首页> 中国专利> 用于布置可膨胀球囊心脏瓣膜的系统

用于布置可膨胀球囊心脏瓣膜的系统

摘要

用于布置可膨胀球囊(即塑性可膨胀球囊)假体心脏瓣膜(20)从而使其呈现期望的运作形状的系统和方法。所述系统包括球囊(40),该球囊在心脏瓣膜中适应非均匀的膨胀阻力从而膨胀到其期望的管状形状或其他形状。心脏瓣膜可以具有邻近一端的充分的更多的结构元件,所述一端通常为流入端(22),并且球囊可以是阶梯的从而在膨胀流出端之前膨胀流入端,这样瓣膜最终成管状形状。此外,可以使用阶梯球囊,其具有附近瓣膜流入端的更大的近端段。一种方法包括对塑性可膨胀假体心脏瓣膜的内部施加非线性膨胀力,以克服对膨胀的更大阻力区域并得到均匀膨胀。

著录项

  • 公开/公告号CN101489504A

    专利类型发明专利

  • 公开/公告日2009-07-22

    原文格式PDF

  • 申请/专利权人 爱德华兹生命科学公司;

    申请/专利号CN200780027385.9

  • 申请日2007-06-29

  • 分类号A61F2/24(20060101);

  • 代理机构11245 北京纪凯知识产权代理有限公司;

  • 代理人赵蓉民

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 22:23:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-01-02

    授权

    授权

  • 2009-09-23

    实质审查的生效

    实质审查的生效

  • 2009-07-22

    公开

    公开

说明书

技术领域

【0001】本发明涉及植入可膨胀的假体心脏瓣膜的系统,并具体涉及用于布置这种心脏瓣膜的成形的膨胀构件。

背景技术

【0002】当存在狭窄的先天心脏瓣膜时,其通常称为器官狭窄,或者当先天瓣膜泄漏或回流时,例如当小叶钙化时,可能需要心脏瓣膜替换。在一个治疗方案中,先天瓣膜可以被切除并替换为生物的或机械的瓣膜。假体瓣膜在具有小叶或不具有小叶的情况下被连接到患者的纤维性心脏瓣膜环面。

【0003】传统的心脏瓣膜外科手术是高侵入的心脏开放式的处理,导致包括出血、感染、冲击、心脏病发、心律不齐、肾衰竭、麻醉药物的不良反应以及意外死亡等重大风险。足足2%-5%的患者在外科手术期间死亡。平均住院时间在1周到2周之间,并需要更多的几周至几个月以便完全恢复。

【0004】近年来,“最小化侵入”的外科手术和干涉心脏病学的发展促使一些研究人员追求在不打开胸腔或不将患者置于体外循环中的情况下使用远程植入的可膨胀的瓣膜替换心脏瓣膜。例如,新泽西州的Fort Lee和加利福尼亚州Irvine的爱德华生命科学公司(EdwardsLifesciences)的经皮瓣膜技术(PVT)已开发出集成了具有柔性小叶的生物假体瓣膜的可膨胀的球囊支架。商标为Cribier-EdwardsTM的主动脉经皮心脏瓣膜的支架/瓣膜装置穿越先天患病瓣膜来布置,从而永久地支持瓣膜张开,并由此减少切除先天瓣膜的需要。所述装置被设计为通过使用荧光镜引导,在局部麻醉下在心脏导管插入实验室中用于经皮运送,由此避免了全身麻醉和打开心脏的外科手术。其他经皮或外科手术运送的可膨胀的瓣膜也被测试。为了包含的目的,整个领域在此将表示为可膨胀的瓣膜的运送和植入。

【0005】可膨胀的心脏瓣膜使用球囊或自膨胀的支架作为支撑点。可膨胀的瓣膜和周围环面之间的接触在具有或不具有小叶的情况下的均匀性应该使得没有瓣周漏发生,并且因此恰当的膨胀是非常重要的。一旦瓣膜膨胀到位,则可能更大的问题是小叶的接合质量。接合涉及独立的柔性小叶在瓣膜开口中集合以闭塞流动的程度。如果小叶不是非常配合,这可以在柔性瓣膜未恰当膨胀的情况下发生,则可能发生回流。这些和其他问题使得恰当植入瓣膜变得极其关键。然而,不像打开心脏的外科手术,植入位置不是直接可到达的并且瓣膜必须在导管或套管的端部上在非直接可见(例如荧光镜成像)的情况下被远程植入。也就是说提高成功植入的百分率的任意系统均是被期望的。

【0006】可膨胀球囊心脏瓣膜通常需要纯尼龙的圆柱形瓣膜的膨胀。膨胀流体包括混合有更粘的造影剂的生理盐水。混合物的固有粘性增大了膨胀/缩小的时间,这是不期望的,因为球囊在使用中闭塞了目标环面,并且要在完成非体外循环或心跳时进行很多处理。

【0007】由于可膨胀的假体心脏瓣膜中的强电流影响,需要减小用时并增大成功植入机会的植入系统和技术。

发明内容

【0008】本发明提供用于布置可膨胀球囊(即塑性可膨胀的)假体心脏瓣膜,从而使其呈现其期望的工作形状的系统和方法。所述系统包括膨胀构件,该膨胀构件在心脏瓣膜中适应非均匀的膨胀阻力以膨胀到其期望的管状形状或其他形状。心脏瓣膜可以具有邻近一端的基本上更多的结构元件,其中所述一端通常为流入端的,并且膨胀构件可以为锥形,从而在膨胀流出端前膨胀流入端,进而使瓣膜形成管状形状。

【0009】本发明的一个方面是假体心脏瓣膜植入系统,该系统包括具有压缩状态和膨胀状态的可膨胀球囊假体心脏瓣膜以及具有沿其轴长的非均匀的膨胀阻力剖面的构造。膨胀构件以其压缩状态置于假体心脏瓣膜内并且能够将径向向外的力施加到心脏瓣膜以将该心脏瓣膜转换到其膨胀状态。膨胀构件被配置为将非均匀的径向向外的力沿其轴长施加到心脏瓣膜。优选地,膨胀构件包括至少一个外部标记以在假体心脏瓣膜内归入膨胀构件,从而能够最大地膨胀的所述膨胀构件的段可以被置于所述假体心脏瓣膜的最硬部分内。

【0010】在一个实施例中,膨胀构件是球囊,该球囊具有至少一个段,该段的膨胀后直径大于其他段。例如,球囊具有圆锥形或梯级直径的瓣膜接触部分。期望地,球囊由掺有造影剂的材料构成。

【0011】本发明的另一个方面是假体心脏瓣膜植入系统,该系统包括具有流入端和流出端的可膨胀球囊假体心脏瓣膜,所述心脏瓣膜包括外部支架和连接到该支架的内部柔性小叶以及沿该心脏瓣膜的轴长的非均匀的膨胀阻力剖面。假体心脏瓣膜的流入端可以比其流出端更坚硬,例如在小叶和支架之间具有连接结构,所述支架在邻近心脏瓣膜的流入端处比在流出端处聚集的更多。置于假体心脏瓣膜内的球囊具有非圆柱形的膨胀剖面,该剖面具有置于心脏瓣膜的更坚硬部分内的更大的直径段和置于心脏瓣膜的更柔性的部分内的更小的直径段。例如,球囊具有圆锥形或梯级直径的瓣膜接触部分。期望地,球囊由掺有造影剂的材料构成。同样,球囊可以包括至少一个外部标记以在假体心脏瓣膜内归入球囊从而使能够最大地膨胀的段球囊可以位于假体心脏瓣膜的最硬部分内。

【0012】还公开了一种植入假体心脏瓣膜的方法。所述方法包括提供具有压缩状态和膨胀状态的可膨胀球囊的假体心脏瓣膜以及具有沿其轴长的非均匀的膨胀阻力剖面的构造。膨胀构件以其压缩状态被提供在假体心脏瓣膜内。组合的假体心脏瓣膜和膨胀构件被运送到目标环面,并且非均匀的径向向外的力与膨胀构件一起沿心脏瓣膜的轴长施加到心脏瓣膜以将心脏瓣膜转换至其膨胀状态。

【0013】膨胀构件可以是球囊,该球囊具有至少一个段,该段的膨胀后直径大于其他段。优选地,球囊由掺有造影剂的材料构成,这样将非均匀的径向向外的力施加到心脏瓣膜的步骤包括在球囊中填充不具有任何造影介质的生理盐水。膨胀构件可以包括至少一个外部标记,所述方法还包括在假体心脏瓣膜内归入膨胀构件从而使能够最大地膨胀的段膨胀构件可以位于假体心脏瓣膜的最硬部分内。优选地,膨胀构件是球囊,并且具有两个标记来表示假体心脏瓣膜的球囊上的轴向位置。此外,所述标记可以表示瓣膜在球囊上应该放置的方位。

【0014】对本发明的本质和优点的进一步的理解在以下说明和权利要求中提出,特别是当结合附图考虑时,其中相同部分表示为相同的参考标记。

附图说明

【0015】参考说明书、权利要求和所附附图,本发明的特征和优点将更好地理解,其中:

【0016】图1A是示例性的可膨胀假体心脏瓣膜的透视图,其由具有连接于其中的小叶的大致圆柱形的外部支架形成;

【0017】图1B和IC分别是图1A的假体心脏瓣膜的膨胀和压缩的侧面正视图;

【0018】图2A是以压缩状态安装在导管上的圆柱形球囊周围的示例性的可膨胀假体心脏瓣膜的侧面正视图;

【0019】图2B和2C是图2A的假体心脏瓣膜膨胀中的两个阶段,示出了圆柱形球囊如何能够不利地张开其一端;以及

【0020】图3A-3D是根据本发明的示例性的假体心脏瓣膜膨胀球囊的侧面正视图。

具体实施方式

【0021】本发明提供用于布置塑性可膨胀的假体心脏瓣膜以便使其呈现其期望的操作形状的改进的系统和方法。可膨胀的心脏瓣膜具有支撑内部柔性小叶的外部框架或支架,所述内部柔性小叶提供流体吸收表面。瓣膜被设计为自压缩状态膨胀以运送到确保小叶良好接合的操作形状中。也就是,小叶必须接合以避免血液的倒流或回流,并且布置的支架的任何未对准可以折损瓣膜的功效。绝大多数可膨胀的假体心脏瓣膜具有支架,该支架假设基本管状的操作形状,虽然其他最终形状也包含在本发明中。

【0022】此处说明的本发明提供确保“塑性可膨胀”假体心脏瓣膜的恰当布置的方案。该术语涵盖可膨胀球囊假体心脏瓣膜,但不应被视为仅限制为球囊的膨胀。虽然是这些心脏瓣膜膨胀的可接受的方法,但例如径向可膨胀机械指状物的其他布置机构或其他这类装置均可以被使用。这样,因此,“塑性可膨胀”涉及心脏瓣膜框架的材料,这经历从一个尺寸到更大尺寸的塑性变形。塑性可膨胀框架材料的示例是不锈钢、埃尔吉洛伊非磁性合金(Elgiloy)(主要包括钴、铬和镍的合金)、钛合金和其他特殊金属。然而,为了方便,在此处将主要使用术语“可膨胀球囊”假体心脏瓣膜,但这应该视为表示“塑性可膨胀”的心脏瓣膜。

【0023】本发明包含非恒定膨胀阻力的瓣膜。也就是,可膨胀球囊假体心脏瓣膜的构造细节是使得通常为流入端的一端具有包括缝合线的更多数量的结构组件。瓣膜安装在膨胀球囊上,运送到植入位置并且球囊膨胀。因为绝大多数瓣膜的轴线构造的非均匀,球囊的膨胀将导致在表示最小膨胀阻力的瓣膜的部分处的更大或更快的径向膨胀。通常,流入端表示膨胀的更大阻力,导致流出端膨胀得更大或更快。本发明提供多个不同形状的球囊以容纳这种构造的非均匀,从而使瓣膜膨胀到其指定的操作形状。瓣膜支架的最终形状可以是管状,但其还可以是轻微的圆锥形或具有非直线的剖面。本领域技术人员将理解,给定瓣膜性质和期望的最终形状,适当的膨胀构件(球囊)可以被选择用于任意数量的瓣膜。

【0024】图1-3示出了具有流入端22和流出端24的示例性的可膨胀球囊假体心脏瓣膜20。所述瓣膜包括支撑其中的多个柔性小叶28的外部框架或支架26。图1A示出了处于其膨胀或操作形状下的瓣膜20,其中外部支架26一般定义为管状物并且存在连接于其上并伸入定义其内的圆柱形空间中以相互接合的三个小叶28。在示例性的瓣膜20中,三个独立的小叶28中的每一个均固定到支架26并沿其毗邻或接合处的线路固定到另两个小叶。当然,例如猪瓣膜的整个生物假体瓣膜也可以被使用。在此情况下,“小叶”意味着独立的小叶或整个异种移植物瓣膜内的小叶。

【0025】在示例性的瓣膜20中,形成小叶28的柔性材料经由织物中间物30和多个缝合线32连接到外部支架28。参见图1B,支架26由多个轴向定位的并且沿圆周成角的支柱34形成。在围绕支架26的三个空间均匀分布的点处,轴向定位的支柱由多个基本轴向的杆36代替。杆36包括多个通孔,该通孔接收在适当位置支持小叶28的接合处的缝合线32。此外,两行Z字形缝合线线路38连接到最邻近流入端22的两行成角的支柱34。类似类型的示例性假体心脏瓣膜的进一步的细节可以在美国专利No.6,730,118中找到,该专利的内容特别地作为参考结合于此。此外,来自加利福尼亚州Irvine的爱德华生命科学公司的Cribier-EdwardsTM主动脉经皮心脏瓣膜是本质类似的另一种球囊可膨胀假体心脏瓣膜,其构造同样特别作为参考结合于此。

【0026】如通过附图可理解的,外部支架26和内部小叶28之间的大量连接结构位于接近流入端22。每一个小叶28期望沿流出端24处的两点之间的弓形线路连接。该弓形线路接近流入端22经过,并因此需要更多缝合线至其终止。由此,瓣膜20具有非均匀的膨胀剖面。更特别地,瓣膜20的流入端22比流出端24对从其内部胀大的球囊的膨胀施加基本上更大的阻力。圆柱形球囊自瓣膜20内膨胀并由此在流出端24比流入端22更快或更远地膨胀,因为流出端表示最小的阻力路径。图1C示出了安装在球囊上的部分膨胀的瓣膜20。

【0027】这样,重要的是强调示例性的心脏瓣膜20表示具有沿其轴长的非均匀膨胀阻力剖面的可膨胀球囊心脏瓣膜。在所示的实施例中,瓣膜20在接近其流入端22处比其流出端24更坚硬。然而,其他瓣膜可以包括外部框架和安装在框架的流出端附近的内部瓣膜或小叶结构,从而由此在其流出端附近更坚硬。涵盖这些不同结构和其他瓣膜的术语是“具有沿其轴长的非均匀膨胀阻力剖面的瓣膜”。

【0028】这种非均匀的瓣膜膨胀的示意图见图2A-2C。图2A示出了瓣膜20及其在标准圆柱形球囊40上的压缩状态和卷曲。球囊40通常安装在导管体42上,该导管体42在引线44上经过至植入位置。

【0029】在植入位置处,球囊40膨胀以布置瓣膜20。图2B示出了一个可行的结果;瓣膜膨胀至圆锥形状,其中因为在流出端处对膨胀的更少阻力,使得流出端24比流入端22膨胀得更快和更远。可选择地,图2C示出了一种情况,其中流出端24通过超过瓣膜端部的球囊40的初始膨胀而变为张开或形成为顶部。在任一这些情况中,瓣膜20不膨胀到其期望的圆柱形状,并且由此可以危及其内的柔性小叶的接合。例如,图2B中瓣膜20的圆锥形状可以将杆36的流出端和小叶缝合处分离到小叶不再达到瓣膜开口的中间的程度。

【0030】如上所述,本发明提供不同形状的膨胀构件或球囊以确保假体心脏瓣膜有计划地膨胀。如上所述,球囊最普遍地用于布置膨胀后的心脏瓣膜。然而,设想可以使用例如可伸长的指状物或液压操作的膨胀构件(即非球囊)的机械膨胀构件。因此,术语膨胀构件旨在涵盖球囊和其他不同的事物。

【0031】在图3A中,球囊50安装在导管52上并且包括第一近端锥度54、中心瓣膜接触部分56和第二远端锥度58。瓣膜接触部分56具有轻微的圆锥形锥度从而使近端肩部60具有比远端肩部62更大的直径。球囊50包括位于附近的多个标记带64以促进具有球囊的假体心脏瓣膜的归入。

【0032】重要的是注意关于球囊锥度的术语“近端和远端”基于运送到环面的心脏瓣膜的方向,因为心脏瓣膜决定端部并且因此与经由左心室顶点的处理相比,在导管上的球囊定向在股动脉要道中开始的心脏瓣膜替换处理中将被颠倒。图3A的球囊50具有更大的近端肩部60,其在本实施例中是关于心脏瓣膜20的流入端的端部,表示球囊50为顶部运送定向从而与经皮相反,这样“近端”的肩部将相应于瓣膜的流出端。

【0033】例如,以上所述的可膨胀的心脏瓣膜20以其膨胀状态置于缩小的球囊50周围。标记牌64用于定位球囊54上的瓣膜轴向以恰当膨胀。因为球囊50的非均匀的膨胀剖面,瓣膜20的轴向位置最为重要以确保球囊能够施加最大初始径向外部力的部分记录瓣膜的较坚硬的区域。特别地,瓣膜20置于球囊50上从而使该瓣膜20的流入端22更接近第一肩部60,并且使该瓣膜20的流出端24更接近第二肩部62。随后,假体瓣膜20卷曲在球囊50周围从而准备运送到体内并且前进到目标植入位置。当球囊50膨胀时,第一肩部60最初膨胀较快并且最终比第二肩部62更远,由此补偿增大的阻力以膨胀假体心脏瓣膜20及其流入端22。通过精确计算假体心脏瓣膜至膨胀的非均匀阻力,具有锥度的瓣膜50可以被选择以便瓣膜膨胀到其满直径和恰当的操作形状(通常为圆柱形或浅截头圆锥形)。

【0034】图3B示出了具有近端锥度72、中心瓣膜接触部分74和远端锥度76的本发明的可选择的心脏瓣膜膨胀球囊70。再次,瓣膜接触部分74自第一肩部78向内逐渐变细至第二端80。取代进一步逐渐变细的是,球囊的远端定义了引导至远端锥度76的向外形成的凸缘82。同样,标记带84提供在瓣膜接触部分74中的球囊70的周围以恰当定位其周围的假体瓣膜。凸缘82还通过提供空旷的背脊和能触知的标记来协助定位瓣膜,通过能触知的标记,瓣膜20的流出端24可以邻接。

【0035】图3C提供了另一个本发明的球囊90,其中包括近端段92和更小的远端段94。逐渐变细的向下梯级96连接近端段92和远端段94。球囊90上的标记带98一般表示其周围的假体心脏瓣膜的替换的限制。因此,流出端24将位于临近更小的远端段94,并且流入端22将位于更大的近端段92周围。这样,球囊膨胀导致流入端22比流出端24更快并且更大的膨胀。通过控制近端和远端段92、94的相对直径,特定的假体心脏瓣膜可以膨胀至其设计的圆柱形状。

【0036】最终,图3D示出了具有由小梯级106隔开的近端段112和远端段104的球囊100。标记108表示瓣膜应该放置的位置。成梯级的球囊100类似于图3C中的球囊90,但两个段102、104在直接上彼此更接近。

【0037】如本领域技术人员可以理解的,此处所述的膨胀构件/球囊的特定形状将基于瓣膜结构而不同。使用示例性的假体心脏瓣膜20,接触瓣膜的最硬部分(例如流入端)的球囊的最大部分的直径应该大于接触瓣膜的较柔性部分(例如流出端)的最小部分。例如,图3C中的近端段92的直径可以是25mm,同时远端段94的直径可以是21mm。或者,按相对而言,接触瓣膜的膨胀构件的最大段大于最小段约20%-30%之间。

【0038】公开在图3A-3D中的各种标记或标记带可以是绘制在球囊周围以表示瓣膜的相对两端的放置的均匀的圆形线路。可选择地,标记可以具有不同尺寸或构造以便更清楚地表示瓣膜在球囊上应该被放置的方向。包括词语流入端和流出端的更清楚的系统还可以被用于进一步的清楚说明。此外,标记可以不是轴对称地围绕球囊,而是可以表示球囊周围的缝合点或其他位置,通过这些缝合点或位置,瓣膜将被归入。实际上,还可以设想膨胀构件/球囊可以被配置为在其圆周上以非均匀剖面膨胀。例如,可膨胀假体心脏瓣膜可以具有围绕其圆周的非均匀的膨胀剖面,这将导致非圆形的膨胀形状。可能需要在更坚硬区域中的更大的外部压力,因此需要瓣膜和球囊之间的特定的圆周记录。

【0039】在通常的操作顺序中,具有在其上的生物组织的假体心脏瓣膜被封装在与球囊相分离的消过毒的容器中。在操作室中,瓣膜和球囊结合以便植入。该处理要求在球囊周围精确地定位处于膨胀状态的瓣膜,并且在球囊上卷曲瓣膜至预定的最大直径。上述的标记带由此极大地促进了在球囊上定位瓣膜的步骤以确保恰当的膨胀。瓣膜和球囊的组合之后被插入体内并且前进到目标植入位置。运送路径可以是相对较长的经皮路径,或者可以通过直接进入的端口或胸腔中的沟道而基本上更短。甚至可以设想使用心肺分路的传统的打开心脏的外科手术可以通过减小处理时间而从布置可膨胀的瓣膜受益。

【0040】本发明的可选择的使用是部分布置在目标植入位置处的塑性膨胀的假体心脏瓣膜。一些自膨胀的假体心脏瓣膜需要进一步的球囊膨胀以塑性变形其支撑框架并且确保与周围组织的恰当接合。本发明由此涵盖最初的弹性可膨胀框架的最终的塑性变形。在另一种情况下,纯塑性可膨胀的心脏瓣膜可以由第一球囊部分膨胀,并且之后第二球囊用于将该心脏瓣膜完全膨胀至其最终的植入状态。在这种类型的处理中,上述的标记带是将非均匀球囊定位在部分布置的瓣膜内的要素。

【0041】用于布置假体心脏瓣膜的传统的球囊由纯尼龙构成。尼龙球囊具有最大膨胀直径,这对防止过膨胀和破裂至关重要。在现有技术中,膨胀流体包括生理盐水和造影剂的混合物,通常为粘性半辐射穿透的液体。该流体的固有粘性增大了球囊的膨胀/缩小时间,这是有害的,因为球囊可以在长时间下闭塞大动脉环面。

【0042】本发明提供了掺有辐射不能穿透的材料的膨胀球囊。掺杂物通常在球囊突出前执行以确保掺杂物制剂的均匀分布。因此,因为球囊本身是辐射不能穿透的,因此盐可以用于膨胀球囊而不需要额外的粘性造影剂。因为生理盐水的较低的粘性,膨胀/缩小时间被极大地缩短。

【0043】虽然本发明以其优选实施例进行了说明,但可以理解所使用的词语是说明性的词语而不是限制性的词语。因此,可以在不背离本发明的真实范围的情况下在所附权利要求限定的范围内进行改变。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号