11所表示的一样使所述热轧板材3多次可逆地交替地从相应的一侧穿过所述机架9。除了上面的和下面的工作辊12,所述机架9在其正面和其背面包括用于进一步除鳞的二次除鳞装置13。如果所述热轧板材在机架9中进行多个道次之后达到所期望的厚度,那就将其输送给冷却装置14,在该冷却装置14中对其进行相应冷却。可以看出,所有示出的部件都与构造用于实施按本发明的方法的中央控制装置15进行通讯。此外,在所述控制装置15上连接着显示装置16和输入装置17。通过通信线路18借助于在预先计算的范围内求得的或者在使用者方面确定的代表着各个部件的工作参数的板材处理参数来对各个部件进行触发。同样通过所述通信线路18将测量值或者说应答转换为控制指令。

这里所示出的厚板轧机1仅仅应该被视为示范性的。因此首先可以设想,设置其它的冷却装置7或者说除鳞装置6。也可以在所述机架9的近处设置另外的冷却装置或另外的炉子,从而也可以在这里进行温度影响。

在按本发明的方法的下面的实施例中,通过在所述热轧板材的不同的板材点上的局部温度分布图来描述所述状态并且将温度视为状态参量。但是也可以设想,选择所述状态的另一种描述,该状态比如可以通过能够参数化的状态函数来定义。此外,所说明的方法可以转用到其它状态参量比如残余强度或者相分布上。

如早已提到的一样,所述控制装置15用于实施按本发明的方法。为此,在其中首先保存着所述热轧板材和厚板轧机的模型19。借助于该模型,可以自起点起这里在经过高温计5时进行预先计算。借助于该模型19,通过预先计算必要时通过再度的预先计算(重新计算)来确定在特定的位置上比如在各个部件的作用点上的板材处理参数以及预先计算的温度分布图20。此外从起点开始不断地借助于通过通信线路18传输的运转参数以一秒种的间隔对借助于用高温计5进行的温度测量确定的所述热轧板材3的不同的板材点上的当前的温度分布图21进行周期性更新,其中这也以通过行程跟踪装置22进行的行程跟踪为基础。热轧板材的行程跟踪在现有技术中完全公开并且这里不应详细描述。当前的影响或者反映所述热轧板材3的当前温度分布图21的运转参数仅仅必须一直保留到下次更新也就是一直保留到下一个周期。过去的运转参数对当前温度分布图21的影响已经包含在当前温度分布图21中,这意味着,没有失去任何必要的信息。

此外,可以将所述温度分布图21的时间上的变化曲线或所求得的偏差和校正参量保存在所述控制装置15中的存储装置23中,用于以后在其它的热轧板材的轧制过程方面进行分析。

图2示出了板材点在热轧板材3上的位置。所述板材点24沿所述热轧板材3的纵向方向和宽度方向对齐布置,从而最终产生一个矩阵。对于这些板材点24的每个板材点来说研究温度分布图25,该温度分布图25反映沿所述热轧板材3的厚度的方向的温度变化。通过借助于模型进行的内插,也可以确定在热轧板材3中因此也在所述板材点24之间的完整的温度分布。这种温度分布反映热轧板材的热状态。可以在热轧板材3的上方和下方进行测量的高温计5、8和10最终仅仅反映表面温度,其中所述温度分布图25的温度变化可以根据物理的模型假设来确定。在此应该理解为,所述板材点24通过在所述热轧板材3上的相对位置来确定,这意味着,如果沿长度方向对所述热轧板材3进行轧制,那么在所述板材点24之间的间距就发生变化,所述板材点24保持其相对位置。

除了按本发明的方法在所述控制装置15中的自动化运行之外,此外通过显示装置16向操作人员显示出当前温度分布图21和/或从中推导出的参量,这种显示也可以通过输入装置17进行手动调整。因此比如除了板材点24上的平均温度之外,也可以说明在这个板材点24上所述热轧板材3的上侧面上、下侧面上和中心处的温度,随后可以通过操作者对所述机架10的工作辊12进行不同的触发。

图3A和3B示出了按本发明的方法的过程的流程图。按本发明的方法的特征主要在于两个并行且彼此不干扰地进行的过程。在图3A中示出的过程涉及所述状态的周期性更新,在该实施例中因此涉及温度监控。在图3B中示出的过程在出现预先确定的事件时起动初始的或者再度的预先计算。在此相应地在右侧在方框26中表明重要的输入参量。

首先在步骤S1中在起点上在所述厚板轧机1中借助于在所述第一高温计5上进行的第一次温度测量为每个板材点24求得初始的局部的温度分布图。也就是确定初始的状态。在这里这借助于测量值在添加几个用于确定变化的物理的模型假设的情况下进行。

现在周期性地对所求得的温度分布图21以及由此对所述状态进行更新。所述温度分布图21的更新在步骤S2中进行。在此再度使用所述模型19,其中考虑到影响或反映温度的运转参数。此外,当然也考虑到所述板材点24的行程跟踪。在该实施方式中原则上考虑到所有的可能以某种方式影响热轧板材3的温度或者说温度分布的运转参数。因此可以不断地对所述温度分布图21进行最新跟踪。实际的板材处理参数可以作为运转参数研究,但是测量值如机架9的射出的水量、轧制力或扭矩或者类似参数也可以额外地作为运转参数来研究。通过所述高温计8和10,也获得描述所述热轧板材3的温度的测量值。这些测量值也作为适应(Adaption)纳入所述温度分布图21的更新之中。

在此会出现这样的情况,也就是说,为了在时间优化的意义上不将所述板材从工作辊12上移走,不是对所有的板材点24来说都存在着所述高温计8和10的温度测量值。如果存在偏差,那么在假设从测量值中产生的平均偏差的情况下同样可以对其余的板材点24进行校正并且由此对所述温度分布图21进行调整。

然后在步骤S3中借助于所述行程跟踪装置22的数据来检查,是否加工过程到达其终点。经常也检查,是否行程跟踪已结束,这意味着,所述方法只有在不再对所述热轧板材进行行程跟踪时才结束,从而在轧制过程之后还对板材处理进行研究。如果达到了加工过程的终点,那也就结束按本发明的方法,步骤S4。如果还没有达到加工过程的终点,那就重新实施步骤S2也就是温度分布图21的更新。在任何情况下这种更新周期性地、在这里以1秒钟的间隔来进行。

在与之并行的在图3B中示出的过程中,只要图3A的过程在进行,那就在步骤S5中检查,是否到达多个预先确定的位置中的其中之一,也就是说是否出现相应的事件。如果没有出现事件,那就继续重复步骤S5,这意味着,只要按本发明的方法以及由此所述温度分布图21的周期性更新在进行,那么也对事件进行检查。

在时间上第一个出现的事件是初始的事件。它确定何时在步骤S6中实施第一次也就是初始的预先计算。所述初始的事件也可以早已是所述起点,但通常只有在几次更新之后才会出现,比如在炉子翻板关闭时出现。

在步骤S6中进行初始的预先计算时,使用所述热轧板材3和厚板轧机1的模型19,其中求得在加工过程中在所述热轧板材3的特定的位置上的理论上的温度分布图20也就是状态参量,用于确定板材处理参数。所述位置在此可以选择为所述厚板轧机1的部件的作用点,或者选择在所述作用点的附近。在这种情况下,由于在机架9中可逆的贯穿(Stechen)也会多次到达某个位置,因而所述具有经过预先计算的温度分布图20的位置原则上也可以包括与时间上的变化有关的部件。所述板材处理参数在此是所述厚板轧机1的各个部件的触发参数或者说工作参数,因此描述比如下一个道次应该如何实施,应该在多大的压力时将多少水量喷射到所述热轧板材3上等等。

在所述初始的预先计算之后再次检查,是否出现其它事件,步骤S5。

因此如果出现相应的事件,那就在步骤S6中进行再度的预先计算,也就是进行重新计算,其中求得更新过的板材处理参数。通过所述板材处理参数的更新来保证,可以用将来的板材处理参数来达到所期望的目标参数。所述再度的预先计算又借助于所述模型19来进行,其中作为起点使用在所述板材点24上的当前温度分布图21。这种再度的预先计算的结果代替原来的或者说前一次的再度预先计算的结果。

导致再度的预先计算的事件不一定是到达预先确定的位置尤其到达所述厚板轧机1的特定部件的作用点。也可以设想,使用者比如通过操作元件输入使用者指令,从而起动再度的预先计算。

在特定的态势中也会有意义的是,所述再度的预先计算只有在将经过预先计算的温度分布图20与热轧板材3的在所述位置上的当前温度分布图21进行比较之后才进行。如果没有出现偏差,那就继续执行步骤S6,但是如果发现比预先确定的数值大的偏差,那就在步骤S6中进行预先计算。在此应该注意,总是与根据最新的再度的预先计算求得的经过预先计算的在特定位置上的温度分布图21进行比较。

在预先计算的过程中在步骤S2中继续对温度分布图进行周期性更新。

在这里所说明的方法的流程中,在所述显示装置16上向操作人员显示所述当前的温度分布图21本身或者从中推导出来的信息或者说参量,从而操作人员也可以亲自干预轧制过程并且必要时改变板材处理参数。当然也可以在按本发明的方法的范围内对这些由操作人员改变的板材处理参数加以考虑,因为它们优先于计算出来的板材处理参数。

通过在步骤S2中进行的温度分布图21的更新,将所有对轧制过程的进一步的进行来说重要的、从所述运转参数中推导出来的信息加以归纳,使得进入所述温度分布图21的更新中的运转参数不必较长时间地加以保存。相应地,可以很快地实施步骤S2中的再计算,因为仅仅必须考虑自上次更新以来的影响。步骤S6中的再度的预先计算使用当前的温度分布图作为起点,这种预先计算也消耗更少的计算时间。由此节省计算功率并且提高生产能力,因为防止了不必要的等候时间。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号