首页> 中国专利> 用于混合动力系统中转矩管理的发动机控制系统

用于混合动力系统中转矩管理的发动机控制系统

摘要

发动机与混合动力变速器的输入构件连接在一起,该混合动力变速器可操作在发动机和第二转矩机械以及输出构件之间传送动力。用于控制发动机的方法包括:监控操作者转矩请求;控制混合动力变速器在连续可变操作范围状态内操作;基于操作者转矩请求和混合动力变速器的操作确定包含第一发动机转矩请求和第二发动机转矩请求的发动机指令;基于混合动力变速器作用于发动机转矩的容量确定包括最大发动机转矩的发动机转矩限制;和只有当第二发动机转矩请求超过发动机转矩限制时,才基于第一发动机转矩请求控制发动机操作。

著录项

  • 公开/公告号CN101469638A

    专利类型发明专利

  • 公开/公告日2009-07-01

    原文格式PDF

  • 申请/专利权人 通用汽车环球科技运作公司;

    申请/专利号CN200810190952.9

  • 申请日2008-11-04

  • 分类号F02D29/02(20060101);F02D41/02(20060101);F02D43/00(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人杨楷

  • 地址 美国密执安州

  • 入库时间 2023-12-17 22:10:28

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-09-05

    授权

    授权

  • 2009-08-26

    实质审查的生效

    实质审查的生效

  • 2009-07-01

    公开

    公开

说明书

相关申请的交叉参考

【0001】本申请要求2007年11月4日提交的美国临时申请NO.60/985255的优先权,其在此引用以供参考。

技术领域

【0002】本公开内容涉及混合动力系统的控制系统。

背景技术

【0003】这部分的描述仅仅提供与本公开内容相关的背景技术,并且可能不构成现有技术。

【0004】巳知的混合动力系结构可以包括多个转矩产生装置,该转矩产生装置包括内燃机和通过变速器装置将转矩传送到输出构件的非燃烧转矩机械,例如电机。一个典型的混合动力系包括双模式、复合分离的机电变速器,其利用输入构件和输出构件,输入构件接收来自主要动力源的牵引转矩,优选是内燃机。输出构件可操作地连接到机动车辆的传动系统以向传动系统传送牵引转矩。作为电动机或发电机操作的机械产生至变速器的转矩输入,而与内燃机的转矩输入无关。该机械能够将通过车辆传动系统传送的车辆动能转换为可存储在能量存储装置中的能量。控制系统监控各种来自车辆和操作者的各种输入并提供混合动力系的操作控制,包括控制变速器范围状态和换档,控制转矩产生装置,和调节储能装置与机械之间的功率互换从而管理变速器的输出,该输出包括转矩和转速。

发明内容

【0005】发动机连接到混合动力变速器的输入构件,混合动力变速器可操作在发动机和第二转矩机械以及输出构件之间传送动力。用于控制发动机的方法包括:监控操作者转矩请求;命令混合动力变速器以连续可变操作范围状态操作;基于操作者转矩请求和混合动力变速器操作确定发动机指令,发动机指令包括第一发动机转矩请求和第二发动机转矩请求;基于混合动力变速器作用发动机转矩的容量确定包括最大发动机转矩在内的发动机转矩限制;和只有当第二发动机转矩请求超过发动机转矩限制时才基于第一发动机转矩请求控制发动机操作。

附图说明

【0006】参照附图,通过举例描述一个或多个实施方式,其中:

【0007】图1是根据本公开内容的典型混合动力系的示意图;

【0008】图2是根据本公开内容的用于控制系统和混合动力系的典型结构的示意图;

【0009】图3和4是根据本公开内容的控制方案的示意流程图;和

【0010】图5和6是根据本公开内容的数据曲线图。

具体实施方式

【0011】现参照附图,其中所示的内容仅仅是出于图解特定的典型实施方式的目的,而并非为了局限于此,图1和2描绘了典型的混合动力系。在图1中描绘了根据本公开内容的典型混合动力系,其包括可操作地连接在发动机14和包括第一和第二电机(′MG-A′)56和(′MG-B′)72在内的转矩机械上的双模式、复合分离、机电混合变速器10。发动机14和转矩机械(例如,第一和第二电机56和72)各自产生可以传送给变速器10的功率。由发动机14及第一和第二电机56与72产生的,并且传送至变速器10的功率关于输入和电机转矩(在此分别被称为TI,TA和TB)以及速度(在此分别被称为NI,NA和NB)描述。

【0012】典型的发动机14包括多缸式内燃机,该内燃机在几种状态下有选择地操作从而通过输入轴12将转矩传送给变速器10,并且可以是火花点火或压缩点火的发动机。发动机14包括可操作地与变速器10的输入轴12连接的曲轴(未示出)。转速传感器11监控输入轴12的转速。由于发动机14与变速器10之间的输入轴12上设置了例如液压泵(未示出)和/或转矩管理装置(未示出)的转矩消耗元件,发动机14的功率输出(包括转速和发动机转矩)可不同于变速器10的输入速度NI和输入转矩TI

【0013】典型的变速器10包括三个行星齿轮组24,26和28,以及四个选择性接合的转矩传递装置,即离合器C1 70,C2 62,C3 73和C4 75。如在此使用的,离合器指的是包括例如单一或复合片式离合器或者离合器组,带式离合器,以及制动器在内的任何类型摩擦转矩传递装置。优选由变速器控制模块(以下为′TCM′)17控制的液压控制回路42可操作控制离合器状态。离合器C2 62和C4 75优选包括液压应用的旋转摩擦型离合器。离合器C1 70和C3 73优选包括可以有选择地接地(固定连接,ground)至变速箱68上的液压控制固定装置。每个离合器C1 70,C2 62,C3 73和C4 75优选为液压应用的,经由液压控制回路42有选择地接收加压的液压流体。

【0014】第一和第二电机56和72优选包括三相交流电机和各自的解析器80与82,每个均包括定子(未示出)与转子(未示出)。每个机械的电机定子接地到变速箱68的外部,并且包括定子铁心,该定子铁心具有从其中延伸出来的绕成线圈的电绕组。第一电机56的转子支撑于毂衬齿轮上,该齿轮经由第二行星齿轮组26操作地连接至轴60。第二电机72的转子固定地连接至套轴毂66。

【0015】每个解析器80与82优选地包括可变磁阻装置,该可变磁阻装置包括解析器定子(未示出)与解析器转子(未示出)。解析器80与82适当地定位并装配在第一与第二电机56与72中相应的一个上。解析器80和82中相应一个的定子可操作地连接到第一和第二电机56和72的定子中的一个上。解析器转子操作地连接到相应的第一与第二电机56与72的转子上。每个解析器80与82信号地并且可操作地连接至变速器功率变换器控制模块(以下为‘TPIM’)19,并且每个都感测与监控解析器转子相对于解析器定子的旋转位置,因此监控第一与第二电机56与72各自的旋转位置。此外,编译来自解析器80与82的信号输出,以分别提供第一与第二电机56与72的转速,即,NA与NB

【0016】变速器10包括输出元件64,例如,可操作地连接至车辆的传动系统90的轴(未示出),从而向传动系统90提供传送到车轮93(其中一个在图1中示出)的输出功率。根据输出转速NO与输出转矩TO表征输出构件64处的输出功率。变速器输出速度传感器84监控输出元件64的转速与旋转方向。每个车轮93优选地装配有适于监控轮速的传感器94,每个车轮的输出由图2中描述的分布式控制模块系统的控制模块监控,以确定用于制动控制,牵引控制,和车辆加速控制的车速,绝对与相对轮速。

【0017】来自发动机14的输入转矩和来自第一与第二电机56与72的电机转矩(分别为TI,TA,以及TB)由燃料或存储在电能存储装置(以下为‘ESD’)74中的电势进行能量转换而产生。ESD 74是经由直流传递导体27高压DC连接至TPIM 19的。传递导体27包括接触器开关38。当接触器开关38闭合时,在正常操作下,电流可以在ESD 74与TPIM 19之间流动。当接触器开关38断开时,ESD74和TPIM19之间的电流中断。响应于电机转矩TA与TB的转矩指令,TPIM 19通过传递导体29将电功率传递至第一电机56,并且从第一电机56输送电功率,TPIM19同样地通过传递导体31将电功率传递至第二电机72,并且从第二电机72输送电功率,以满足第一与第二电机56与72的转矩指令。根据ESD74是充电还是放电,电流传送至ESD 74或从ESD 74输出。

【0018】TPIM 19包括一对功率变换器(未示出)和各自的电机控制模块(未示出),电机控制模块配置成接收转矩指令,并且据此控制变换器状态,用于提供电动机驱动或再生功能,以满足指令的电机转矩TA和TB。功率变换器包括公知的互补三相功率电子装置,并且每个均包括多个绝缘栅双极晶体管(未示出),该绝缘栅双极晶体管通过高频率切换来将ESD 74的直流功率转换为交流功率,从而为相应的第一与第二电机56与72提供电力。绝缘栅双极晶体管形成用于接收控制指令的开关型电源。每个三相电机的每一相均典型地具有一对绝缘栅双极晶体管。控制绝缘栅双极晶体管的状态,以提供电动机驱动机械功率产生或电功率再生功能。三相变换器经由直流传递导体27接收或提供直流电功率,并且将其转换为三相交流功率或从交流功率转换,该交流功率分别经由传递导体29和31传导至第一与第二电机56与72或从第一与第二电机56与72传导而来,用于作为电动机或发电机操作。

【0019】图2为分布式控制模块系统的示意性结构图。以下描述的元件包括总车辆控制结构的子组,并且提供图1中描述的典型混合动力系的协调系统控制。分布式控制模块系统综合相关信息与输入,并且执行算法控制各种执行机构,以满足控制目标,包括涉及燃料经济性,排放,性能,驱动性以及硬件(包括ESD 74的电池以及第一与第二电机56和72)保护的目标。分布式控制模块系统包括发动机控制模块(以下为‘ECM’)23,TCM 17,电池组控制模块(以下为‘BPCM’)21,以及TPM 19。混合动力控制模块(以下为‘HCP’)5为ECM23,TCM 17,BPCM21与TPIM 19提供监督控制和协调。用户界面(‘UI’)13可操作地连接至多个装置,通过该用户界面,车辆操作者控制或指导机电混合动力系的操作。该装置包括加速踏板113(‘AP’),操作者制动踏板112(‘BP’),变速器档位选择器114(‘PRNDL’),以及车速巡航控制(未示出)。变速器档位选择器114可以具有离散数量的操作者可选择位置,包括输出元件64的旋转方向,以获得前进与倒退方向之一。

【0020】前述控制模块经由局域网(以下为‘LAN’)总线6与其他控制模块,传感器,以及执行机构进行通信。LAN总线6允许各种控制模块之间进行操作参数状态和执行机构指令信号的结构化通信。使用的特定通信协议为专用的。LAN总线6和适当的协议提供上述控制模块与其他提供例如防抱死,牵引控制,以及车辆稳定性功能的模块之间的鲁棒通信及多控制模块交接。多路通信总线可用于提高通信速度,并且提供一定级别的信号冗余与整体性。单个控制模块之间的通信还可以使用直接链路实现,例如串行外围接口(‘SPI’)总线(未示出)。

【0021】HCP5提供动力系的监督控制,用于协调ECM 23,TCM 17,TPM19,以及BPCM 21的操作。基于各种来自用户界面13以及混合动力系(包括ESD74)的输入信号,HCP 5确定操作者转矩请求,输出转矩指令,发动机输入转矩指令,施加到变速器10的转矩传递离合器C1 70,C2 62,C3 73,C4 75的离合器转矩,以及第一与第二电机56与72的电机转矩TA和TB

【0022】ECM 23操作地连接至发动机14,并且用于在多条离散线路(为了简单起见,用总的双向接口电缆35表示)上从发动机14的传感器以及控制执行机构中获取数据。ECM 23从HCP 5接收发动机输入转矩指令。ECM 23基于监控的发动机速度与负载来及时确定在该时间点上提供给变速器10的实际发动机输入转矩TI,其被传送给HCP5。ECM 23监控来自转速传感器11的输入,以确定输入轴12的发动机输入速度,该输入速度转换为变速器输入速度NI。ECM 23监控传感器(未示出)的输入,以确定其他发动机操作参数的状态,其中包括,例如,歧管压力,发动机冷却液温度,环境空气温度以及环境压力。例如根据歧管压力,或可替换地,根据监控加速踏板113的操作者输入可以确定发动机负载。ECM 23产生并传送指令信号以控制发动机执行机构,包括,例如,燃料喷射器,点火模块,以及节气门控制模块,这些均未示出。

【0023】TCM 17操作地连接至变速器10,并且监控来自传感器(未示出)的输入,以确定变速器操作参数的状态。TCM 17产生并传送指令信号以控制变速器10,包括控制液压控制电路42。从TCM 17至HCP 5的输入包括每个离合器(即,C1 70,C2 62,C3 73,以及C4 75)的估算离合器转矩以及输出元件64的输出转速NO。为了控制的目的,可使用其他执行机构与传感器将TCM 17的附加信息提供至HCP 5。TCM 17监控来自压力开关(未示出)的输入,并且可选择性地致动液压控制电路42的压力控制螺线管(未示出)和换档螺线管(未示出),以选择性地致动各种离合器C1 70,C2 62,C3 73,以及C4 75,从而实现如下文所述的各种变速器操作范围状态。

【0024】BPCM 21信号地连接至传感器(未示出),以监控ESD 74,包括电流与电压参数状态,以将表示ESD 74的电池参数状态的信息提供给HCP 5。电池参数状态优选地包括电池充电状态,电池电压,电池温度,以及用范围PBAT_MIN至PBAT_MAX表示的可用电池功率。

【0025】制动控制模块(以下为′BrCM′)22可操作地连接至每个车轮93上的摩擦制动器(未示出)。BrCM 22监控制动踏板112的操作者输入并产生控制信号以控制摩擦制动器,同时发送控制信号给HCP 5以基于此来操作第一和第二电机56和72。

【0026】每个控制模块ECM 23,TCM 17,TPIM 19,BPCM 21和BrCM 22优选地是通用数字计算机,其包括:微处理器或中央处理单元;包括只读存储器(‘ROM’),随机存储器(‘RAM’),电可编程只读存储器(‘EPROM’)的存储介质;高速时钟;模数(‘A/D’)与数模(‘D/A’)电路;输入/输出电路与装置(‘I/O’);以及合适的信号调节与缓冲电路。每个控制模块均具有一套控制算法,包括常驻程序指令以及存储在存储介质之一中并且被执行以提供每个计算机的各自功能的标定。控制模块之间的信息传送优选地使用LAN总线6和SPI总线实现。在预设循环中执行控制算法,以使得每个算法在每个循环中至少执行一次。存储在非易失存储装置中的算法使用预设标定由中央处理单元之一执行,以监控来自传感装置的输入,并且执行控制与诊断程序,以控制执行机构的操作。以规则间隔执行循环,例如在动力系的正在操作过程中每隔3.125,6.25,12.5,25以及100毫秒。可替换地,可以响应于事件的发生而执行算法。

【0027】典型的混合动力系选择性地以几种状态之一操作,这些状态可根据发动机状态与变速器操作范围状态描述,其中发动机状态包括发动机工作状态(‘ON’)与发动机停机状态(‘OFF’)之一,变速器操作范围状态包括多个固定档位与连续可变操作模式,以下参照表1描述。

表1

【0028】表中描述了每个变速器操作范围状态,并且指出了对于每个操作范围状态而言应用了哪些特定离合器C1 70,C2 62,C3 73以及C4 75。第一连续可变模式,即EVT模式1,或者M1,通过仅应用离合器C170而选择,以“接地”第三行星齿轮组28的外部齿轮构件。发动机状态可以为ON(‘M1_Eng_On’)或者OFF(‘M1_Eng_Off’)之一。第二连续变化模式,即EVT模式2,或者M2,通过仅应用离合器C2 62而选择,以将轴60连接至第三行星齿轮组28的行星架。发动机状态可以为ON(‘M2_Eng_On’)或者OFF(‘M2_Eng_Off’)之一。为描述起见,当发动机状态为OFF时,发动机输入速度等于每分钟零转(‘RPM’),即发动机曲轴不旋转。固定档位操作使得变速器10具有输入—输出速度的固定比率操作,即NI/NO。通过应用离合器C1 70和C4 75而选择第一固定档位操作(‘G1’)。通过应用离合器C1 70和C2 62而选择第二固定档位操作(‘G2’)。通过应用离合器C2 62和C4 75而选择第三固定档位操作(‘G3’)。通过应用离合器C262和C3 73而选择第四固定档位操作(‘G4’)。由于行星齿轮24,26及28中的传动比降低,输入—输出速度的固定比率操作随着固定档位操作的增加而增加。第一与第二电机56与72的转速NA和NB分别取决于由离合器限定出的机构的内部旋转,并与输入轴12处测量的输入速度成比例。

【0029】响应于经由加速踏板113与制动踏板112并被用户界面13获取的操作者输入,HCP 5及一个或更多其他控制模块确定转矩指令以控制包括发动机14和第一和第二电机56和72的转矩产生装置,从而满足输出构件64处并传递给传动系统90的操作者转矩请求。基于来自用户界面13和包括ESD 74的混合动力系的输入信号,HCP 5分别确定操作者转矩请求、从变速器10到传动系统90的指令输出转矩、来自发动机14的输入转矩、变速器10的转矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器转矩,以及第一和第二电机56和72的电机转矩,如下文所描述。

【0030】最终的车辆加速度可以受其他因素的影响,包括例如道路负载、道路坡度和车辆质量。发动机状态和变速器操作范围状态基于混合动力系的各种操作特性而确定。这包括如前所述的、通过加速踏板113和制动踏板112与用户界面13通信的操作者转矩请求。变速器操作范围状态和发动机状态可能依据在电能产生模式或在转矩产生模式中操作第一和第二电机56和72的指令造成的混合动力系转矩需求来判定。变速器操作范围状态和发动机状态可以由优化算法或程序来确定,优化算法或程序基于操作者对动力的需求、电池充电状态、以及发动机14和第一和第二电机56和72的能量效率来确定最佳系统效率。控制系统基于优化程序执行的结果而管理来自发动机14和第一和第二电机56和72的转矩输入,籍此优化系统效率,从而管理燃料经济性和电池充电。此外,可以基于元件或系统中的故障来确定操作。HCP 5监控转矩产生装置,并确定变速器10在输出构件64处的功率输出,该功率输出是满足操作者转矩请求同时满足其他动力系操作要求(例如给ESD 74充电)所需要的。从以上描述明显可知,ESD74和第一和第二电机56和72可操作地电连接以用于两者之间的功率流。此外,发动机14、第一和第二电机56和72和电动变速器10可操作地机械连接以在它们之间传送功率,从而产生功率流给输出构件64。

【0031】图3示出了用于控制和管理混合动力系统中的信号流的控制系统结构,以可执行的算法和标定的形式常驻在上述的控制模块中,以下参照图1和图2的混合动力系统进行描述,该混合动力系统具备多个转矩产生装置。控制系统结构适用于具备多个转矩转矩产生装置的可替换混合动力系统,包括例如具有发动机和单个电机的混合动力系统、具有发动机和多个电机的混合动力系统。另外,混合动力系统可以利用非电动的转矩机械和储能系统,例如使用液压致动的转矩机械的液压—机械混合动力变速器(未示出)。

【0032】基于输出速度和操作者转矩请求,以及基于混合动力系统的其他操作参数,包括电池功率限制和发动机14、变速器10和第一电机56和第二电机72的响应限制,战略优化控制方案(‘战略控制’)310确定优选输入转速(‘Ni_Des’)和优选发动机状态以及变速器操作范围状态(‘混合动力范围状态Des’)。预测加速输出转矩请求和预测制动输出转矩请求是战略优化控制方案310的输入。战略优化控制方案310优选在每100毫秒循环周期和每25毫秒周期内由HCP 5执行。变速器10的期望操作范围状态和从发动机14到变速器10的期望输入速度是换档执行和发动机启动/停机控制方案320的输入。

【0033】换档执行和发动机启动/停机控制方案320控制变速器操作(‘变速器指令’)中的变化,包括基于混合动力系统的输入和操作改变操作范围状态。如果最佳操作范围状态不同于当前操作范围状态,这包括通过命令一个或多个离合器C1 70、C2 62、C3 73和C4 75应用的变化和其他变速器指令而命令执行变速器操作范围状态的变化。当前操作范围状态(‘实际混合动力范围状态’)和输入速度曲线(‘Ni_Prof’)可以被确定。该输入速度曲线为即将到来的输入速度的估算,并优选地包括对于即将到来的周期的目标输入速度的标量参数值。

【0034】在一个控制周期期间,基于输出速度、输入速度和操作者转矩请求反复执行战术控制方案(‘战术控制和操作’)330来确定发动机指令(‘发动机指令’)用以操作发动机14,该发动机指令包括从发动机14到变速器10的优选输入转矩,操作者转矩请求包括即时加速输出转矩请求、预测加速输出转矩请求、即时制动输出转矩请求、预测制动输出转矩请求、轮轴转矩响应类型和变速器的当前操作范围状态。发动机指令也包括发动机状态,该发动机状态包括全缸操作状态和汽缸停用操作状态中的一个,在汽缸停用操作状态中,一部分发动机汽缸停用并不提供燃料,以及发动机状态包括燃料供给状态和燃料切断状态中的一个。包括发动机14的优选输入转矩和在发动机14和输入构件12之间作用的当前输入转矩(′Ti′)的发动机指令优选在ECM 23中确定。优选在TCM17中估算每个离合器C1 70、C2 62、C3 73和C4 75的离合器转矩(′Tcl′),包括当前应用的离合器和没有应用的离合器。

【0035】输出和电机转矩确定方案(‘输出和电机转矩确定’)340被执行用来确定来自动力系的优选输出转矩(‘To_cmd’)。在本实施方式中,这包括通过控制第一和第二电机56和72来确定电机转矩指令(‘TA’,‘TB’),以将净指令输出转矩传递给变速器10的输出构件64,该净指令输出转矩满足操作者转矩请求。输入是即时加速输出转矩请求、即时制动输出转矩请求、来自发动机14的当前输入转矩和估算的应用离合器转矩、变速器10的当前操作范围状态、输入速度、输入速度曲线和轮轴转矩响应类型。执行输出和电机转矩确定方案340,以在一个循环的每次迭代期间确定电机转矩指令。输出和电机转矩确定方案340包括算法代码,其在6.25毫秒和12.5毫秒周期间定期被执行以确定优选电机转矩指令。

【0036】当变速器档位选择器114的操作者选择位置命令车辆向前操作时,控制混合动力系将输出转矩传送给输出构件64使其与传动系统90作用,用以在车轮93处产生牵引转矩来响应于加速踏板113的操作者输入向前推动车辆。同样地,当变速器档位选择器114的操作者选择位置命令车辆向相反方向操作时,控制混合动力系将输出转矩传送给输出构件64使其与传动系统90作用,用以在车轮93处产生牵引转矩来响应于加速踏板113的操作者输入向相反方向推动车辆。优选地,只要输出转矩足够克服车辆上的外部负载,例如由于道路坡度、空气动力的负载及其他负载,推动车辆就引起车辆加速。

【0037】图4详细描述了用于发动机14操作的战术控制方案(‘战术控制和操作’)330中的信号流,并参考图1和2中的混合动力系统和图3中的控制系统结构来说明。战术控制方案330包括战术优化控制通路350和系统限制控制通路360,优选两者同时执行。战术优化控制通路350的输出是发动机状态控制方案370的输入。发动机状态控制方案370和系统限制控制通路360的输出是发电机响应类型确定方案(‘发动机响应类型确定’)380的输入,该发电机响应类型确定方案用于控制发动机状态、即时发动机转矩请求、预测发动机转矩请求和发电机响应类型。

【0038】发动机14的输入可以根据发动机操作点来说明,该发动机操作点包括可以转换为与来自变速器10的输入构件相作用的输入速度和输入转矩的发动机转速和发动机转矩。当发动机14包括火花点火发动机时,可以通过利用电子节气门控制系统(未示出)来控制发动机节气门(未示出)的位置而改变发动机14的进气空气质量来实现发动机操作点的变化,该电子节气门控制系统包括打开发动机节气门以增加发动机转矩和关闭发动机节气门以减少发动机转矩。发动机操作点的变化可能通过调整点火正时实现,包括从平均最佳转矩火花正时延迟火花正时以减少发动机转矩。当发动机14包括压缩点火发动机时,发动机操作点通过控制喷射燃料质量来控制,并通过从平均最佳转矩喷射正时延迟喷射正时以减少发动机转矩来调整。可以通过在全缸状态和汽缸停用状态之间控制发动机状态以及通过在发动机燃料供给状态和燃料切断状态之间控制发动机状态来改变发动机操作点,从而实现输入转矩的变化,其中,在燃料切断状态中,发动机是旋转的和没有燃料供给的。

【0039】在操作中,监控加速踏板113和制动踏板112的操作者输入以确定操作者转矩请求。确定输出构件64和输入构件12的当前速度,即No和Ni。变速器14的当前操作范围状态和当前发动机状态被确定。电能存储装置74的最大和最小功率限值被确定。

【0040】加速踏板113和制动踏板112的操作者输入包括可单独确定的操作者转矩请求输入,其包括即时加速输出转矩请求(‘输出转矩请求AccelImmed’)、预测加速输出转矩请求(‘输出转矩请求Accel Prdtd’)、即时制动输出转矩请求(‘输出转矩请求Brake Immed’)、预测制动输出转矩请求(‘输出转矩请求Brake Prdtd’)和轮轴转矩响应类型(‘轮轴转矩响应类型’)。如这里所使用的,术语“加速”指当变速器档位选择器114的操作者选择位置命令车辆以向前方向操作时,向前推进的操作者请求优选为导致车速增加超过当前车速,以及当以相反的方向命令车辆操作时的类似的反向推进响应。术语“减速”和“制动”指优选导致车辆速度从当前车速减速的操作者请求。即时加速输出转矩请求、预测加速输出转矩请求、即时制动输出转矩请求、预测制动输出转矩请求和轮轴转矩响应类型是图3中所示的控制系统的单独输入。

【0041】即时加速输出转矩请求是基于当前发生的加速踏板113的操作者输入确定的,并且包括在输出构件64处产生的优选能使车辆加速的即时输出转矩的请求。控制系统响应于使车辆加速的即时加速输出转矩请求控制来自混合动力系统的输出转矩。即时制动输出转矩请求包括基于制动踏板112的操作者输入和转矩干预控制确定的即时制动请求。控制系统响应于使车辆减速的即时制动输出转矩请求控制来自混合动力系统的输出转矩。借助于控制来自混合动力系统的输出转矩实现的车辆减速与通过车辆制动系统(未示出)实现的车辆减速结合使车辆减速,以实现操作者制动请求。即时加速输出转矩请求可能根据在动力系控制之外车影响辆操作的事件通过转矩干预控制而改变。这种事件包括在动力系控制中用于防抱死制动、牵引操纵和车辆稳定性控制的车辆级别的中断,上述情况可用于改变即时加速输出转矩请求。

【0042】预测加速输出转矩请求是基于加速踏板113的操作者输入确定的,并且包括输出构件64处的最优或优选输出转矩。在正常操作条件下,例如当未指令转矩干预控制时,预测加速输出转矩请求优选等于即时加速输出转矩请求。当指令转矩干预(例如防抱死制动、牵引操纵或车辆稳定性中的任何一个)时,预测加速输出转矩请求能保持优选输出转矩,而即时加速请求响应于与转矩干预相关的输出转矩指令而下降。

【0043】即时制动输出转矩请求和预测制动输出转矩请求都是混合制动转矩请求。即时制动输出转矩请求是基于当前发生的制动踏板112的操作者输入来确定的,并包括在输出构件64上产生即时输出转矩的请求,以实现传动系统90的作用转矩,该作用转矩优选地使车辆减速。即时制动输出转矩请求是基于制动踏板112的操作者输入和控制摩擦制动器产生摩擦制动转矩的控制信号来确定的。

【0044】预测制动输出转矩请求包括响应于制动踏板112的操作者输入而在输出构件64中的最优或优选制动输出转矩,所述最优或优选制动输出转矩受在输出元件64产生的与制动踏板112的操作者输入无关的许可最大制动输出转矩的限制。在一个实施方式中,在输出构件64上产生的最大制动输出转矩被限制到-0.2g。当车速接近零时,预测制动输出转矩请求可以被逐渐减小到零,而与制动踏板112的操作者输入无关。如所期望的,能够存在可以将预测制动输出转矩请求设为零的操作条件,例如,当变速器档位选择器114的操作者设置被设定到倒档时,以及当变速箱(未示出)被设定到四轮驱动低档时。预测制动输出转矩请求被设为零的操作条件是那些因为车辆的操作因素而不优选混合制动的情形。

【0045】轮轴转矩响应类型包括整形和速率限制通过第一和第二电机56和72的输出转矩响应的输入状态。轮轴转矩响应类型的输入状态可以是主动状态或被动状态。当命令的轮轴轮轴响应类型为主动状态时,输出转矩命令为即时输出转矩。优选地,这种响应类型的转矩响应尽可能地快。

【0046】混合制动转矩包括在车轮93产生的摩擦制动转矩和在输出构件64产生的输出转矩的综合,其响应于制动踏板112的操作者输入,与传动系统90作用从而使车辆减速。响应于即时制动请求,BrCM22命令车轮93上的摩擦制动器施加制动力并为变速器10产生指令以产生与传动系统90作用的负输出转矩。优选地,所施加的制动转矩和负输出转矩可以使车辆减速和使车辆停止,只要它们足以克服车轮93上的车辆动能即可。该负输出转矩与传动系统90作用,从而传送转矩到机电变速器10和发动机14。通过机电变速器10起作用的负输出转矩可以传送到第一和第二电机56、72,以产生存储在ESD74中的电能。

【0047】战术优化控制通路350作用于基本上稳态的输入从而选择优选发动机状态并确定从发动机14到变速器10的优选输入转矩。输入源于换档执行和发动机启动/停机控制方案320。战术优化控制通路350包括优化系统(‘战术优化’)354从而确定用于在全缸状态(′全缸输入转矩),汽缸停用状态(‘输入转矩汽缸停用’),燃料切断的全缸状态(‘全缸输入转矩FCO’),燃料切断的汽缸停用状态(‘输入转矩汽缸停用FCO’)下操作发动机14的优选输入转矩以及优选发动机状态(‘发动机状态’)。优化系统354的输入包括变速器10的提前操作范围状态(‘提前混合动力范围状态’),提前预测输入加速度曲线(‘预测提前输入加速度曲线’),在提前操作范围状态下通过每个使用的离合器的预测离合器作用转矩范围(‘预测离合器作用转矩Min/Max’),预测电池功率限制(‘预测电池功率限制’),预测加速输出转矩请求(‘输出转矩请求Accel Prdtd’)和预测制动输出转矩请求(‘制动输出转矩请求Prdtd’)。用于加速和制动的预测输出转矩请求被组合并通过预测输出转矩整形滤波器352而利用轮轴转矩响应类型整形,从而产生净预测输出转矩(‘To Net Prdtd’)和预测加速输出转矩(‘To Accel Prdtd’),它们是优化系统354的输入。变速器10的提前操作范围状态包括变速器10的操作范围状态的时间移位提前,从而适应于在操作范围状态的指令变化与实际操作范围状态之间的响应时间滞后。因此变速器10的提前操作范围状态是指令操作范围状态。提前预测输入加速度曲线包括输入构件12的预测输入加速度曲线的时间移位提前,从而适应于在预测输入加速度曲线中的指令改变和在预测输入加速度曲线中测量的改变之间的响应时间滞后。因此提前预测输入加速度曲线是在时间移位之后发生的输入元件12的预测输入加速度曲线。被称为‘提前’的参数被用来通过使用具有可变响应时间的装置汇合于共用输出构件64的动力系而适应于转矩的同时传递。具体来说,发动机14可具有300—600ms数量级的响应时间,并且每一个转矩传递离合器C1 70、C2 62、C3 73和C4 75可以具有150—300ms数量级的响应时间,以及第一和第二电机56和72可以具有10ms数量级的响应时间。

【0048】优化系统354确定用于在发动机状态操作发动机14以满足操作者转矩请求的系统功率成本,所述成本包括操作发动机处于供应燃料和全缸状态(‘PCOSTFULLFUEL’),操作发动机处于不供应燃料并且全缸状态(‘PCOSTFULLFCO’),操作发动机处于供应燃料并且汽缸停用状态(‘PCOST DEAC FUEL’),操作发动机处于不供应燃料并且汽缸停用状态(‘PCOSTDEACFCO’)。上述用于操作发动机14的成本,连同实际发动机状态(‘实际发动机状态’)以及容许或者许可发动机状态(‘许可发动机状态’)输入给稳定分析系统(‘稳定和仲裁’)356,从而来选择一个发动机状态作为优选发动机状态(‘优选发动机状态’)。优选发动机状态包括具备用于操作发动机14以满足操作者转矩请求的最低系统功率成本的发动机状态,并且是基于包括特定燃料消耗的因素的。

【0049】通过考虑在发动机14和变速器10之间被引入的寄生负载以及其它负载,用来在全缸状态以及汽缸停用状态、燃料被切断或者没有被切断的情况下操作发动机14的优选输入转矩输入给发动机转矩变换计算器355并且分别被变换成处于全缸状态和处于汽缸停用状态(‘最佳全缸发动机转矩’)和(‘最佳减活发动机转矩’)下,以及切断燃料的处于全缸状态和处于汽缸停用状态(‘全缸发动机转矩FCO’)和(‘汽缸停用发动机转矩FCO’)下优选发动机转矩。用于在全缸状态,汽缸停用状态下操作发动机的优选发动机转矩和优选发动机状态包括发动机状态控制方案370的输入。

【0050】用于操作发动机14的成本包括操作成本,该操作成本基于包括车辆驾驶性能、燃料经济性、排放和电池使用情况在内的因素而被确定。成本被分配并且与燃料和电能的消耗有关,并且与混合动力系的特定操作点有关。较低的操作成本可以与每个发动机速度/负载操作点的高转换效率下的较低的燃料消耗、较低的电池功率使用,以及较低的排放有关,并且还要考虑到发动机14的当前操作状态。

【0051】处于全缸状态和汽缸停用状态下的优选发动机状态和优选发动机转矩是发动机状态控制方案370的输入,该发动机状态控制方案370包括发动机状态机(‘发动机状态机’)372。发动机状态机372基于优选发动机转矩和优选发动机状态而确定目标发动机转矩(‘目标发动机转矩’)和发动机状态(‘目标发动机状态’)。目标发动机转矩和目标发动机状态是变换滤波器374的输入,该变换滤波器374监控发动机状态中任何被命令的转变并且滤波目标发动机转矩以提供滤波后的目标发动机转矩(‘滤波后的目标发动机转矩’)。发动机状态机372输出指令,该指令指示选择汽缸停用状态和全缸状态中的一个(‘选择DEAC’),以及指示选择发动机供应燃料状态和减速燃料切断状态中的一个(‘选择FCO’)。

【0052】选择汽缸停用状态和全缸状态中的一个,选择发动机供应燃料状态和减速燃料切断状态中的一个,滤波后的目标发动机转矩,以及最小和最大发动机转矩是发动机响应类型确定系统380的输入。

【0053】系统限制控制通路360确定对于输入转矩的限制,包括能够由变速器10作用的最小和最大输入转矩(‘最小混合动力输入转矩’和‘最大混合动力输入转矩’)。最小和最大输入转矩是基于对变速器10、第一和第二电机56和72的限制而被确定的,包括离合器转矩和电池功率限值,这影响到在当前循环周期间变速器10作用于输入转矩的容量。系统限制控制通路360的输入包括加速踏板113所测量到的即时输出转矩请求(‘即时加速输出转矩请求Immed’)和制动踏板112所测量到的即时输出转矩请求(‘即时制动输出转矩请求Immed’),它们被组合并通过即时输出转矩整形滤波器362且用轮轴转矩响应类型整形,从而产生净即时输出转矩(‘To Net Immed’)和即时加速输出转矩(‘To Accel Immed’)。净即时输出转矩和即时加速输出转矩是限制系统(‘输出和输入转矩限制’)364的输入。限制系统364的其它输入包括变速器10的提前操作范围状态,提前即时输入加速度曲线(‘即时提前输入加速度曲线’),在提前操作范围状态中每个使用中的离合器的提前即时离合器作用转矩范围(‘提前即时离合器作用转矩Min/Max’),以及包括范围PBAT_MIN到PBAT_MAX的可用电池功率(‘电池功率限制’)。目标提前输入加速度曲线包括输入构件12的即时输入加速度曲线的时间移位提前,从而适应于在即时输入加速度曲线中的指令变化和在即时输入加速度曲线中测量到的变化之间的响应时间滞后。提前即时离合器作用转矩范围包括离合器的即时离合器作用转矩范围的时间移位提前,从而适应于在即时离合器作用转矩范围中的指令变化和在即时离合器作用转矩范围中测量到的变化之间的响应时间延迟。限制系统364确定变速器10的输出转矩范围,然后基于上述的输入,包括输入速度、电池功率、和离合器作用转矩,确定包括可由变速器10作用的最小和最大输入转矩限制(‘混合动力输入转矩最小值’,‘混合动力输入转矩最大值’)的限制。用于确定以一个连续可变操作范围状态操作的典型变速器10的最小和最大输入转矩限制的普通控制方程在的下面公式1中阐明。

TITO=a11a12a21a22TATB+b11b12b21b22N.IN.O+TImiscTOmisc---[1]

其中,包括输入构件12的提前即时输入加速度曲线,和包括输出构件64速度方面时间变化率,TImisc和TOmisc包括由于输入速度,应用的离合器的离合器作用转矩和未应用的离合器的离合器滑移引起的输入和输出转矩的份额,以及a11-a22和b11-b22为系统特定标量值。输入转矩的范围,即最小和最大输入转矩限制可以通过操作公式1来确定,考虑到净即时输出转矩和即时加速输出转矩,输入和输出构件加速度,和离合器作用转矩。通过考虑引入发动机14和变速器10之间的寄生负载和其他负载,最小和最大输入转矩限制是发动机转矩变换计算器355的输入并被转换为最小和最大发动机转矩限制(分别为‘最小混合动力发动机转矩’和‘最大混合动力发动机转矩’)。

【0054】滤波后的目标发动机转矩,发动机状态机372的输出以及最小和最大发动机转矩限制是发动机响应类型确定方案380的输入,该系统确定传达给ECM23用于控制发动机状态的发动机指令(‘发动机指令’)、即时发动机转矩请求和预测发动机转矩请求。发动机指令包括即时发动机转矩请求(‘发动机转矩请求Immed’)和预测发动机转矩请求(‘发动机转矩请求Prdtd’),这两个请求可以基于滤波后的目标发动机转矩而被确定。

【0055】即时发动机转矩请求是基于当前发生的加速踏板113的操作者输入而被确定的,并包括基于系统操作条件产生即时发动机转矩的请求。预测发动机转矩请求包括优选发动机转矩请求,该发动机转矩请求可能基于包括加速踏板113的操作者输入在内的操作者转矩请求而被确定的。预测发动机转矩请求考虑了在发动机操作点的范围内发动机的操作效率和功率损耗。其他的发动机指令控制发动机状态处在发动机供应燃料状态和燃料切断状态(‘FCO请求’)中的一个状态以及处在汽缸停用状态和全缸状态(′DEAC请求′)中的一个状态。另一个输出包括发电机响应类型(‘发动机响应类型’)。当滤波后的目标发动机转矩介于最小和最大发动机转矩限制之间的范围中时,发电机响应类型是被动的。当滤波后的目标发动机转矩在最小和最大发动机转矩限制之外时,发电机响应类型是主动的,其表明了发动机转矩即时变化的需要。当发动机14包括火花点火发动机时,发动机转矩的即时变化可能通过发动机火花控制和点火正时延迟来完成从而改变发动机转矩,从而促使发动机转矩落入最小和最大发动机转矩限制中。当发动机14包括压缩点火发动机时,发动机转矩的即时变化可能通过燃料喷射定时来完成从而改变发动机转矩,从而促使发动机转矩落入最小和最大发动机转矩限制中。

【0056】参考图5和6对系统操作进行说明。操作者转矩请求被监控,并且变速器10在一个连续可变操作范围状态中操作,该连续可变操作范围状态包括固定档位操作范围状态和连续可变操作范围状态之间的变换,例如在换档期间出现的变换。操作者转矩请求被监控,并且包括第一指令(例如即时转矩请求)和第二指令(例如预测转矩请求)的发动机指令是基于操作者转矩请求和混合动力变速器的操作而被确定的。发动机转矩限制是基于混合动力变速器作用于发动机转矩的容量来确定的,优选地,通过产生可存储在ESD 74中的电能。只有当第二发动机转矩请求超过发动机转矩限制时,发动机操作是基于第一发动机转矩请求而被控制的,这表明了发动机转矩即时变化的需要。

【0057】图5图解地示出了系统操作,该系统操作参考图1和图2中描述的典型动力系来描述,并参考图3和图4中描述的控制系统来执行。描绘了发动机输入速度、提前变速器操作范围状态(‘提前混合动力范围状态’)、输入加速度曲线和发动机转矩。在第一时间点(‘A’),系统正在一个固定档位操作范围状态中操作。输入速度被描绘成正在增加,以及包括提前预测和提前即时输入加速度曲线(‘提前输入加速度曲线Prdtd′,‘即时提前输入加速度曲线’)的输入加速度曲线被描绘成正在减少。滤波后的目标发动机转矩处在最小和最大发动机转矩限制中,因此发电机响应类型是被动的,并且发动机指令包括预测发动机转矩请求以及用于汽缸停用和燃料切断的任何请求。在随后的时间点(‘B’),系统控制从提前操作范围状态变化到一个连续可变操作范围状态,例如模式1或2。如其所述,该操作可能作为从以第一固定档位操作到以第二固定档位操作的转变的因素,该第二固定档位操作具备实现第二固定档位加档必需的输入速度的相应下降。可替换地,这种操作可能作为从以第一固定档位操作到以第二固定档位操作转变的因素,该第二固定档位操作具备影响第二固定档位减档必需的输入速度的相应提高。

【0058】加档期间,提前预测输入加速度曲线沿着连续坡度向下,但是由于系统惯性的作用,即时提前输入加速度曲线偏离提前预测输入加速度曲线,快速地降低以使发动机转速放慢,因为变速器加档通常要求降低发动机转速以实现加档。提前输入加速度曲线的降低导致典型变速器14作用于发动机输入转矩的容量降低以及最小和最大发动机转矩限制的减少,它们由参考系统限制控制通路360而描述的来确定。只要预测发动机转矩请求处在从系统限制控制通路360输出的最小和最大发动机转矩限制之间,发电机响应类型就是被动的,并且发动机转矩指令是预测发动机转矩请求。在这个时候产生的发动机转矩是被转化为电能并存储在ESD 74中,这种发动机转矩包括当响应操作者转矩请求而放慢发动机转速时产生的惯性转矩。

【0059】当从系统限制控制通路360输出的最大发动机转矩限制中存在换档时,例如由于提前即时输入加速度曲线的降低,且预测发动机转矩请求落在最小和最大发动机转矩限制中的一个之外,发电机响应类型变成主动的,并且发动机转矩指令被转变为即时发动机转矩请求。只要预测发动机转矩请求落在最小和最大发动机转矩限制中的一个之外,即时发动机转矩请求就导致发动机控制,从而引起响应于输入加速度曲线的发动机转矩中的即时变化。当最大和最小发动机转矩限制的改变发生变化时,例如由于输入加速度曲线中的变化,以及预测发动机转矩请求落入这个限制中,发动机响应类型变成被动的,并且发动机转矩指令被转变为预测发动机转矩请求以控制发动机操作。

【0060】图6图解地示出了系统操作,该系统操作参考图1和图2中描述的典型动力系来描述,并参考图3和图4中描述的控制系统来执行。描绘了发动机输入速度、提前变速器操作范围状态(‘提前混合动力范围状态’)、输入加速度曲线和发动机转矩。在第一时间点(‘A’),系统正在一个固定档位操作范围状态中操作。输入速度被描绘成正在增加,以及包括预测和即时提前输入加速度曲线(‘预测提前输入加速度曲线’,‘即时提前输入加速度曲线’)的输入加速度曲线被描绘成正在减少。滤波后的目标发动机转矩处在包括最小和最大发动机转矩限制的范围内,因此,发动机响应类型是被动的,并且发动机指令包括预测发动机转矩请求和用于汽缸停用和燃料切断的任何请求。在随后的时间点(′B′),系统控制从提前操作范围状态到一个连续可变操作范围状态的变化,例如模式1或2。如其所述,这种操作可能作为从在第一固定档位操作到在第二固定档位操作的转变的因素。

【0061】图6示出了沿着连续坡度向下的提前预测输入加速度曲线,但是提前即时输入加速度曲线偏离提前预测输入加速度曲线快速下降。提前即时输入加速度曲线中的降低可能导致最小和最大发动机转矩限制中的即时减少。在这种情况下,预测发动机转矩请求保持在从系统限制控制通路360输出的最小和最大发动机转矩限制中,发电机响应类型保持被动的,以及发动机转矩命令保持预测发动机转矩请求。因此发动机操作未受影响,并且混合动力系统操作以吸收发动机14的输入转矩形式的功率,从而产生可存储在ESD 74中的电能,并且操作以控制系统获得输入加速度曲线,从而实现所示操作中的加档,而不依靠发动机控制测量值,例如可能耗费燃料而没有产生相应输出功率的火花延迟。这容许发动机操作响应于预测发动机转矩请求,和系统操作获得输入加速度曲线和实现加档所需要的对应输入速度的变化。从发动机14输出的功率由变速器10用来产生可以存储在ESD 74中的电能。

【0062】应该知道的是,在本发明的范围内修改是允许的。已经具体参考优选实施例及对其的修改描述了本发明。在阅读与理解说明书后,可以作进一步的修改与替换。其旨在包括所有这样进入到本发明的范围之内的修改与替换。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号