首页> 中国专利> 具有包含分瓣的流体填充腔室的鞋底结构的鞋

具有包含分瓣的流体填充腔室的鞋底结构的鞋

摘要

披露了用于鞋类物品的填充有流体的腔室和用于制造腔室的方法。腔室可并入到鞋的鞋底结构中并包括中心区域和多个从该中心区域向外延伸的瓣部。瓣部与中心区域流体连通并由第一表面、第二表面和侧壁形成。侧壁与第一表面和第二表面连结,以密封腔室内的流体,但不利用内部连接部以将第一表面的内部部分连结至第二表面的内部部分。腔室内的流体压力大致等于环境压力。

著录项

  • 公开/公告号CN101505625A

    专利类型发明专利

  • 公开/公告日2009-08-12

    原文格式PDF

  • 申请/专利权人 耐克国际有限公司;

    申请/专利号CN200780031176.1

  • 申请日2007-08-14

  • 分类号A43B13/18(20060101);A43B13/20(20060101);

  • 代理机构11105 北京市柳沈律师事务所;

  • 代理人葛青

  • 地址 美国俄勒冈州

  • 入库时间 2023-12-17 22:23:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-10-08

    专利权的转移 IPC(主分类):A43B13/18 变更前: 变更后: 登记生效日:20140911 申请日:20070814

    专利申请权、专利权的转移

  • 2012-09-19

    授权

    授权

  • 2009-10-07

    实质审查的生效

    实质审查的生效

  • 2009-08-12

    公开

    公开

说明书

背景技术

传统的运动鞋类物品包括两个主要元件,即鞋面和鞋底结构。例如对于 运动鞋类物品,鞋面通常包括多个材料层,诸如织物、泡沫和皮革,它们缝 缀或粘结性结合到一起以形成用于紧固和舒服地容纳脚的内部空隙。鞋底结 构具有多层构造,其包括内底、中底和外底。内底是定位在空隙内并靠近脚 的薄缓冲构件,用来增强鞋舒适度。中底形成鞋底结构的中层并通常由诸如 聚氨基甲酸酯或乙基醋酸乙烯酯这样的泡沫材料形成。外底紧固至中底的下 表面并提供耐久、耐磨表面用于接触地面。

由传统泡沫材料形成的中底在施加的载荷下弹性地压缩,由此例如减弱 力并吸收与步行或跑步相关联的能量。泡沫材料的弹性压缩部分地由于在泡 沫结构中包括限定出大致被气体替代的内体积的小泡室。即,泡沫材料包括 多个包封空气的口袋。但是,在重复地压缩之后,小泡室结构开始永久地塌 陷,这导致泡沫的减少的可压缩性。相应地,中底减弱力并吸收能量的总能 力在中底的寿命期间减弱。

一个使传统泡沫材料中的小泡室结构塌陷的效果最小化的方式涉及具 有填充有流体的腔室的构造的结构的使用,如Rudy的U.S.专利No.4,183,156 所述。填充有流体的腔室具有囊的结构,该结构包括由弹性材料形成的外包 封构件,其限定纵向地延伸贯穿鞋类物品长度的多个管状构件。管状构件彼 此流体连接并且结合地延伸跨过鞋的宽度。被引入作为参考的Rudy的U.S. 专利No.4,219,945披露了一种类似的包封在泡沫材料中的填充有流体的腔 室,其中,填充有流体的腔室和包封泡沫材料的组合用作中底。

Parker等的U.S.专利No.4,817,304披露了一种泡沫包封的填充有流体的 腔室,其中孔形成在泡沫中,并沿着腔室的侧部。当中底被压缩时,腔室扩 展到孔中。相应地,孔在中底压缩期间提供了减小的刚度同时减小鞋的总重。 此外,通过适当地将孔定位在泡沫材料中,总冲击响应特性在鞋的特定区域 中得以调整。

上述填充有流体的腔室可通过双膜技术制造,其中,两层独立的弹性膜 被形成以具有腔室的总形状。这些层然后沿它们各自的周边被焊接到一起, 以形成腔室的上表面、下表面和侧壁,这些层在预定的内部位置处焊接到一 起以赋予腔室所需的构造。即,层的内部部分被连接以形成在所需的位置具 有预定形状和尺寸。腔室随后通过将喷嘴或针头插入到形成在腔室中的填充 入口而被加压到环境压力之上,所述喷嘴或针头连接至流体压力源。在腔室 被加压后,喷嘴被移除,填充入口例如通过焊接被密封。

用于制造上述类型的填充有流体的腔室的另一种制造技术是通过吹塑 工艺,其中,液化的弹性材料被放置在具有腔室的所需总形状和构造的模具 中。模具在一个位置处具有开口,加压空气通过该开口提供。加压空气迫使 液化弹性材料贴在模具的内表面上并到至材料在模具中硬化,由此形成具有 所需构造的腔室。

在鞋类中底中使用的另一类型腔室在Rudy的U.S.专利No.4,906,502和 5,083,361中披露。腔室包括气密封的外隔离层,其紧固地结合在双壁织物芯 部上。双壁织物芯部具有上和下外织物层,它们彼此以预定距离均匀地间隔 开,并且通过双面针织Raschel针织工艺制造。潜在地采取具有多个独立纤 维的多长丝纱线形式的连接纱线在内部在织物层的饰面表面之间延伸,并锚 定至织物层。连接纱线的独立长丝形成拉伸限制构件,其将隔离层的向外运 动限制到所需的距离。

授予Goodwin等的U.S.专利No.5,983,585和6,119,371也披露了并入有 双壁织物芯部的腔室,但是其不具有位于腔室的上和下表面之间的中间的周 边缝隙。替换地,缝隙靠近腔室的上表面定位。这种设计的优势包括将缝隙 从具有最大侧壁弯曲的区域移除,并且增加了包括连接纱线的腔室内部的可 见性。用于制造这种类型的腔室的工艺涉及用模具形成壳体,该壳体包括下 表面和侧壁。双壁织物芯部放置在覆盖层的顶部,壳体放置在覆盖层和芯部 上方。被组装的壳体、覆盖层和芯部然后移动至层叠站,在那里,无线电频 率能量将芯部的相对侧连结至壳体和覆盖层,并将壳体的周边连接至覆盖 层。腔室随后通过将插入流体而加压,以便将连接纱线置于张紧状态。

用于热成形腔室的工艺在Skaja等的U.S.专利No.5,976,451中披露,其 中一对柔性热塑性树脂膜被加热并且抵靠一对模具放置,通过真空将层吸入 到模具中。这些层随后被压制到一起以形成腔室。

形成上述腔室外层的材料可以由基本上不可被腔室内的流体透过的聚 合材料形成,诸如热塑性弹性体。更具体地,一种适当材料是由热塑性聚氨 酯和次乙基乙烯醇共聚物(ethylene-vinyl alcohol)的交替层形成,如Mitchell 等的U.S.专利No.5,713,141和5,952,065披露。还可以使用该材料的变体, 其中,中心层由次乙基乙烯醇共聚物形成;靠近中心层的两层由热塑性聚氨 酯形成;外层由热塑性聚氨酯和次乙基乙烯醇共聚物的再磨(regrind)材料 形成。另一适当的材料是柔性微层薄膜,其包括气体隔离材料和弹性材料的 交替层,如Bonk等的U.S.专利No.6,082,025和6,127,026所披露的那样。 其它适当的热塑性弹性材料或膜包括聚氨酯、聚酯、聚酯聚氨酯、聚醚聚氨 酯,诸如铸造或挤压的基于酯的聚氨酯膜。其它适当的材料在上述的Rudy 的专利’156和’149中披露。另外,可以使用大量的热塑性氨基甲酸乙酯,如 PELLETHANE,Dow Chemical Company的一种产品;ELASTOLLAN,BASF Corporation的一种产品;和ESTANE,B.F.Goodrich Company的一种产品, 所有这些都是酯的或是基于酯的。可以使用其它基于聚酯、聚醚、聚已内酯 (polycaprolactone)、聚碳酸酯大粒凝胶(polycarbonate macrogel)的热塑性 氨基甲酸乙酯,还可以使用各种阻氮材料(nitrogen blocking material)。其它 适当的材料包括如Rudy的U.S.专利No.4,936,029和5,042,176披露的包含 结晶材料的热塑性膜,和Bonk等的U.S.专利No.6,913,340;6,203,868和 6,321,465披露的包含聚酯多元醇(polyester polyol)的聚氨酯。

包含在腔室内的流体可包括任意的气体,如Rudy的U.S.专利No. 4,340,626所披露的那样,诸如六氟乙烷(hexafluoroethane)和六氟化硫(sulfur hexafluoride)。另外,一些腔室包封加压氮气或空气。

发明内容

本发明是用于鞋类物品的腔室,其包括第一表面、相对的第二表面和在 第一表面和第二表面的边缘之间延伸的侧壁。侧壁与第一表面和第二表面接 合,以使得没有内部连接部将第一表面的内部部分固定至第二表面的内部部 分。流体以环境压力和环境压力的每平方英寸5磅之间的压力密封在腔室内。 此外,多个瓣部从腔室的中心区域向外延伸。瓣部通过第一表面、第二表面 和侧壁限定,瓣部与中心区域流体连通。

第一表面和第二表面可具有平面的构造。替换地,其中一个表面可以是 弯曲的。另外,侧壁的定位在瓣部之间的部分可具有倾斜的构造,侧壁靠近 瓣部的末端的部分可具有大致垂直的斜度。

瓣部可被构造为从中心区域径向地向外延伸。相应地,瓣部沿不同方向 从中心区域的周边向外延伸。瓣部的数量可在本发明的范围内明显地变化。 瓣部限定位于相邻瓣部之间的空间中。当并入到鞋类物品中时,腔室可至少 部分地包封在聚合泡沫材料内。相应地,聚合泡沫可在瓣部之间延伸以形成 柱。总而言之,柱的表面将接触侧壁并具有相邻瓣部之间的空间的形状。相 应地,柱将具有与侧壁斜度相对应的倾斜构造。

形成腔室的材料一般是聚合物,诸如热塑性弹性体,由此提供囊的形状。 替换地,腔室可以形成为鞋类中底内的空隙。虽然在腔室内可以使用多种流 体,空气一般提供适于本发明的特性。

本发明还涉及制造用于鞋类物品的填充有流体的腔室的方法。该方法涉 及将型坯放置在模具的第一部分和相对应的第二部分之间。随着第一部分和 第二部分朝向彼此平移,型坯随后被按照模具轮廓弯曲,模具的轮廓定位为 与模具内的腔体隔开,所述腔体具有腔室的形状。型坯的相对侧随后被成形 以在腔体内形成腔室,型坯的相对侧被结合在一起。

描绘本发明的新颖性优势和特征在所附权利要求中具体地指出。但是, 为了获得新颖性的优势和特征的改进的理解,参考描述并示出关于本发明的 各实施例和构思的以下描述内容和附图。

附图说明

在结合附图阅读时,将更好地理解本发明的前述总结以及本发明的以下 详细说明。

图1鞋类物品的侧视图,其包括并入有根据本发明的第一腔室的中底。

图2是图1所示的中底的透视图。

图3是图1所示的中底的分解透视图。

图4是第一腔室的透视图。

图5是第一腔室的另一透视图。

图6A是第一腔室的顶部平面图。

图6B是第一腔室的横截面视图,由图6A中的6B-6B线限定。

图6C是第一腔室的另一横截面视图,由图6A中的6C-6C线限定。

图6D是第一腔室的另一横截面视图,由图6A中的6D-6D线限定。

图7是第一腔室的底部平面图。

图8是另一鞋类物品的侧视图,其包括并入有根据本发明的第二腔室的 中底。

图9是图8所示的中底的透视图。

图10是图8所示的中底的分解透视图。

图11是第二腔室的透视图。

图12是第二腔室的另一透视图。

图13A是第二腔室的顶部平面图。

图13B是第二腔室的横截面视图,由图13A中的13B-13B线限定。

图13C是第二腔室的另一横截面视图,由图13A中的13C-13C线限定。

图13D是第二腔室的另一横截面视图,由图13A中的13D-13D线限定。

图14是第二腔室的底部平面图。

图15是第二腔室的正视图。

图16是用于形成第二腔室的模具的透视图。

图17是模具的第一部分的平面图。

图18是模具的第二部分的平面图。

图19是在模制之前定位在模具的第一和第二部分之间的型坯的侧视图。

图20是在模制中间部分期间定位在模具的第一和第二部分之间的型坯 的侧视图。

图21是在模制另一中间部分期间定位在模具的第一和第二部分之间的 型坯的侧视图。

图22是在模制之后定位在模具的第一和第二部分之间的型坯的侧视图。

图23是形成在型坯中的第二腔室的第一透视图。

图24是形成在型坯中的第二腔室的第二透视图。

图25是凸显分型线位置的第二腔室的透视图。

图26和27是图8所示的鞋的另一构造的侧视图,其中,中底并入有根 据本发明的第三腔室。

图28是第三腔室的透视图。

图29是第三腔室的另一透视图。

图30是第三腔室的顶部平面图。

图31是第三腔室的底部平面图。

图32和33是第三腔室的正视图。

图34是第三腔室的另一构造的顶部平面图。

具体实施方式

介绍

以下讨论和附图披露了并入有根据本发明的填充有流体的腔室的运动 鞋类物品。关于鞋、特别是关于填充有流体的腔室的构思参考具有适于跑步 的构造的鞋得以披露。本发明并不仅限于为跑步设计的鞋,其还可以应用于 大范围的运动鞋款式,例如包括篮球鞋、交叉训练鞋、步行鞋、网球鞋、足 球鞋和登山靴。另外,本发明还可应用于非运动鞋款式,包括舞蹈鞋、路夫 鞋、凉鞋、工作靴。相应地,本领域的技术人员应该理解的是,在此披露的 构思应用于各种鞋款式,以及在以下材料中讨论并在附图中描述的具体款 式。

第一腔室

鞋类物品10在图1中示出并包括鞋面20和鞋底结构30。鞋面20具有 大致传统的构造并包括诸如织物、泡沫和皮革材料这样的多个元件,这些元 件缝缀或粘结性结合到一起以形成用于紧固和舒服地容纳脚的内部空隙。鞋 底结构30定位在鞋面20之下并包括两个主要元件,中底31和外底32。中 底31例如通过缝缀或粘结性结合而紧固至鞋面20的下表面,并用于在鞋底 结构30接触地面时减弱力和吸收能量。即,中底31的结构例如在步行或跑 步时为脚提供缓冲。外底32被紧固至中底31的下表面并且由接触地面的耐 久耐磨的材料制成。另外,鞋底结构30可包括内底,其是薄缓冲构件,定 位在空隙中并与脚邻接以增强鞋10的舒适度。

中底31主要由包封填充有流体的腔室40的聚合泡沫材料形成,诸如聚 氨酯或乙基醋酸乙烯酯。如图2和3所示,腔室40定位在中底31的脚跟区 域中,这与撞击脚期间的最高初始载荷区域相对应。但是,腔室40可定位 在中底31的任意区域中,以实现所需程度的缓冲响应。此外,中底31可包 括具有腔室40大致构造的多个填充有流体的腔室。

腔室40被示出为具有囊的结构,其中密封的聚合材料层包封流体。替 换地,腔室40可形成为中底31内的空隙。即,具有腔室40的形状的材料 可以不存在于中底31中,由此形成腔室40。

与现有技术的腔室相比,腔室40及其在中底31的泡沫材料中的布置为 在压缩的初始阶段期间的给定载荷产生相对大的变形(deflection)。但是随 着腔室40压缩的增大,腔室40的刚度以相对应的方式增加。将在以下材料 中详细描述的这种对压缩的响应是由于腔室40的结构和腔室40并入到中底 31中的方式造成的。总而言之,腔室40的结构的特征是单个腔室、填充有 流体的囊。更具体地,腔室40具有被五个瓣部42a-42e围绕的中心区域41, 这些瓣部每个分别具有末端43a-43e,如图4-7所示。瓣部42a-42e从中心区 域41径向地向外延伸。相应地,瓣部42a-42e可从中心区域41的周边沿不 同方向向外延伸。结合填充了瓣部42a-42e之间的空间的中底31的泡沫材料, 中底31在脚跟下的特定区域中提供了适当的空气对泡沫的比例。

出于参照的目的,纵向轴线44在图6A和7中示出为延伸穿过中心区域 42和瓣部42c。腔室40关于延伸通过轴线44并与图6A和7的平面大致垂 直的平面对称,其它情况下则是不对称的。相应地,腔室40的结构大致类 似于橡树叶的形状。腔室40还包括第一表面45,相对的第二表面46和在第 一表面45和46之间延伸的侧壁47。第一表面45和第二表面46二者都具有 大致平面的构造并且彼此均匀地间隔开。第一表面45具有第二表面46的大 致形状,但是面积减小。相应地,侧壁47在各瓣部42a-42e之间的区域中倾 斜。例如,侧壁47的斜度在靠近中心区域41处大致为40度,在靠近末端 43a-43e处大致为80度,并在这些区域之间逐渐从40度变化到80度。但是, 在末端43a-43e的位置处,侧壁47具有大致垂直的斜度90度。侧壁47可具 有相对于第一表面45形成一角度的大致平面的构造,或者侧壁47可以是弯 曲的。

中底31的具体构造和腔室40的取向可以在本发明的范围内变化。当被 中底31中的聚合泡沫材料包封时,例如,末端43a-43e的一部分可延伸至中 底31的边缘33并可延伸穿过边缘33,以使得它们可从鞋10的外部看到。 此外,第一表面45可与中底31的上表面的平面共同延伸,以使得脚跟配合 第一平面45。替换地,腔室40可完全嵌入在中底31的泡沫材料内,或者通 过第二平面46与中底31的上表面的平面共同延伸而定位。但是,如图1-3 所示,末端43a-43e不延伸通过边缘33,第二表面46靠近中底31的下表面 定位。该构造将中底31的泡沫材料的一部分放置在脚和第一表面45之间。

在图6B-6D的横截面图中示出的侧壁47的斜度在腔室40周围变化,以 在压缩期间提供从腔室40到中底31的聚合泡沫材料的平滑转变。如上所述, 侧壁47在相邻瓣部42a-42e之间从大致40度到80度倾斜,并在末端43a-43e 处具有大致垂直的斜度。相邻瓣部42a-42e之间的空间在平面图中具有大致 U形的构造,这是由侧壁47的弯曲表面产生的。侧壁47定位在相邻瓣部 42a-42e之间的部分具有的斜度在靠近末端43a-43e的区域中比靠近中心区 域41的区域中大。更具体地,侧壁47在靠近中心区域41处具有相对平缓 (shallow)的斜度,这与U形构造的圆形部分对应。随着侧壁47在中心区 域41和末端43a-43e之间延伸,斜度增大。但是,在末端43a-43e处,侧壁 47的斜度大致垂直。但是,在本发明的其它实施例中,侧壁47的斜度可与 在此讨论的特定构造不同,以在压缩期间提供不同度数的转变。

在各瓣部42a-42e之间的侧壁的斜度被中底31的弹性泡沫材料相反地匹 配。相应地,中底31具有的构造包括多个柱34,这些柱由泡沫材料形成并 在瓣部42a-42e之间延伸以接触侧壁47的各个区域。每个柱34的高度从靠 近第一表面45的位置增加到靠近第二表面46的位置,并且每个柱34以与 侧壁47相对应的方式倾斜。此外,随着瓣部从中心区域42径向地向外延伸, 由于瓣部42a-42e之间的增加的间隔,每个柱43的宽度相应地增加。

可以使用各种材料来形成第一表面45、第二表面46和侧壁47,这些材 料包括被用来形成用于鞋的填充有流体的腔室外层的传统的聚合材料,如背 景技术中讨论的那样。但是,与大量现有技术的腔室结构相对地,腔室40 内的流体处于环境压力或者处于比环境略高的压力。相应地,腔室40内的 流体的压力可从每平方英寸0至5磅的计量压力变化。由于腔室40内的相 对低的压力,被用来形成第一表面45、第二表面46和侧壁47的材料不需要 提供阻挡特性,该特性保持现有技术腔室的相对高的流体压力。相应地,诸 如热塑性氨基甲酸乙酯这样的各种聚合材料可用于形成第一表面45、第二表 面46和侧壁47,并且诸如空气这样的各种流体可用在腔室40内。此外,各 种聚合材料可基于材料的工程特性、而不是材料防止腔室40所容纳的流体 扩散的能力选择,这些工程特性诸如动弹性模量(dynamic modulus)和损耗 角正切(loss tangent)。当由热塑性聚氨酯形成时,第一表面45、第二表面 46和侧壁47可具有大致0.040英寸的厚度,但是厚度可以例如从0.018英寸 变化到0.060英寸。

腔室40内的流体的相对低的压力还提供腔室40和现有技术腔室之间的 不同之处。现有技术腔室中的相对高的压力通常需要形成聚合物层之间的内 部连接部,以防止腔室向外扩张到非常明显的程度。即,内部连接在现有技 术腔室中使用来控制腔室的总厚度。相对地,腔室40在第一表面45和第二 表面46之间不具有内部连接部。

腔室40可通过各种制造技术制造,例如包括吹塑、热成形和旋转模制。 关于吹塑技术,热塑性材料放置在具有腔室40大致形状的模具中,并且压 缩空气被用于使材料包覆模具的表面。在热成形技术中,热塑性材料层放置 在模具的相对应部分之间,模具被用于在腔室40的周边位置将层挤压到一 起。在热塑性材料层之间可施加正压力,以将层引导至模具的轮廓。另外, 在层和模具之间的区域中可使用真空来将层引导模具的轮廓中。

与在技术背景部分中讨论的填充有流体的腔室相比,腔室40及其在中 底31的泡沫材料中的布置为在压缩的初始阶段期间的给定载荷产生相对大 的变形。但是随着腔室40压缩的增大,由于腔室40的结构和腔室40并入 到中底31中的方式,腔室40的刚度以相对应的方式增加。三个现象同时运 作以产生上述效果,这三个现象包括压力上升、中底31的泡沫材料的特性 和膜张力。每个现象将在以下详细描述。

压力上升是腔室40内的压力增加,这作为压缩腔室40的结果发生。实 际上,腔室40在中底31内没有被压缩时具有初始压力和初始体积。但是, 随着中底31被压缩,腔室40的有效体积减小,由此增加腔室40内的流体 压力。压力的增加提供中底31的一部分缓冲响应。

泡沫材料的特性也影响中底31的缓冲响应,并将通过泡沫材料的构造 和泡沫材料的硬度来讨论。关于构造,中底31中的例如在Asker C scale上 具有50-90硬度的泡沫材料在靠近边缘33处密集,而在与腔室40的中心相 对应的区域中不那么明显。例如可以使用多个瓣部42a-42e中的改变来减小 中底31的周边部分中的空气对泡沫的比例。中底31中的这种类型的改变可 用于在压缩期间增加中底31的总刚度。相应地,泡沫材料的几何条件和腔 室40的几何条件对缓冲响应具有影响。

最后,膜张力的概念对缓冲响应有影响。该影响在与加压的现有技术腔 室相比时会被更好地理解。在现有技术腔室中,腔室内的压力使外层处于张 力状态。但是随着现有技术腔室被压缩,外层中的张力被释放或松开。相应 地,现有技术腔室的压缩使外层中的张力松开。与加压的现有技术腔室相比, 第一表面45中的张力响应由于弯曲第一表面45的压缩产生。该张力的增加 有助于上述的缓冲响应。在腔室40被旋转以使得第二表面46靠近脚放置的 应用中,第二表面46的张力将响应压缩增加,由此有助于缓冲响应。

压力上升,泡沫材料的特性和膜张力一起作用来减弱力并吸收能量。压 力上升,泡沫材料的特性和膜张力对缓冲响应的特定效果基于相对于腔室40 的位置而变化。在与末端43a-43e的位置相对应的腔室40的周边部分,泡沫 材料的特性顺应性减小并且因此增强了相对应的刚度。随着位置倾向于朝向 中心区域41,柱34变成锥形并允许相对大的变形,减弱力并吸收能量的主 要现象是膜张力和压力上升。本领域的技术人员应该意识到,基于前述讨论, 鞋底结构30的特定缓冲响应主要与腔室40的大致构造和在此披露的中底31 的泡沫材料有关。

基于压力上升,泡沫材料的特性和膜张力的考虑,中底31的缓冲响应 是可改变的,以提供所需程度的力衰减和能量吸收。例如,腔室40的体积、 瓣部42a-42e的数量和形状、侧壁47的斜度、表面45和46的厚度、用于形 成腔室40外部的材料和腔室40在中底31内的位置和取向都可变化以改变 缓冲响应。另外,泡沫材料的包括硬度和厚度的特性也可以被调整以改变缓 冲响应。因此,通过变化这些和其它参数,中底31可被定制为在压缩期间 用于特定个体或提供特定的缓冲响应。

第二腔室

本发明的其它实施例作为鞋10’在图8中示出。鞋10’包括鞋面20’和鞋 底结构30’。鞋面20具有大致传统的构造并形成用于紧固和舒服地容纳脚的 内部空隙。鞋底结构30’定位在鞋面20’之下并包括两个主要元件,中底31’ 和外底32’。中底3’紧固至鞋面20’的下表面,并用于在鞋底结构30’接触 地面时减弱力和吸收能量。外底32’被紧固至中底3’的下表面并且由接触地 面的耐久耐磨的材料制成。另外,鞋底结构30’可包括内底,其是薄缓冲构 件,定位在空隙中并与脚邻接以增强鞋10’的舒适度。相应地,鞋10’在结构 上与上述鞋10’大致相似。但是,鞋10’的主要不同之处在于,中底31’的结 构,更具体地在于嵌入在中底31’的泡沫材料内的腔室40’的结构。

中底31’主要由诸如聚氨酯或乙基醋酸乙烯酯这样的聚合泡沫材料形 成,腔室40’定位在中底31’的脚跟区域中,如图9和10所示。腔室40’在图 11-15中单独地示出,并包括被中心区域41’、七个瓣部42a’-42g’和相应的 七个末端43a’-43g’。另外,腔室40’包括用于参照目的的纵向轴线44’、第 一表面45’、第二表面46’和侧壁47’。腔室40’关于延伸通过轴线44’并与第 一表面45’和第二表面46’的平面大致垂直的平面对称,其它情况下则是不对 称的。虽然腔室40包括具有大致平面的构造的第一表面45和第二表面46, 第一表面45’和第二表面46’具有弯曲的构造。即,第一表面45’靠近末端 43a’-43c’和43e’-43g’的部分向上弯曲以形成圆形或凹的结构。相对地,第一 表面45’在瓣部42d’上的部分具有大致平的构造。

参考图9和10,腔室40’在中底31’中的位置被示出。总而言之,腔室 40’被定位为使得第二表面46’与中底31’的泡沫材料的下表面共同延伸。该 构造将中底31’中的泡沫材料的一部分放置在脚和第一表面45’之间。末端 43a’-43c’和43e’-43g’还与中底31’的边缘33’共同延伸。相应地,末端 43a’-43c’和43e’-43g’可从鞋10’的外部看到。由于第二表面46’的弯曲构造, 随着瓣部42a’-42c’和42e’-42g’从中心区域41’向末端43a’-43c’和43e’-43g’ 向外辐射,瓣部42a’-42c’和42e’-42g’的高度和体积增加。体积的增加允许 在压缩期间更大量的流体从中心区域41’移至末端43a’-43c’和43e’-43g’,由 此提供从相对柔软的缓冲响应到相对硬挺的缓冲响应的更缓合的转变。此 外,在末端43a’-43c’和43e’-43g’处的体积增加对于给定程度的压缩减少了 腔室40’内的总的流体压力。

在图13B-13D的横截面图中示出的侧壁47’的斜度在腔室40’周围变化, 以在压缩期间提供平滑的转变。侧壁47在相邻瓣部42a’-42g’之间倾斜,并 在末端43a’-43g’处具有大致垂直的斜度。相邻瓣部42a’-42g’之间的空间具 有大致U形的构造,这是由侧壁47’的弯曲表面产生的。侧壁47定位在相 邻瓣部42a’-42g’之间的部分具有的斜度在靠近末端43a’-43g’的区域中比靠 近中心区域41’的区域中大。更具体地,侧壁47’在靠近中心区域41’处具有 相对平缓的斜度,这与U形构造的圆形部分。随着侧壁47’在中心区域41’ 和末端43a’-43g’之间延伸,斜度增大。但是,在末端43a’-43e’处,侧壁47’ 的斜度大致垂直。

脚在跑步期间的典型运动是这样的:首先,脚跟撞击地面,之后是脚掌。 随着脚跟离开地面,脚向前滚转,以使得脚趾接触,最后整个脚离开地面以 开始下一周期。在脚与地面接触并向前滚转期间,脚还从外部或外侧向内部 或内侧滚转,该过程称作内旋。当脚在空中运动并且准备下一周期,被称作 外转(supination)的相反过程发生。通过为中心区域41提供比与瓣部42a-42e 相对应的区域更大的顺应性,腔室40在跑步期间补充脚的运动,由此抵抗 脚朝向内侧的滚转。在其它实施例中,瓣部42a-42e的尺寸和泡沫材料的特 性或数量可以改变以限制内旋。类似的构思也适用于腔室40’。

和腔室40一样,与技术背景部分讨论的填充有流体的腔室相比,腔室 40’及其在中底31’的泡沫材料中的布置在压缩的初始阶段期间为给定载荷产 生相对大的挠曲。但是随着腔室40’压缩的增大,由于中底31的结构,腔室 40’的刚度以相对应的方式增加。该效果也是压力上升,中底31’中的泡沫材 料的特性和膜张力的结果。相应地,腔室40’的体积、瓣部42a’-42g’的数量 和形状、侧壁47’的斜度、表面45’和46’的厚度、用于形成腔室40’外部的 材料和腔室40’在中底31’内的位置和取向都可变化以改变缓冲响应。另外, 泡沫材料的包括泡沫材料数量以及硬度和厚度的特性也可以被调整以改变 缓冲响应。因此,通过变化这些和其它参数,中底31’可被定制为在压缩期 间用于特定个体或提供特定的缓冲响应。

腔室40和腔室40’之间的一个结构上的不同是关于第一表面45’的弯曲 构造。通过该弯曲构造,由于第一表面45’的向下角度,膜张力对缓冲响应 的效果在压缩期间更迅速地发生。即,对于腔室40’中的给定程度的变形, 当第一表面45’弯曲时,膜张力的效果对缓冲特性的效果更大。此外,弯曲 的构造允许腔室40’具有比腔室40’的流体体积更大的流体体积,但具有大致 相同的刚度。

在上述材料中讨论了腔室40和腔室40’,以提供落入本发明范围的许多 腔室构造的例子。总而言之,腔室具有一对相对的表面,所述表面在腔室中 形成瓣部。腔室40和腔室40’被披露分别具有五个和七个瓣部。但是,在其 它实施例中,腔室具有的瓣部的数量例如可以是3至20个。

制造方法

将参考图16-25讨论通过吹塑工艺制造腔室40’的方法。在用于形成鞋 类腔室的传统吹塑工艺中,被称作型坯(parison)的熔化聚合材料的大致中 空且管状的结构被定位在模具的相对应部分之间。模具于是合在型坯上,以 使得熔化聚合材料的一部分被吸入模具中,并顺应模具的形状。最后,模具 将型坯的相对侧压缩到一起并形成相对侧之间的结合部。但是,在一些吹塑 工艺中,入口保持敞开,以使得加压流体可在制造工艺的后面阶段被注入, 然后入口被密封。

上述的传统吹塑工艺一般利用具有两个相对应模制部分的模具。每个模 制部分具有大致平面的表面和形成在该表面中的凹部,该凹部的形状与腔室 形状的一半相对应。相应地,闭合模制部分在模具内形成具有腔室形状的腔 体。

传统模具结构的一个结果在于,型坯必须拉伸以便延伸到凹部中,并且 拉伸降低型坯壁的总厚度。为了抵抗拉伸的效果,型坯一般形成有初始壁厚, 其将被拉伸到所需的减小的壁厚。在模具几何结构能使型坯以大致均匀的方 式拉伸时,抵抗拉伸效果的这种方式是适当的。但是,当模具几何结构使得 型坯拉伸的一些部分的模膜直径比比其它部分的模膜直径比大时,由于腔室 的壁厚中的最终不一致,仅增加型坯的壁厚是不适当的。

具有大致平的表面和形成具有腔室40’形状的腔体的凹部的传统模制部 分是引起型坯的特定部分比其它部分拉伸更多的类型。例如,型坯的形成腔 室40’的末端43a’-43g’与第一表面45’连结的区域的部分将比型坯的形成中 心区域41’的部分拉伸的多。相应地,腔室40’在末端43a’-43g’和第一表面 45’的连结部处的厚度将比腔室40’在中心区域4’处的厚度小。但是,下述 的制造腔室40’的方法使得吹塑工艺能使第一表面45’、第二表面46’和侧壁 47’的每个具有大致均匀的厚度。

传统模具结构的另一结果在于,分型线形成在最终腔室的侧壁的中间。 如上所述,模具将型坯的相对侧压在一起并在相对侧之间形成结合部。结合 部体现为分型线,并且与相对的模制部分相遇的区域相对应。在一些鞋类应 用中,腔室的侧壁可见。因此,定位在侧壁中间的分型线将影响腔室的美学 特性。但是,制造腔室40’的方法提供吹塑工艺,其将分型线定位的离开侧 壁47’的中间,更特别是离开末端43a’-43g’相对应的区域。

被用来形成腔室40’的模具100在图16-18中显示。模具100包括第一 模制部分110和相对应的第二模制部分120。当连结到一起,模制部分110 和120形成腔体,其具有大致等于腔室40’的外部尺寸的尺寸。不像用于通 过吹塑工艺形成鞋类腔室的传统模具,模制部分110和120不具有靠近形成 腔室40’的腔体的大致平面的表面。相反,第一模制部分110限定多个凹穴 111a-c和111e-g,第二模制部分120限定多个凸起部121a-c和121e-g,如图 16所示。

第一模制部分110在图17中单独地示出,其形成腔室40’的与第一表面 45’和侧壁47’的靠近中心区域41’定位的区域相对应的部分。第一模制部分 110还形成侧壁47’的与末端43d’相对应的区域。脊112围绕第一模制部分 110的定位在中心的区域延伸。如将在以下详细讨论的,脊112部分地形成 腔室40’的分型线。相应地,模制部分110的定位在被脊112界定的区域内 的区域形成第一表面45’和侧壁47’的部分。更具体地,第一模制部分110的 大致靠近中心区域113定位的表面形成中心区域41’,大致围绕多个瓣部区 域114a-114g定位的表面形成瓣部42a’-42g’的在第一表面45’上的部分,大 致围绕侧壁区域115a-115g定位的表面形成侧壁47’靠近中心区域4’定位的 部分。

第一表面45’靠近末端43a’-43c’和43e’-43g’的部分向上弯曲以形成圆形 或凹的结构,如参考腔室40’讨论的那样。为了形成该构造,第一模制部分 110定位在被脊112界定的区域内的部分具有相对应的凸的构造。相应地, 第一模制部分110的表面具有从区域113向侧壁区域114a-c和114e-g弯曲 的构造。

脊112的延伸部从侧壁区域114d向外延伸并形成L形通道116。如将在 一下详细讨论的,通道116用于形成流道,流体通过该流道注射到腔室40’ 中。第一模制部分110的另一特征是遍及中心区域113和侧壁区域114a-114g 分布的多个槽排出口117。当型坯在形成腔室40’期间被拉入到第一模制部分 110时,槽排出口117为空气提供出口。

第二模制部分120在图18中单独地示出,其形成腔室40’的与第二表面 46’和侧壁47’的与末端43a’-43c’和43e’-43g’相对应的区域相对应的部分。脊 122围绕第二模制部分110的定位在中心的区域延伸,脊122与脊112共同 形成腔室40’的分型线。因此,当第一模制部分110与第二模制部分120结 合时,脊112正好邻近脊122定位。第二模制部分120的定位在被脊122界 定的区域内的区域形成第二表面46’和侧壁47’与末端43a’-43c’和43e’-43g’ 相对应的部分。更具体地,第二模制部分120的大致靠近中心区域123定位 的表面形成中心区域41’,大致围绕多个瓣部区域124a-124g定位的表面形 成瓣部42a’-42g’的在第二表面46’上的部分,大致围绕侧壁区域125a-125g 定位的表面形成侧壁47’的与末端43a’-43c’和43e’-43g’相对应的部分。

参考腔室40’,第二表面46’具有大致平面的构造。第二模制部分120 的与中心区域123和瓣部区域124a-124g相对应的区域也具有大致平面的构 造,该区域还形成第二表面46’。末端区域125a-c和125e-g分别从瓣部区域 124a-c和124e-g向上延伸,以便提供大致平面的区域,来形成末端43a’-43c’ 和43e’-43g’。脊122的延伸部从侧壁区域114d向外延伸并形成L形通道116。 与通道116结合形成流道,流体通过该流道注射到腔室40’中。第二模制部 分120还包括遍及中心区域123和侧壁区域124a-124g分布的多个槽排出口 127。与槽排出口117一样,形成腔室40’期间,当型坯被拉入到第二模制部 分120时,槽排出口127为空气提供出口。

凹穴111a-c和111e-g以及凸起部121a-c和121e-g从模制部分110和120 形成腔室40’的部分向外延伸。更具体地,凹穴111a-c和111e-g分别从瓣部 区域114a-c和114e-g径向地向外延伸。类似地,凸起部121a-c和121e-g分 别从瓣部区域124a-c和124e-g径向地向外延伸。相应地,凹穴111a-c和111e-g 以及凸起部121a-c和121e-g与模具100的形成瓣部42a’-42c’和42e’-42g’的 部分大致对齐。

现将讨论模具100用于由型坯130形成腔室40’的方式。型坯130是熔 化的聚合材料的大致中空和管状的结构。如在此所用的,术语管状并不限于 具有圆形横截面的圆柱形构造,其还意图涵盖具有细长或矩形横截面的构 造。在形成型坯130时,熔化的聚合材料从模子挤出。型坯130的壁厚大致 恒定,或者在型坯130的周边附近变化。相应地,型坯130的横截面图可展 现具有不同厚度的区域。用于型坯130的适当材料包括上述相对于腔室40 和腔室40’讨论的材料。

如上所述,在型坯130形成之后,型坯130悬于模制部分110和120之 间,如图19所示。出于讨论的目的,型坯130具有面对第一模制部分110 的第一侧131,型坯130具有面对第二模制部分120的第二侧132。模制部 分110和120然后被对齐为使得凹穴111a-c和111e-g分别与凸起部121a-c 和121e-g对应。在该位置中,模制部分110和120的形成腔室40’的区域被 定位在型坯130的相对侧上,并且也被对齐。模制部分110和120然后朝向 彼此平移,以使得模具100接触型坯130,如图20所示。更具体地,形成有 凹穴111a-c和111e-g的第一模制部分110的表面接触第一侧131,形成有凸 起部121a-c和121e-g的第二模制部分120的表面接触第二侧132。

当模具100接触型坯130时,型坯130的部分弯曲以便实现模制部分110 和120朝向彼此的进一步运动,这也在图20中示出。特别地,第一表面131 弯曲到凹穴111a-c和111e-g中,第二表面132围绕凸起部121a-c和121e-g 弯曲。相应地,随着模制部分110和120继续朝向彼此平移,型坯130继续 弯曲。

在模制部分110和120朝向彼此的进一步运动时,凸起部121a-c和 121e-g整个延伸到凹穴111a-c和111e-g中,并且型坯130的侧部131与型 坯的侧部132压靠,由此使侧部131结合到侧部132,如图21所示。但是, 型坯130的中心区域接触并顺应模具100的被用于形成腔室40’的表面。相 应地,第一侧131的中心区域接触并顺应中心区域113、瓣部区域114a-114g 以及侧壁区域115a-115g的轮廓。类似地,第二侧132的中心区域接触并顺 应中心区域123、瓣部区域124a-124g以及侧壁区域125a-125g的轮廓。此 外,脊112和122将侧部131和132压在一起,由此形成密封腔室40’的周 边区域的结合部。

随着模具100关闭,与环境空气相比具有正压力的诸如空气这样的流体 被注入在侧部131和132之间以使型坯130接触并顺应模制部分110和120 的轮廓。最初,流体可从形成型坯130的模子机构传送,并沿型坯130的纵 向长度引导,由此防止侧部131和132彼此接触。但是,一旦模具100合在 型坯130上,流体可通过由通道116和126形成的流道引导。例如,针可在 通向流道的入口处刺穿型坯130,并传送流体,该流体顺流道行进并进入形 成腔体40’的区域。空气还可通过槽排出口117和127从型坯130与模制部 分110和120之间的区域移除,从而将型坯130拉到模制部分110和120的 表面上。

一旦腔室40’形成在模具100内,模制部分110和120分开,以使得型 坯从模具100移除,如图23-24所示。形成型坯130的聚合材料随后被冷却, 通过通道116和126形成的流道被密封以在环境压力下包封腔室40’内的流 体。替换地,在密封之前,加压流体通过流道被注入。另外,型坯130的多 余部分被剪掉或者从腔室40’移除。多余部分可随后被再循环或重新利用, 以形成新的型坯。

基于上述讨论,每个模制部分110和120大致包括具有不同功能的弯曲 区域和成形区域。相对于第一模制部分110,弯曲区域包括凹穴111a-c和 111e-g。因此,弯曲部分用于在结合之前弯曲型坯130。成形区域包括中心 区域113、瓣部区域114a-114g和侧壁区域115a-115g。因此,成形区域用于 将腔室40’的实际形状赋予型坯。即,成形区域实际上形成了腔室40’的第一 表面45’和侧壁47’的部分。类似地,第二模制部分120的弯曲区域包括凸起 部121a-c和121e-g,也用于在结合之前弯曲型坯130。第二模制部分120的 成形区域包括中心区域123、瓣部区域124a-124g和侧壁区域125a-125g,并 且实际上形成了腔室40’的第二表面46’和侧壁47’的其它部分。相应地,模 制部分110和120每个都包括弯曲型坯的弯曲部分和形成腔室47’的部分的 成形区域,弯曲区域与成形区域分开。

当模制部分110和120最初接触型坯130时,侧部131和132弯曲,如 上所述。但是,型坯130的一些部分会拉伸,以便使型坯130接触并顺应形 成腔室40’的各个表面。当模制部分110和120最初接触型坯130时,弯曲 侧部131和132的目的是为型坯130的拉伸赋予均匀性。即,型坯130的弯 曲确保侧部131和132以大致均匀的方式拉伸,由此为腔室40’的第一表面 45’、第二表面46’和侧壁47’赋予大致均匀的厚度。

弯曲侧部131和132的另一优势在于分型线133的位置,其与相对的模 制部分靠近囊40’相遇的区域对应。即,分型线133是侧部131和132之间 的腔室40’中的结合部,其由脊112和122形成。参考图26,分型线133的 位置用出于参照目的的虚线凸显。在许多通过传统吹塑工艺形成的现有技术 腔室中,分型线以直线的方式水平地延伸过侧壁并使侧壁的部分模糊不清。 但是,相对于腔室40’,分型线133不仅垂直地延伸过侧壁47’。相反,分型 线133顺着具有波浪样式的非直线路径,其围绕末端43a’-43g’延伸。更具体 地,分型线133在末端43a’-43c’和43e’-43g’的上端处在侧壁47’和第一表面 45’之间水平地延伸。分型线133随后垂直地延伸过侧壁47’并沿着末端 43a’-43c’和43e’-43g’延伸。相应地,分型线的至少一部分在第一表面45’和 第二表面46’之间延伸。分型线133还在瓣部42a’-42g’之间的区域中在侧壁 47’和第二表面46’之间水平地延伸。如图8所示,当并入到鞋类物品中时, 分型线13总体上不可见,并且分型线133将不延伸过作为腔室40’可见部分 的末端43a’-43g’。因此,分型线133在侧壁47’中并不居中。

非直线分型线133的一个结果在于,侧壁47’的特定区域由第一侧131 或第二侧132形成。例如,侧壁47’的靠近中心区域41’的区域通过第一侧 131形成,该区域在此被称作第一区域。相应地,侧壁47’的第一区域从第 一表面45’延伸到第二表面46’,并由第一侧131形成。类似地,侧壁47’的 形成末端43a’-43c’和43e’-43g’的区域通过第二侧132形成,该区域在此被 称作第二区域。相应地,侧壁47’的第二区域也从第一表面45’延伸到第二表 面46’,并由第二侧132形成。总而言之,第一区域和第二区域交替,以使 得第一侧和第二侧交错以形成侧壁47’。

上述的吹塑方法与用于鞋类腔室的传统吹塑工艺不同。例如,模具100 包括多个凹穴111a-c和111e-g以及凸起部121a-c和121e-g以在结合或拉伸 前弯曲型坯130,由此使腔室40’的壁厚具有均匀性。另外,型坯130的弯 曲形成不延伸跨过侧壁47’的可见部分的非居中分型线133。

第三腔室

鞋10’的另一构造在图26和27中示出,其具有腔室40’和附加流体填充 腔室40”。虽然腔室40’定位在中底31’的脚跟区域中,腔室40”定位在中底 31’的前脚区域中。相应地,腔室40’和腔室40”分别对穿着者的脚跟和前脚 提供力衰减。腔室40”在图28-33中单独地示出,并包括第一子腔室41a”、 第二子腔室41b”、第三子腔室41c”、七个瓣部42a”-42g”,以及七个相对应 的末端43a”-43g”。另外,腔室40”包括一对流道44a”和44b”、第一表面45”、 第二表面46”和侧壁47”。

腔室40和40’适用于左脚或右脚。如图28-33所示的腔室40”的构造具 有非对称构造并且最适用于左脚,如将在以下详细讨论的。相应地,腔室40” 可被制造为具有大致相同但是反向的构造,其最适用于右脚,如图34所示。 依赖于鞋10’的特定款式和鞋10’的特定用途,可以将腔室40”的各构造用于 鞋10’。即,腔室40”的各构造可用在用于左脚或右脚的鞋中。

子腔室41a”-41c”形成腔室40”的大部分体积,并且通过流道44a”和44b” 被流体连接。更具体地,流道44a”在第一子腔室41a”和第二子腔室41b”之 间延伸以允许流体在子腔室41a”和41b”之间的流动。类似地,流道44b”在 第二子腔室41b”和第三子腔室41c”之间延伸以允许流体在子腔室41b”和 41c”之间的流动。如果第一子腔室41a”被压缩,第一子腔室41a”内的流体可 通过流道44a”并进入第二子腔室41b”,第二子腔室41b”内的一部分流体通 过流道44b”并进入第三子腔室41c”。如果第三子腔室41c”被压缩,第三子 腔室41c”内的流体可通过流道44b”并进入第二子腔室41b”,第二子腔室41b” 内的一部分流体通过流道44a”并进入第一子腔室41a”。类似地,如果第二子 腔室41b”被压缩,第二子腔室41b”内的流体可通过流道44a”和44b”二者并 进入子腔室41a”和子腔室41b”的每一个中。相应地,子腔室41a”-41c”通过 流道44a”和44b”而彼此流体连接。在腔室40”的一些构造中,阀可定位在流 道44a”和44b”中以限制子腔室41a”-41c”之间的流体流动,或者流道44a”和 44b”的一个或两个都被密封以防止流体流动。

子腔室41a”-41c”形成为每个都包封腔室40”内的一部分流体。虽然子腔 室41a”-41c”内的流体的相对体积可在本发明的范围内明显地变化,腔室40” 被示出为,其构造是第一子腔室41a”具有比子腔室41b”和41c”二者都大的 体积,并且第二子腔室41b”具有比第三子腔室41c”更大的体积。作为比较, 第一子腔室41a”具有的体积例如大约为第二子腔室41b”的两倍,第二子腔 室41b”具有的体积例如大约为第三子腔室41c”的两倍。在其它构造中,腔 室40”在子腔室41a”-41c”的体积之间体现出大致不同的比例。此外,第三子 腔室41c”在一些构造中尺寸可明显减小或甚至被去除。

子腔室41a”-41c”以非直线的关系设置,其中,第二子腔室41b”靠近第 一子腔室41a”定位,第三子腔室41c”定位在第二子腔室41b”的前面。更具 体地,如果一轴线穿过子腔室41a”和41b”的每一个,则第三子腔室41c”将 从该轴线间隔开。类似地,如果一轴线穿过子腔室41b”和41c”的每一个, 则第一子腔室41a”将从该轴线间隔开。因此,实际上,子腔室41a”-41c”形 成三角形样式的三个点。如将在以下详细讨论的那样,用于子腔室41a”-41c” 的该布置将第一子腔室41a”定位在鞋10’的外侧部分中,并将子腔室41b”和 41c”定位在鞋10’的内侧部分中。

瓣部42a”-42c”从第一子腔室41a”向外延伸并且与第一子腔室41a”流体 连接。如果第一子腔室41a”被压缩,如上所述,第一子腔室41a”内的一部分 流体也将流入到瓣部42a”-42c”中。类似地,瓣部42d”-42f’从第二子腔室41b” 向外延伸并且与第二子腔室41b”流体连接,瓣部42g”从第三子腔室41c”向 外延伸并且与第三子腔室41c”流体连接。如果子腔室41b”和41c”的任一个 被压缩,除了通过流道44a”和44b”流通,流体可流到瓣部42d”-42g”中。瓣 部42a”-42g”的数量和位置可以明显变化。但是,在腔室40”的许多构造中, 每个子腔室41a”和41b”一般可具有至少瓣部42a”-42g”中的两个。

末端43a”-43g”分别形成瓣部42a”-42g”的端部区域并定位为与子腔室 41a”-41c”相对。当腔室40”并入到鞋10”中,末端43a”-43g”可通过中底31’ 的侧壁突出。更具体地,瓣部42a”-42c”可延伸到鞋10’的外侧,以使得末端 43a”-43c”可通过中底31’的侧壁突出,并且瓣部42d”-42g”可延伸到鞋10’的 相对的内侧,以使得末端43d”-43g”可通过中底31’的侧壁的相对部分突出。 但是,在鞋10’的一些构造中,末端43a”-43g”可完全定位在鞋底31’内,或 者末端43a”-43g”可向外并超过中底31’的侧壁突出。另外,末端43d”-43g” 可与形成有子腔室41a”-41c”的平面大致垂直于大致垂直地取向。

第一表面45”形成腔室40”的上表面并具有弯曲构造。即,第一表面45” 靠近末端43a”-43g”的部分向上弯曲以在腔室40”的上部区域中形成圆形或 凹的结构。第二表面46”定位为与第一表面45”相对,并具有大致平面的构 造。在鞋10’的一些构造中,第二表面46”可形成腔室40”的上表面。与第一 表面45”相对比,第二表面46”具有更大的表面面积。更具体地,第二表面 46”被示出为具有第一表面45”面积的两倍的面积,但其例如可以在10倍的 表面面积的范围内变化。为了解释表面面积的不同,侧壁47”从第一表面45” 的周边延伸,并向下倾斜至第二表面46”的周边。与向下倾斜的第二表面46” 相比,末端43a”-43g”具有大致垂直的取向。

如上所述,脚在跑步期间的典型运动包括从外部或外侧向内部或内侧滚 动,这也被称作内旋。在跑步期间,腔室40”通过腔室40”的各部件的相对 位置来补充脚的运动,第一子腔室41a”大致位于鞋10’的外侧部分中,子腔 室41b”和41c”大致位于鞋10’的内侧部分中。在该构造中,第一子腔室41a” 和瓣部42a”-42c”的至少一部分在第三、第四和第五跖趾关节(即,分别在 第三、第四和第五跖骨与第三、第四和第五近趾骨之间的关节)下。类似地, 第二子腔室41b”和瓣部42d”-42f”的至少一部分在第一和第二跖趾关节(即, 分别在第一和第二跖骨与第一和第二近趾骨之间的关节)下。另外,第三子 腔室41c”和瓣部42g”的至少一部分在第一近趾骨和第一末趾骨(即,大脚 趾)下。

基于上述的腔室40”的各部分的位置,在跑步期间,脚首先挤压位于鞋 10’的外侧部分中的第一子腔室41a”。随着第一子腔室41a”被压缩,第一子 腔室41a”内的流体压力变大,并且一部分流体流过流道44a”并流进第二子腔 室41b”。这具有使第二子腔室41b”的可压缩性减小的效果,并且辅助防止 脚从外侧向内侧滚转。但是,随着脚从外侧向内侧滚转,第二子腔室41b” 被压缩,并且第二子腔室41b”内的流体流过流道44b”并增加第三子腔室41c” 内的流体压力。这具有使第三子腔室41c”的可压缩性减小的效果,并辅助在 脚向前滚转和当脚离开地面时发生的撑开。

影响腔室40的可压缩性和脚的滚转的其它因素涉及侧壁47”的斜度。参 考图28-30,例如,与第一子腔室41a”相关联的侧壁47”的斜度在前和后部 区域中不同。在第一子腔室41a”的后部区域中,侧壁47”的斜度相对较平缓, 而侧壁47”的斜度在第一子腔室41a”的向前区域中更大。斜度的不同影响第 一子腔室41a”的可压缩性以及脚滚转的程度。更具体地,在第一子腔室41a” 的后部区域中的更平缓斜度有助于压缩和脚的滚转。随着脚向前并朝向第一 子腔室41a”的向前区域滚转,侧壁47”的更大的斜度阻止第一子腔室41a”的 压缩并减慢脚的滚转。即,第一子腔室41a”的具有相对平缓斜度的区域(即, 后部区域)比具有更大斜度的区域(即,向前区域)更容易被压缩。

侧壁47”斜度的不同还体现在第二子腔室41b”和第三子腔室41c”中。在 第二子腔室41b”,侧壁47”在靠近第一子腔室41a”的区域中具有相对较平缓 的斜度,在靠近瓣部42d”-42f”的区域中具有相对较大的斜度。与第一子腔 室41a”一样,第二子腔室41b”的具有相对平缓斜度的区域比第二子腔室41b” 的具有更大斜度的区域更容易被压缩。这辅助脚朝向第二子腔室41b”的滚 转,但限制脚朝向鞋10’的内侧部分的进一步滚转。类似地,第三子腔室41c” 具有的构造中,侧壁47”在靠近第二子腔室41b”中相对较陡,但在第三子腔 室41c”的向前区域中更平缓一些,由此辅助撑开。

与腔室40和40’一样,与技术背景部分讨论的一些填充有流体的腔室相 比,腔室40”及其在中底31’的泡沫材料中的布置在压缩的初始阶段期间为给 定载荷产生相对大的挠曲。但是随着腔室40”压缩的增大,由于中底31’的结 构,腔室40”的刚度以相对应的方式增加。该效果也是压力上升,中底31’ 中的泡沫材料的特性和膜张力的结果。相应地,腔室40”的体积、瓣部 42a”-42g”的数量和形状、侧壁47”的斜度、表面45”和46”的厚度、用于形成 腔室40”外部的材料和腔室40”在中底31’内的位置和取向都可变化以改变缓 冲响应。另外,泡沫材料的包括泡沫材料数量以及硬度和厚度的特性也可以 被调整以改变缓冲响应。因此,通过变化这些和其它参数,中底31’可被定 制为在压缩期间用于特定个体或提供特定的缓冲响应。

可以使用各种材料来形成腔室40”,包括传统地被用来形成用于鞋的填 充有流体的腔室外层的聚合材料,如背景技术中讨论的那样。但是,与大量 现有技术的腔室结构相对地,腔室40内的流体处于环境压力或者处于比环 境略高的压力。相应地,腔室40”内的流体的压力可从每平方英寸0至5磅 的计量压力(gauge pressure)变化。由于腔室40”内的相对低的压力,被用 来形成第一表面45”、第二表面46”和侧壁47”的材料不需要提供阻挡特性, 该特性保持现有技术腔室的相对高的流体压力。相应地,诸如热塑性氨基甲 酸乙酯这样的各种聚合材料可用于形成第一表面45”、第二表面46”和侧壁 47”,并且诸如空气这样的各种流体可用在腔室40”内。此外,各种聚合材料 可基于材料的工程特性、而不是材料防止腔室40”所容纳的流体扩散的能力 选择,这些工程特性诸如动弹性模量和损耗角正切。当由热塑性聚氨酯形成 时,第一表面45”、第二表面46”和侧壁47”可具有大致0.04英寸的厚度, 但是厚度可以例如从0.01英寸变化到0.10英寸。依赖于所使用的材料,可 以使用比该范围小或超过该范围的厚度。

腔室40”内的流体的相对较低的压力也提供了腔室40”与现有技术之间 的另一个不同之处。现有技术腔室中的相对高的压力通常需要形成聚合物层 之间的内部连接部,以防止腔室向外扩张到非常明显的程度。即,内部连接 部在现有技术腔室中使用来控制腔室的总厚度。相对地,腔室40”在第一表 面45”和第二表面46”之间不具有内部连接部。

结论

在以上并在参考各实施例的附图中披露了本发明。但是,披露内容的目 的是提供与本发明相关的各特征和构思的例子,而不限制本发明的范围。本 领域的技术人员应该理解的是,可以对上述实施例作出大量变体和修正,而 不偏离由所附权利要求限定的本发明范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号