首页> 中国专利> 用于减少所接收SPS信号中的模糊性的系统和/或方法

用于减少所接收SPS信号中的模糊性的系统和/或方法

摘要

本文揭示的标的物涉及一种用于解决与从卫星导航系统中的空间飞行器(SV)接收的信号相关联的模糊性的系统和方法。

著录项

  • 公开/公告号CN101506681A

    专利类型发明专利

  • 公开/公告日2009-08-12

    原文格式PDF

  • 申请/专利权人 高通股份有限公司;

    申请/专利号CN200780030909.X

  • 申请日2007-08-23

  • 分类号G01S1/00;

  • 代理机构北京律盟知识产权代理有限责任公司;

  • 代理人刘国伟

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 22:27:31

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-08-14

    授权

    授权

  • 2009-10-07

    实质审查的生效

    实质审查的生效

  • 2009-08-12

    公开

    公开

说明书

本申请案主张2006年8月23日申请的题为“使用新GNSS信号在传统GPS上进行快速位边缘检测(FAST BIT EDGE DETECTION ON LEGACY GPS USING NEW GNSSSIGNALS)”的第60/839,854号美国临时专利申请案的权益。以上提及的申请案全文以引用的方式并入本文中。

技术领域

本文揭示的主题涉及基于从地理定位卫星接收的信号确定位置。

背景技术

卫星定位系统(SPS)通常包括沿地球轨道运行的卫星的系统,其使实体能够至少部分基于从卫星接收的信号确定其在地球上的位置。此SPS卫星通常传输以固定数目的码片的重复伪随机噪声(PN)码标记的信号。举例而言,例如,GPS或伽利略的全球导航卫星系统(GNSS)的星群中的卫星可传输以可与由星群中的其它卫星传输的PN码区分的PN码标记的信号。

为了估计接收器处的位置,导航系统可至少部分基于从卫星接收的信号中的PN码的检测,使用众所周知的技术确定到在接收器“视线内”的卫星的伪距离测量。此到卫星的伪距离可至少部分基于在获取接收器处接收的信号的过程期间以与卫星相关联的PN码标记的所接收信号中检测到的码相位而确定。为了获取所接收信号,导航系统通常将所接收信号与和卫星相关联的本地产生的PN码相关。举例而言,此导航系统通常将此所接收信号与此本地产生的PN码的多个码和/或时间移位版本相关。以最高信号功率产生相关结果的特定时间和/或码移位版本的检测可指示与用于如上文所论述测量伪距离的所获取信号相关联的码相位。

在检测到从GNSS卫星接收的信号的码相位后,接收器可形成多个伪距离假设。使用额外信息,接收器可消除此类伪距离假设以有效地减少与真实伪距离测量相关联的模糊性。除了以周期性重复PN码序列编码外,由GNSS卫星传输的信号还可通过例如数据信号和/或已知值序列等额外信息来调制。通过检测从GNSS卫星接收的信号中的此额外信息,接收器可消除与所接收信号相关联的伪距离假设。

图1A说明SPS系统的应用,其中无线通信系统中的订户站100从订户站100的视线内的卫星102a、102b、102c、102d接收传输,且从所述传输的四者或四者以上中导出时间测量值。订户站100可将此类测量值提供到位置确定实体(PDE)104,所述PDE104从所述测量值中确定站的位置。或者,订户站100可从此信息中确定其自身的位置。

订户站100可通过将卫星的PN码与所接收信号相关来搜索来自特定卫星的传输。所接收信号通常包括在存在噪声的情况下来自站100处的接收器的视线内的一个或一个以上卫星的传输的合成物。可在称为码相位搜索窗口WCP的码相位假设范围内或在称为多普勒搜索窗口WDOPP的多普勒频率假设范围内执行相关。如上文所指出,此类码相位假设通常表示为PN码移位的范围。并且,多普勒频率假设通常表示为多普勒频率组。

通常在可表达为Nc与M的乘积的积分时间“I”内执行相关,其中Nc是相干积分时间,且M是非相干地组合的相干积分的数目。对于特定PN码,相关值通常与相应PN码移位和多普勒组相关联以界定二维相关函数。相关函数的峰值经定位并与预定噪声阈值进行比较。所述阈值通常经选择使得误警报可能性(错误地检测到卫星传输的可能性)处于或低于预定值。卫星的时间测量值通常是从沿着码相位维度的最早的非侧部凸角峰值(其等于或超过阈值)的位置导出。订户站的多普勒测量值可从沿着多普勒频率维度的最早的非侧部凸角峰值(其等于或超过阈值)的位置导出。

解决与所获取GNSS信号相关联的伪距离假设的模糊性消耗功率和处理资源。此功率和处理资源的消耗通常是例如移动电话和其它装置等便携式产品中的关键设计约束。

发明内容

在一个方面中,在接收器处从第一SV接收的第一SPS信号由数据信号调制。在本文说明的一个特定特征中,一种系统和方法是针对至少部分基于在接收器处接收的第二SPS信号中的信息来减少数据信号中的位边缘的模糊性。然而,应了解,这仅是根据本文说明的特定实例的一个特定特征,且所主张的标的物在此方面不受限制。

附图说明

通过以下图式描述了非限定性和非详尽的特征,各图式中相同参考标号始终表示相同部分。

图1A是根据一个方面的卫星定位系统(SPS)的示意图。

图1B是说明根据一个方面的所接收GNSS信号的伪距离假设的时序图。

图2展示根据一个方面的能够通过测量到空间飞行器(SV)的伪距离来确定接收器处的位置的系统的示意图。

图3是说明根据一个方面的用于减少从SV获取的信号中的模糊性的过程的流程图。

图4是说明根据一个方面的从自不同SV获取的信号中导出的伪距离假设的关联的时序图。

图5A是说明根据一替代特征的从自不同SV获取的信号中导出的伪距离假设的关联的时序图。

图5B是说明根据一替代特征的在获取第二SPS信号的过程中调制第一SPS信号的数据信号的位边缘的检测的使用的时序图。

图6A是说明根据一替代特征的从自不同SV获取的信号中导出的伪距离假设的关联的时序图。

图6B是说明根据一替代特征的从自不同SV获取的信号中导出的伪距离假设的关联的时序图。

图6C是说明根据一替代特征的从自不同SV获取的信号中导出的伪距离假设的关联的时序图。

图6D是说明根据一替代特征的从自不同SV获取的信号中导出的伪距离假设的关联的时序图。

图7是根据一个方面的将被搜索以用于从空间飞行器传输的信号的检测的二维域的示意图。

图8说明根据一个方面在搜索窗口中重叠指定数目的码片以避免遗漏在片段边界出现的峰值。

图9是根据一个方面的用于处理信号以确定位置定位的系统的示意图。

图10是根据一个方面的订户站的示意图。

具体实施方式

本说明书中对“一个实例”、“一个特征”、“一实例”或“一个特征”的参考意味着结合特征和/或实例描述的特定特征、结构或特性包含在所主张的标的物的至少一个特征和/或实例中。因此,在本说明书中的各个地方短语“在一个实例中”、“一实例”、“在一个特征中”或“一特征”的出现不一定全部表示同一特征和/或实例。此外,特定特征、结构或特性可组合在一个或一个以上实例和/或特征中。

本文描述的方法可依据根据特定特征和/或实例的应用而通过各种手段实施。举例来说,此类方法可实施在硬件、固件、软件和/或其组合中。在硬件实施方案中,举例来说,处理单元可实施在一个或一个以上专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、电子装置、经设计以执行本文描述的功能的其它装置单元,和/或其组合中。

如本文提到的“指令”涉及表示一个或一个以上逻辑操作的表达。举例来说,指令可通过可由用于对一个或一个以上数据对象执行一个或一个以上操作的机器解译而是“机器可读的”。然而,这仅是指令的一实例,且所主张的标的物在此方面不受限制。在另一实例中,如本文提到的指令可涉及可由具有命令集的处理电路执行的经编码命令,所述命令集包含所述经编码命令。此指令可以处理电路所理解的机器语言的形式编码。再次,这些仅是指令的实例,且所主张的标的物在此方面不受限制。

如本文特定的“存储媒体”涉及能够维持一个或一个以上机器可感知的表达的媒体。举例来说,存储媒体可包括用于存储机器可读指令和/或信息的一个或一个以上存储装置。此类存储装置可包括若干媒体类型的任一者,包含(例如)磁性、光学或半导体存储媒体。此类存储装置还可包括任何类型的长期、短期、易失性或非易失性装置存储器装置。然而,这些仅是存储媒体的实例且所主张的标的物在这些方面不受限制。

除非另外明确陈述,否则如从以下论述中显而易见,应了解在本说明书中,利用例如“处理”、“计算”、“核算”、“选择”、“形成”、“启用”、“抑制”、“定位”、“终止”、“识别”、“启始”、“检测”、“获得”、“代管”、“维持”、“表示”、“估计”、“减少”、“关联”、“接收”、“传输”、“确定”等术语的论述是指可由计算平台(例如,计算机或类似的电子计算装置)执行的动作和/或过程,所述计算平台操纵和/或变换计算平台的处理器、存储器、寄存器和/或其它信息存储、传输、接收和/或显示装置内的表示为物理电子和/或磁性量的数据。此类动作和/或过程可(例如)由计算平台在存储在存储媒体中的机器可读指令的控制下执行。此类机器可读指令可包括(例如)存储在作为计算平台的一部分而包含(例如,作为处理电路的一部分而包含或在此处理电路外部)的存储媒体中的软件或固件。此外,除非另外明确陈述,否则本文提到的流程图或另外描述的过程还可整体或部分由此计算平台执行和/或控制。

如本文特定的“空间飞行器(SV)”涉及能够将信号传输到地球表面上的接收器的物体。在一个特定实例中,此SV可包括对地静止的卫星。或者,SV可包括在一轨道中运行并相对于地球上的固定位置移动的卫星。然而,这些仅是SV的实例且所主张的标的物在这些方面不受限制。

如本文提到的“位置”涉及根据参考点与一物体或事物的行踪相关联的信息。此处,举例来说,此位置可表示为例如纬度和经度的地理坐标。在另一实例中,此位置可表示为以地球为中心的XYZ坐标。在又一实例中,此位置可表示为街道地址、市政当局或其它政府管辖区域、邮政编码和/或类似物。然而,这些仅是根据特定实例可如何表示位置的实例且所主张的标的物在这些方面不受限制。

本文描述的位置确定和/或估计技术可用于例如无线广域网(WWAN)、无线局域网(WLAN)、无线个域网(WPAN)等各种无线通信网络。术语“网络”和“系统”可在本文中互换使用。WWAN可以是码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交频分多址(OFDMA)网络、单载波频分多址(SC-FDMA)网络等。CDMA网络可实施一种或一种以上无线电接入技术(RAT),例如(仅举几个无线电技术实例)cdma2000、宽带CDMA(W-CDMA)。此处,cdma2000可包含根据IS-95、IS-2000和IS-856标准实施的技术。TDMA网络可实施全球移动通信系统(GSM)、数字先进移动电话系统(D-AMPS)或某一其它RAT。来自名为“第三代合作伙伴计划”(3GPP)的联盟的文献中描述了GSM和W-CDMA。来自名为“第三代合作伙伴计划2”(3GPP2)的联盟的文献中描述了Cdma2000。3GPP和3GPP2文献公开可用。WLAN可包括IEEE 802.11x网络,且WPAN可包括蓝牙网络,例如IEEE 802.15x。本文描述的此类位置确定技术还可用于WWAN、WLAN和/或WPAN的任何组合。

根据一实例,一装置和/或系统可至少部分基于从SV接收的信号估计其位置。明确地说,此装置和/或系统可获得包括相关联SV与导航卫星接收器之间的距离的近似值的“伪距离”测量值。在一特定实例中,可在能够处理来自作为卫星定位系统(SPS)的一部分的一个或一个以上SV的信号的接收器处确定此伪距离。此SPS可包括(例如)全球定位系统(GPS)、伽利略、Glonass(举几个实例),或将来开发的任何SPS。为了确定其位置,导航卫星接收器可获得到三个或三个以上卫星的伪距离测量值以及其在传输时的位置。知道SV的轨道参数后,可针对任何时间点计算这些位置。可接着至少部分基于信号从SV行进到接收器的时间乘以光速来确定伪距离测量值。虽然本文描述的技术可提供为作为根据特定实例的特定说明的GPS和/或伽利略型SPS中的位置确定的实施方案,但应了解,这些技术还可应用于其它类型的SPS,且所主张的标的物在此方面不受限制。

本文描述的技术可与(例如)若干SPS(包含上述SPS)的任一者一起使用。此外,此类技术可与利用伪卫星或卫星与伪卫星的组合的定位系统一起使用。伪卫星可包括广播在L频带(或其它频率)载波信号上调制的PN码或其它测距码(例如,类似于GPS或CDMA蜂窝式信号)的基于地面的传输器,所述L频带载波信号可与GPS时间同步。此传输器可被分派得到唯一PN码以便允许由远程接收器识别。伪卫星可用于来自沿轨道运行的卫星的GPS信号可能不可用的情形,例如在隧道、矿井、建筑物、城市峡谷或其它封闭区域中。伪卫星的另一实施方案称为无线电信标。如本文中使用的术语“卫星”希望包含伪卫星、伪卫星的等效物,和可能其它事物。如本文中使用的术语“SPS信号”希望包含来自伪卫星或伪卫星的等效物的类似SPS的信号。

如本文提到的“全球导航卫星系统(GNSS)”涉及包括根据共同信令格式传输同步导航信号的SV的SPS。此GNSS可包括(例如)在同步轨道中的SV的星群,以将导航信号从星群中的多个SV同时传输到地球表面的大部分上的位置。作为特定GNSS星群的成员的SV通常以对于特定GNSS格式唯一的格式传输导航信号。因此,用于获取由第一GNSS中的SV传输的导航信号的技术可经改变以用于获取由第二GNSS中的SV传输的导航信号。在特定实例中,尽管所主张的标的物在此方面不受限制,但应了解,GPS、伽利略和Glonass每一者均表示与其它两个命名的SPS不同的GNSS。然而,这些仅是与不同GNSS相关联的SPS的实例且所主张的标的物在此方面不受限制。

根据一个特征,导航接收器可至少部分基于从以周期性重复PN码序列编码的特定SV获取信号来获得到特定SV的伪距离测量值。此信号的获取可包括检测参考于时间和PN码序列中的关联点的“码相位”。在一个特定特征中,举例来说,此码相位可参考于局部产生的时钟信号和PN码序列中的特定码片。然而,这仅是可如何表示码相位的实例且所主张的标的物在此方面不受限制。

根据一实例,码相位的检测可以PN码间隔提供若干不明确的候选伪距离或伪距离假设。因此,导航接收器可至少部分基于所检测的码相位和选择所述伪距离假设的一者作为到SV的“真实”伪距离测量值的模糊性的解析率来获得到SV的伪距离测量值。如上文指出,导航接收器可至少部分基于从多个SV获得的伪距离测量值而估计其位置。

根据一实例,尽管所主张的标的物在此方面不受限制,但从SV传输的信号可以在预定周期内且处于预定序列中的一个或一个以上数据信号来调制。在GPS信号格式中,举例来说,SV可以按照毫秒间隔重复的已知PN码序列编码的信号。另外,此信号可以可按照例如预定20ms间隔变化的数据信号来调制。根据一特定实例,尽管所主张的标的物在此方面不受限制,但此数据信号和重复的PN码序列可在由射频载波信号混合以用于从SV传输之前在模数2求和运算中组合。

图1B是说明根据一实例在参考位置处从GPS星群中的SV接收的信号中的数据信号154上叠加的伪距离假设152的时序图。此处,数据信号154中的位间隔可为20ms长,且在至少部分基于重复1.0ms PN码序列中的码相位的检测而确定的二十个伪距离假设152上延伸。通过在20毫秒位间隔内选择伪距离假设156中的一者,接收器可确定分割数据信号154中的连续位的20ms数据位间隔之间的边界或“位边缘”。

根据一实例,尽管所主张的标的物在此方面不受限制,但接收器可至少部分基于从一个SV接收的信号检测调制从另一SV接收的信号的数据信号中的位边缘和/或位间隔之间的边界。此处,第一信号的伪距离假设可与第二信号的伪距离假设相关联。至少部分基于第一信号的伪距离假设与第二信号的伪距离假设之间的此关联,接收器可解析经调制信号中的位边缘相对于真实伪距离的对准和/或相位的模糊性。然而,这仅是实例且所主张的标的物在此方面不受限制。

图2展示根据一实例能够通过测量到SV的伪距离来确定接收器处的位置的系统的示意图。地球表面168上的参考位置中心166处的接收器可检视并接收来自SV1和SV2的信号。参考位置中心166可已知在由(例如)约10km的半径的圆界定的参考位置区域164内。然而,应了解,这仅是根据特定方面可如何表示所估计位置的不确定性的实例且所主张的标的物在此方面不受限制。在一个实例中,区域164可包括处于已知位置的蜂窝式无线通信网络的特定小区的覆盖范围。

根据一实例,参考位置区域164处的接收器可经由(例如)卫星通信网络或地面无线通信网络中的无线通信链路与(例如)服务器(未图示)等其它装置通信。在一个特定实例中,此服务器可将获取辅助(AA)消息传输到接收器,所述AA消息包括由接收器使用以处理从SV接收的信号和/或获得伪距离测量值的信息。或者,此类AA消息可从接收器的存储器中本地存储的信息提供。此处,此本地存储的信息可从可移除存储器装置存储到本地存储器和/或从自服务器接收的先前AA消息导出,仅举几例。在特定实例中,AA消息可包括(例如)指示SV1和SV2的位置的信息、参考位置中心166的位置的估计值、与所估计位置相关联的不确定性、当前时间的估计值和/或类似信息的信息。指示SV1和SV2的位置的此类信息可包括星历表信息和/或年历信息。如下文根据特定实例所指出,接收器可至少部分基于此类星历表和/或年历以及时间的大致估计值来估计SV1和SV2的位置。SV的此估计的位置可包括(例如)从参考方向的所估计的方位角和从参考位置中心166处的地平线的仰角,和/或以地球为中心的XYZ坐标。

根据一实例,SV1和SV2可以是相同或不同GNSS星群的成员。在下文说明的特定实例中,SV1可以是GPS星群的成员,而SV2可以是伽利略星群的成员。然而,应了解,这仅是接收器可如何从属于不同GNSS星群的SV接收信号的实例,且所主张的标的物在此方面不受限制。

图3是说明根据一实例用于减少从SV接收的信号中的模糊性的过程200的流程图。此处,参考位置区域处的接收器可从第一SV(例如,SV1)接收以第一周期性重复PN码编码的第一信号,且从第二SV(例如,SV2)接收以第二周期性重复PN码编码的第二信号。为了在步骤202处获取第一信号,此接收器可检测所接收信号中的多普勒频率和码相位。码相位的此检测可包括(例如)如下文所说明将本地产生的码序列的码和/或时间移位版本与所接收的第一信号相关。在从例如伽利略SV传输所接收信号的一个实例中,此码相位可在PN码序列的4.0ms重复周期内检测到。或者,在从GPS SV传输所接收信号的情况下,此码相位可在PN码序列的1.0ms重复周期内检测到。然而,这仅是可如何获取来自特定GNSS的SV的信号的实例且所主张的标的物在此方面不受限制。

在一个特定替代方案中,第一和第二SV可来自GPS星群,而所述两个SV的至少一者能够传输L1C信号。如同来自伽利略SV的导航信号,L1C导航信号可包括以4.0ms周期性重复PN码序列编码的信号。因此,应了解,虽然本文论述的特定实例可涉及使用来自伽利略和GPS星群的SV,但此类技术还可应用于使用两个GPS SV的其它实例(其中SV的至少一者能够传输L1C信号)。再次,这些仅是可在参考位置区域处的接收器处从SPS接收的特定信号的实例,且所主张的标的物在此方面不受限制。

步骤204可使用上文结合步骤202论述的技术获取从第二SV接收的第二信号。然而,应了解,所接收的第二信号可根据与用于传输第一信号的GNSS格式的格式不同的GNSS格式来传输。此处,举例来说,可从GPS星群中的SV传输第一所接收信号,而可从伽利略星群中的SV传输第二所接收信号。或者,可从伽利略星群中的SV传输第一所接收信号,而可从GPS星群传输第二所接收信号。然而,应了解,这些仅是接收器可如何从属于不同GNSS的星群的SV接收信号的实例且所主张的标的物在此方面不受限制。

在从SV获取信号后(例如,如上文参考步骤202和204所说明),接收器可从码相位检测中确定伪距离假设。在SV例如根据GPS格式传输信号的特定实例中,接收器可至少部分基于在接收器处获取的信号中所检测到的周期性重复PN码序列的相位来以1.0ms间隔和/或以约3.0 x 105米的增量确定伪距离假设。在SV例如根据伽利略格式传输信号的另一实例中,可至少部分基于在接收器处获取的信号中所检测到的周期性重复PN码序列的相位来以4.0ms间隔和/或以约1.2 x 106米的增量确定伪距离假设。在检测由SV传输的信号中的PN码序列的相位时,接收器可采用(例如)在AA消息中提供给接收器的信息。然而,这仅是接收器可如何检测从SV传输的信号的周期性PN码序列的相位的实例,且所主张的标的物在此方面不受限制。

根据一实例,步骤206可将从第一SV(SV1)接收的信号的伪距离假设与从第二SV(SV2)接收的信号的伪距离假设相关联。如图4中根据特定实例所说明,在参考位置区域处从GPS星群中的第一SV接收的信号的伪距离假设254至少部分基于从参考位置中心到第一SV的距离与从参考位置中心到第二SV的距离之间的所估计的差而与在参考位置区域处从伽利略星群中的第二SV接收的信号的伪距离假设256相关联。此处,应观察到,从参考位置到第一SV的距离可不同于从参考位置到第二SV的距离。在特定实例中,在AA消息中提供到接收器(例如,在参考位置区域164处)的信息可用于估计从参考位置中心到第一和第二SV的此距离的差。

实际差L可界定从参考位置到第一SV的距离与从参考位置到第二SV的距离之间的差(例如,以时间为单位)。此处,实际差L可表达如下:

L=T2-T1

其中:

T1=如在给定时间在参考位置处测量的来自SV1的信号的传播延迟;以及

T2=如在相同给定时间在参考位置处测量的来自SV2的信号的传播延迟。

为了将伪距离假设254与伪距离假设256相关联,因此,接收器可根据关系式(1)确定从参考位置中心到第一SV的距离与从参考位置中心到第二SV的距离之间的差L的估计值(例如,以时间为单位),如下:

E[L]=E[T2-T1]      (1)

由于与T2和T1的测量值相关联的误差可假定是大体上独立的,所以表达式E[T2-T1]可由表达式E[T2]-E[T1]近似。此处,在特定实例中,表达式E[T2]-E[T1]的值对于特定时间可能是接收器通过AA消息已知和/或可用的。或者,接收器可对于特定时间从在此AA消息中接收的信息导出此表达式E[T2]-E[T1]的值。

根据关系式(1)应用于相关联伪距离假设254与256的差L的估计值E[L]可简化为取消接收器时钟误差τ的表达式,如下:

E[L]=E[T2]-E[T1]

    =(RSV2/c-τ)-(RSV1/c-τ)

    =(RSV2-RSV1)/c

其中:

c=光速;

τ=接收器时钟偏移误差;

RSV1=从参考位置中心到SV1的距离的估计值;以及

RSV2=从参考位置中心到SV2的距离的估计值。

此处,应观察到,差估计值E[L]的值可以线性长度或时间为单位表达,且E[L]的值的此表达式的单位之间的转换可由以适当单位表达的光速提供。因此,应了解,差估计值E[L]的此值可以时间或线性长度为单位可互换地表达,而不脱离所主张的标的物。

根据一实例,步骤206可计算从参考位置中心166到SV1的距离(“RSV1”)与从参考位置中心166到SV2的距离(“RSV2”)之间的估计值差。此处,步骤206可从一个或一个以上AA消息获得AA信息,其指示(例如)以地球为中心的XYZ坐标中SV1和SV2的位置的估计值以及参考位置中心166的以地球为中心的XYZ坐标的估计值。使用此以地球为中心的XYZ坐标,步骤206可计算RSV1和RSV2的欧几里德(Euclidean)距离。

图4是说明在开始于t=0且结束于t=20ms的20ms持续时间内伪距离假设的关联的时序图。因此,在此特定实例中,调制GPS信号的数据信号的位边缘可在t=0与t=20ms之间的某一情况下发生。此处,从在参考位置区域处从(例如)GPS SV接收的信号导出的伪距离假设254可以1.0ms的增量确定,而从在参考位置区域处从(例如)伽利略SV接收的信号导出的伪距离假设256可以4.0ms的增量确定。应了解,在参看图4以及参看图5A到6C说明的特定实例中,应了解,从第一SV传输的伽利略信号可与调制从第二SV接收的GPS信号的数据信号同步。在特定实例中,伪距离假设256可通过如上文在关系式(1)中确定的差估计值E[L]而与伪距离假设254的特定伪距离假设252相关联。

根据一实例,尽管所主张的标的物在此方面不受限制,但差估计值E[L]的准确性是至少部分基于与参考位置区域的估计值(例如,如XYZ以地球为中心的坐标中所表达)相关联的不确定性的量或程度。在图4中,差估计值E[L]的值展示为约0.6毫秒,其中单侧的不确定性小于0.5毫秒。因此,伪距离假设250唯一地与和伪距离假设250分离0.6+/-0.5毫秒的伪距离假设252相关联。因此,如果已知差估计值E[L]在0.5ms内是准确的,那么来自伪距离假设254中的特定伪距离假设252可与特定单一伪距离假设250相关联,如图4中所说明。此处,在步骤208处,可消除剩余不关联的伪距离假设254,作为用于确定GPS数据信号的位边缘相对于数据位间隔内的真实伪距离的相位和/或对准的假设。如图4中根据特定实例所说明,在二十个伪距离假设254中,剩余与伪距离假设250相关联的五个伪距离假设252。因此,代替于处理用于检测位边缘相对于真实伪距离的相位和/或对准的二十个伪距离假设,仅需要使用(例如)应用于与五个剩余伪距离假设252相关联的相关量度的似然函数来处理五个剩余伪距离假设252。此处,通过将邻近伪距离假设的分隔从1.0ms增加到4.0ms,此似然函数可较快地且/或使用较少处理资源或以较低输入信号强度来解析五个剩余伪距离假设252中的此模糊性。

在上文在图4中说明的实例中,差估计值E[L]中小于0.5毫秒的单侧不确定性允许伪距离假设250与单一伪距离假设252相关联。然而,在其它实例中,差估计值E[L]中的0.5毫秒的此单侧不确定性可超过0.5毫秒,从而导致两个或两个以上伪距离假设的关联。此处,此似然函数还可应用于解析这些额外模糊性。

在替代实例中,接收器可通过解码伽利略信号上的导频信道而消除用于检测所获取GPS信号中的位边缘的相位和/或对准的伪距离假设。此处,可用按照100ms周期重复的已知数据序列对伽利略信号的此导频信道进行编码,在所述100ms周期中100ms数据序列与二十五个连续4.0毫秒出现时间(epoch)和/或重复的PN码序列重叠。在获取伽利略信号的过程中对4.0ms PN码序列中的码相位的检测可为100ms数据序列相对于真实伪距离的对准提供二十五个假设。为了在二十五个假设中进行选择,接收器可通过依序地将100ms数据序列的至少一部分的至多二十五个可能的4.0ms移位与所接收的伽利略信号相关直到结果超过(例如)预定阈值为止,来确定100ms数据序列的相位对准。当结果超过预定阈值时,接收器可从二十五个对准假设中选择所检测到的码相位相对于100ms数据序列的相关联对准。

如图5A中根据特定实例所说明,一旦确定所检测的码相位相对于100ms数据序列的对准,就可通过根据关系式(1)确定的差估计值E[L]使20ms数据位间隔内GPS信号的伪距离假设280与100ms数据序列的含有单一伪距离假设286的20ms片段相关联。再次,出于说明的目的,此差估计值中的单侧不确定性被展示为小于0.5毫秒。此处,伪距离假设280中的单一伪距离假设284与单一伪距离假设286相关联。因此,可在所接收数据信号中清楚地检测到位边缘相对于所接收GPS信号的真实伪距离的对准。然而,再次在其它实例中,差估计值E[L]中的0.5毫秒的此单侧不确定性可超过0.5毫秒,从而导致两个或两个以上伪距离假设的关联。再次,似然函数也可被应用于解析这些额外模糊性。

在另一特定实例中,对调制在参考位置处从GPS SV接收的信号的数据信号的位边缘的检测可辅助获取从伽利略SV接收的信号。如图5B中所说明,所获取的GPS信号290包括1.0毫秒重复PN码序列且由具有20.0毫秒位间隔的数据信号292调制,如上文所说明。此处,应观察到,数据信号292的此类20.0毫秒位间隔的任一者可与所接收伽利略信号294的五个连续4.0毫秒重复PN码序列相关联。因此,通过检测数据信号292的位边缘,所获取的GPS信号中的伪距离假设296可通过差估计值E[L]而与所接收伽利略信号294的若干部分相关联。因此,在获取伽利略信号时,码相位搜索范围可在所接收伽利略信号中的通过差估计值E[L]与所获取的GPS信号292中检测的伪距离296相关联的实例处居中。此码相位搜索可接着由与差估计值E[L]相关联的不确定性(其可根据以下根据特定实例展示的关系式(3)确定)定界。

根据一实例,可从以下分量中确定在参考位置处从SV接收的导航信号的定时的不确定性:接收器处的时钟的定时的不确定性;SV相对于参考位置的位置;以及正接收导航信号的参考位置的不确定性。此处,在参考位置处从SV接收的导航信号的定时的单侧不确定性SV_Tunc可根据关系式(2)表达如下:

SV_Tunc=Clock_Tunc+[(Punc/c)*cos(SV_el)]  (2)

其中:

Clock_Tunc=接收器处的时钟的定时的不确定性(以时间为单位);

Punc=接收器距参考位置的位置的单侧不确定性(以长度为单位);

c=光速;以及

SV_el=参考位置处SV的高程。

根据一实例,在某些情形下,在参考位置处从第一SV获取伽利略信号以及准确知晓在参考位置处接收的伽利略信号的定时可辅助获取从第二SV接收的GPS信号。再次,如上文所指出,应了解,从第一SV传输的伽利略信号可与调制从第二SV接收的GPS信号的数据信号同步。此外,应观察到,所接收的GPS信号中的数据信号的20毫秒周期与所接收的伽利略信号的五个连续4.0毫秒出现时间对应。因此,通过具有如在上文关系式(2)中确定的在参考位置处从伽利略SV接收的导航信号的定时的充分准确性,导航接收器可将所接收的伽利略信号的特定4.0毫秒出现时间(来自五个此类4.0毫秒出现时间中)的开始或前沿与在参考位置处接收的GPS信号中的位边缘相关联。举例来说,以充分准确性已知的在参考位置处接收的所接收伽利略信号的此4.0毫秒出现时间可通过如上文根据关系式(1)确定的差估计值E[L]而与在参考位置处接收的GPS信号的数据信号中的位边缘相关联。由于伽利略信号的定时是以充分准确性在参考位置处接收,所以所述4.0毫秒出现时间的前沿可通过已知相位(如果适用)和差估计值E[L]而与在参考位置处接收的GPS信号中的位边缘相关联。

如图6A所示,在参考位置区域处从第一SV接收的伽利略信号308可包括在t=1.0、5.0、9.0、13.0、17.0、21.0、25.0、29.0、33.0和37.0毫秒处开始的4.0毫秒出现时间。在参考位置区域处从第二SV接收的GPS信号是由包括处于t=1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0等毫秒的1.0毫秒出现时间的重复PRN码310调制。假如参考位置区域处接收的伽利略信号的定时的单侧不确定性(如根据关系式(2)所确定)(例如)在2.0毫秒内,那么接收器可将在双侧不确定性区域μ内的4.0毫秒出现时间的特定前沿304与来自伽利略SV的特定数据出现时间的传输的开始相关联。此特定数据出现时间的传输的开始可(例如)在一周的开始、一个数据帧的开始、一个数据片段的开始等时间发生。由于来自伽利略的数据信号的传输可与来自GPS的数据信号的传输同步,所以接收器可将4.0毫秒伽利略出现时间的特定前沿304与GPS数据信号302的特定位边缘306相关联。此处,应观察到,如根据关系式(1)确定的差估计值E[L](例如)可用于以至少部分基于差估计值E[L]的准确性的准确性来估计位边缘306的实例。

如上文所说明,不确定性区域μ可从根据关系式(2)确定的单侧不确定性区域来导出。根据一实例,额外不确定性区域U可表示与差估计值E[L]相关联的不确定性。再次参看图6A的特定实例,如果此不确定性区域U小于0.5毫秒单侧,那么可唯一地确定与GPS信号上的特定1.0毫秒PRN出现时间的前沿相关联的位边缘的相位和/或对准。如果不确定性区域U大于0.5毫秒单侧,那么GPS SV的此位边缘的精确相位和/或对准可能仍保持稍许模糊。在特定实例中,差估计值E[L]相对于SV1和SV2的此单侧不确定性可根据关系式(3)确定如下:

U=1/c*Punc*[{cos(E2)*cos(A2)-cos(E1)*cos(A1)}2+{cos(E2)*sin(A2)-cos(E1)*sin(A1)}2]1/2  (3)

其中:

c=光速

A1=从参考位置到SV1的估计的方位角;

A2=从参考位置到SV2的估计的方位角;

E1=从参考位置到SV1的估计的仰角;

E2=从参考位置到SV2的估计的仰角;以及

Punc=参考位置的单侧不确定性(以长度为单位)。

通过估计如上文所说明调制在参考位置处接收的GPS信号的数据信号的位边缘的位置,可以增强的敏感性使用预检测积分(PDI)获取所接收的GPS信号。举例来说,在位边缘306与312之间,数据信号302不变。因此,可以增强的敏感性在处于位边缘306与312的估计值之间的所接收GPS信号的一部分上执行PDI,所述估计值是至少部分基于如上所述在参考位置区域处获取的伽利略信号。

在根据替代特征确定在参考位置区域处接收的GPS数据信号的位边缘的相位和/或对准时,接收器可获得来自在参考位置处接收的伽利略信号的额外信息以允许所接收的伽利略信号的定时的额外初始不确定性。明确地说,应观察到,来自伽利略SV的信号中的周期性重复PN码序列中的码片可速率1/2维特比(Viterbi)编码为“数据信道”,其中在4.0毫秒出现时间上传输的PN码序列是在交替4.0ms出现时间上以“1”或“0”维特比编码。

在上文说明的实例中,通过在参考位置区域处获取伽利略信号并了解伽利略信号的定时(其中单侧不确定性不超过2.0毫秒,且差估计值E[L]中的单侧不确定性U不超过0.5毫秒)来获得调制在参考位置处接收的GPS信号的数据信号的位边缘。然而,在替代特征中,在参考位置处接收的伽利略信号的数据信道的维特比解码可启用在参考位置处接收的GPS信号中的位边缘的检测,其中伽利略信号的定时的根据关系式(2)确定的单侧不确定性高达4.0毫秒。此处,所接收GPS信号的数据信号与伽利略信号的维特比编码的4.0毫秒出现时间同步。参看图6B,由于所接收GPS与伽利略信号可同步,所以可已知(所接收GPS信号的)数据信号322中的位边缘326与(例如)所接收伽利略信号的维特比码的从“0”到“1”的特定转变同步。另外,在以充分准确性了解所接收伽利略信号的定时的情况下,接收器可确定从“0”到“1”的此特定转变处于8.0毫秒不确定性区域μ内。因此,接收器可接着推断转变324与来自伽利略SV的特定数据出现时间的传输的开始相关联。再次,此传输的开始可包括一周的开始、一个数据帧的开始、一个数据片段的开始等。由于来自伽利略的数据信号的传输可与来自GPS的数据信号的传输同步,所以接收器可通过差估计值E[L]将8.0毫秒伽利略出现时间的特定前沿324与调制GPS信号的数据信号322的特定位边缘326相关联,且差估计值E[L]中的单侧不确定性U不超过0.5毫秒。因此,如上文所说明,可以增强的敏感性在处于位边缘326与332的估计值之间的用于获取的所接收GPS信号的一部分上执行PDI,所述估计值是至少部分基于如上所述在参考位置处获取的伽利略信号。

出于说明的目的,图6B展示维特比编码的数据信道的数据信道330在交替4.0毫秒出现时间中具有值“1”和“0”。然而,应了解,这些值可能不一定在连续4.0毫秒出现时间上交替,且所主张的标的物在此方面不受限制。

在又一替代特征中,GPS接收器可在确定在参考位置处接收的GPS数据信号的位边缘的相位和/或对准时采用从在参考位置处获取的伽利略信号的导频信道提取的信息。如图6C中所说明,伽利略信号的此导频信道406可以在与重复PRN序列404的二十五个连续4.0毫秒出现时间重叠的100ms周期上重复的已知数据序列编码。此处,所接收GPS信号的数据信号402可与导频信道406同步。并且,应观察到,在参考位置处接收的导频信道406的100毫秒周期可与数据信号402的五个连续20毫秒周期相关联。具有小于50毫秒的所接收伽利略信号的定时的根据关系式(2)确定的单侧不确定性(或小于100毫秒的不确定性区域)启用经解码导频信道的100毫秒周期的实例与来自伽利略SV的特定数据出现时间的传输的开始(例如,处于一周的开始、一个数据帧的开始、一个数据片段的开始等的传输的开始)相关联。由于导频信道406的传输可与数据信号402的传输同步,所以接收器可将导频信道406的100.0毫秒出现时间的特定前沿408与所接收GPS信号的数据信号402中的特定位边缘412相关联。因此,所接收伽利略信号中的检测到的导频信道的100毫秒周期中的已知实例可通过根据关系式(1)确定的差估计值E[L]与所接收GPS信号的位边缘相关联,且差估计值E[L]中的单侧不确定性U不超过0.5毫秒。再次,在确定所接收GPS信号中的位边缘的情况下,可以增强的敏感性在处于位边缘的估计值之间的用于获取GPS信号的所接收GPS信号的一部分上执行PDI。

根据一实例,尽管所主张的标的物在此方面不受限制,但在参考位置处接收的GPS信号中的位边缘的检测可用于确定在参考位置处接收的伽利略信号的维特比编码边界。如上文所说明,可已知所接收GPS信号的数据信号中的特定位边缘与(例如)所接收伽利略信号的维特比码的从“0”到“1”的转变同步或与从“1”到“0”的转变同步。如此,在所接收GPS信号的定时的根据关系式(2)确定的单侧不确定性小于10毫秒的情况下,应观察到,如果从GPS SV到伽利略SV的估计值E[L]的差不确定性小于2.0毫秒,那么所接收GPS信号的数据信号中的特定检测到的位边缘可通过上文根据关系式(1)确定的差估计值E[L]与所接收伽利略信号的数据信道中的此转变(维特比解码边界)相关联。根据上文关系式(3)确定差不确定性。如图6D中所说明,举例来说,在所接收GPS信号的定时的单侧不确定性小于10毫秒的情况下,调制在参考位置处接收的GPS信号482的数据信号472中的位边缘476的检测向在参考位置处接收的经维特比编码伽利略信号478提供准确时间参考。因此,在如图所示双侧不确定性μ小于4.0毫秒的情况下,可唯一地确定伽利略信号478中的维特比编码边界484中的转变。

根据一实例,接收器处可见的SV(例如,如AA消息中所指示)可与界定将为SV搜索的码相位和多普勒频率假设的二维域的特定组的搜索窗口参数相关联。在图7中说明的一个实施方案中,SV的搜索窗口参数包括码相位搜索窗口大小WIN_SIZECP、码相位窗口中心WIN_CENTCP、多普勒搜索窗口大小WIN_SIZEDOPP,和多普勒窗口中心WIN_CENTDOPP。在试图确定位置的实体是依从IS-801的无线通信系统中的订户站的情况下,这些参数可由通过PDE提供到订户站的AA消息指示。

图7中说明的SV的二维搜索空间展示码相位轴为水平轴,且多普勒频率轴为垂直轴,但此指派是任意的且可颠倒。码相位搜索窗口的中心称为WIN_CENTCP,且码相位搜索窗口的大小称为WIN_SIZECP。多普勒频率搜索窗口的中心称为WIN_CENTDOPP,且多普勒频率搜索窗口的大小称为WIN_SIZEDOPP

根据一实例,在从第一SV获取第一信号之后,可至少部分基于第一所获取信号中检测到的码相位、接收器位置的估计值以及描述对于特定时间t第一及第二SV的位置的信息来确定用于从第二SV获取第二信号的WIN_CENTCP和WIN_SIZECP。此处,用于获取第二信号的搜索空间可分割为多个片段1202a、1202b、1202c,其每一者由多普勒频率的范围和码相位的范围表征。

根据一实例,表征片段的码相位的范围可等于通过单一信道通过(channel pass)搜索片段的相关器的信道的容量。在信道容量为(例如)三十二码片的一个特定实例中,表征片段的码相位的范围可同样为三十二码片,但应了解,其它实例是可能的。

可促使片段重叠规定数目的码片以避免遗漏在片段边界处出现的峰值,如图8中所说明。此处,片段1202a的末端与片段1202b的前端重叠Δ个码片,且片段1202b的末端同样与片段1202c的前端重叠Δ个码片。由于归因于此重叠的额外开销的缘故,由片段表示的码相位的有效范围可能小于信道容量。在(例如)重叠为四个码片的情况下,由片段表示的码相位的有效范围可为二十八个码片。

根据一特定实例在图9中说明用于从SV获取周期性重复信号的系统。然而,这仅是根据一特定实例能够获取此类信号的系统的实例,且可在不脱离所主张的标的物的情况下使用其它系统。如根据一特定实例在图9中所说明,此系统可包括包含处理器1302、存储器1304和相关器1306的计算平台。相关器1306可适于从由接收器(未图示)直接或经由存储器1304提供以供处理器1302处理的信号中产生相关函数。相关器1306可在硬件、软件或硬件与软件的组合中实施。然而,这些仅是根据特定方面可如何实施相关器的实例且所主张的标的物在这些方面不受限制。

根据一实例,存储器1304可存储机器可读指令,其可由处理器1302存取并执行以提供计算平台的至少一部分。此处,处理器1302与此类机器可读指令相组合可适于执行上文参看图3说明的过程200的全部或若干部分。在特定实例中,尽管所主张的标的物在这些方面不受限制,但处理器1302可如上文所说明引导相关器1306搜索定位信号并从由相关器1306产生的相关函数中导出测量值。

返回图10,无线电收发器1406可适于将具有基带信息(例如,语音或数据)的RF载波信号调制到RF载波上,并对经调制的RF载波进行解调制以获得此基带信息。天线1410可适于在无线通信链路上传输经调制的RF载波并在无线通信链路上接收经调制的RF载波。

基带处理器1408可适于将来自CPU 1402的基带信息提供到收发器1406以供在无线通信链路上传输。此处,CPU 1402可从用户接口1416内的输入装置获得此基带信息。基带处理器1408还可适于将来自收发器1406的基带信息提供到CPU 1402以供通过用户接口1416内的输出装置传输。

用户接口1416可包括用于输入或输出用户信息(例如,语音或数据)的多个装置。此类装置可包含(例如)键盘、显示屏、麦克风和扬声器。

SPS接收器(SPS Rx)1412可适于接收和解调制来自SV的传输,并将经解调制的信息提供到相关器1418。相关器1418可适于从由接收器1412提供的信息中导出相关函数。举例来说,对于给定PN码,相关器1418可产生在用以设定码相位搜索窗口的码相位的范围上以及在多普勒频率假设的范围上(如上文所说明)界定的相关函数。如此,可根据所界定的相干和非相干积分参数执行个别相关。

相关器1418还可适于从关于由收发器1406提供的导频信号的信息中导出导频相关的相关函数。此信息可由订户站使用以获取无线通信服务。

信道解码器1420可适于将从基带处理器1408接收的信道符号解码为潜在源位。在信道符号包括卷积编码符号的一个实例中,此信道解码器可包括维特比解码器。在信道符号包括卷积码的串联或并联级联的第二实例中,信道解码器1420可包括涡轮解码器。

存储器1404可适于存储机器可读指令,所述机器可读指令可经执行以执行已描述或指示的过程、实例、实施方案或其实例的一者或一者以上。CPU 1402可适于存取并执行此类机器可读指令。通过执行这些机器可读指令,CPU 1402可引导相关器1418执行采用步骤204和220处的特定搜索模式的暂停,分析由相关器1418提供的GPS相关函数,从其峰值中导出测量值,并确定位置的估计值是否充分准确。然而,这些仅是在一特定方面可由CPU执行的任务的实例且所主张的标的物在这些方面不受限制。

在一特定实例中,订户站处的CPU 1402可至少部分基于从SV接收的信号来估计订户站的位置,如上文所说明。CPU 1402还可适于至少部分基于第一所接收信号中检测到的码相位来确定用于获取第二所接收信号的码搜索范围,如上文根据特定实例所说明。然而,应了解,这些仅是根据特定方面用于至少部分基于伪距离测量值估计位置、确定此类伪距离测量值的定量评估和终止用以改进伪距离测量值的准确性的过程的系统的实例,且所主张的标的物在这些方面不受限制。

虽然已说明和描述当前认为是实例特征的特征,但所属领域的技术人员将了解,在不脱离所主张的标的物的情况下可作出各种其它修改且可替换等效物。另外,可作出许多修改以使特定情形适应所主张的标的物的教示,而不脱离本文描述的中心概念。因此,希望所主张的标的物不限于所揭示的特定实例,而是此所主张的标的物还可包含落在所附权利要求书及其等效物的范围内的所有方面。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号