首页> 中国专利> 用于插入式混合电动车的充电损耗能量管理策略

用于插入式混合电动车的充电损耗能量管理策略

摘要

提供了一种用于插入式混合电动车的充电损耗能量管理策略。一种管理插入式混合电动车中引擎和电池的功率分配的方法,由此当电池的充电状态界限或者电池放电功率界限被超过时,使用电池功率来满足驾驶员对功率的需求,并且引擎功率补充电池功率,并在电池充电损耗之后使用外部电网来恢复电池功率。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-10-19

    授权

    授权

  • 2009-08-12

    实质审查的生效

    实质审查的生效

  • 2009-06-17

    公开

    公开

说明书

技术领域

本发明涉及一种具有牵引电机、引擎和牵引电池的混合电动车,其中,可通过使用外部电网对牵引电池充电。

背景技术

已知的混合电动车动力系可具有引擎、发电机和电动机,其中,用于所述引擎的能源是基于碳氢化合物的燃料,用于电动机的能源是高压电池和发电机子系统。可通过使用车辆中存储的燃料由引擎或从外部电网对电池充电。在从外部电网对电池充电的混合电动车的情况下,在关闭引擎的同时,纯电动车(all-electric vehicle)行驶范围都是可能的,从而避免产生不期望的引擎废气排放。该特点对于在城市环境中运行的车辆尤其重要。与相比较的非混合车辆的燃料经济性相比,有时被称为插入式混合电动车的此类车辆还能够实现提高的整体燃料经济性。

如果给定的车辆行驶事件的范围有限,则可在完全关闭引擎的情况下操作此类车辆。可在不行驶期间通过使用电网对电池进行再充电,其中,所述电池可被消耗到比校准最大电荷小但比最小充电状态大的充电状态的状态的中等量。

对混合电动车动力系一般存在三种分类,即串行混合电动动力系、并行混合电动动力系和串并混合电动动力系,后者包括所谓的功率分流(power-split)混合电动动力系系统。在串行混合电动动力系的情况下,引擎驱动发电机,所述发电机将机械引擎功率转换成电功率。使用一部分电功率驱动电动机,所述电动机将电功率转换回机械功率来驱动车辆的主动轮。使用电动机不需要的功率对电池充电。

在串并和并行汽油电动混合车辆的情况下,可将机械引擎动力传递到主动轮,可将电功率从电池传递到电动机,电动机将电功率转换成机械功率,以驱动主动轮。在对电池充电时将发生功率从引擎流向发电机。传动装置形成到车辆主动轮的并行功率流路径。

关于串并和并行混合电动车动力系的一般误解是,因为当关闭引擎时,车辆不使用碳氢化合物燃料,所以只使用电功率的车辆推进力提高了整体燃料经济性。然而,并不是这种情况下,这是因为,当电功率被转换成机械功率以及机械功率被转换成电功率时,在放电和后来的电池充电期间由电动机和电池引起的损失将降低总的引擎燃料经济性。因此,在使用基于碳氢化合物的引擎和电池提供动力的电动机的已知的并行和串并混合电动车动力系中,用于能量管理软件策略的指导设计原理在于用引擎提供尽可能多的推进力,而有选择地使用电力系统以增加引擎的平均总运行效率。可选择的引擎使用的示例包括在低行驶需求的情况下进行引擎关闭的电驱动,或者少量的电池放电或充电来调整引擎动力,以实现最大的引擎热效率。

依赖外部电力网对牵引电池充电的并行或串并混合动力电动车(例如,插入式车辆)可通过只使用电推进实现最好的燃料经济性,这是因为与车辆中存储的汽油相比,存在更多的外部能源可用。因此,需要一种新的能量管理软件策略,以实现可通过使用插入式串并或并行混合电力车动力系来获得燃料经济性提高。

发明内容

本发明的实施例包括所谓的“充电损耗”能量管理策略,以在不影响引擎效率的情况下使对电池中存储的电能的使用最大化。通过使用本发明的所述策略默认关闭引擎,从而只在特定运行条件下才使用引擎。例如,当只使用电功率以所谓的“静启动”特征来开始车辆操作时,阻止启动引擎。如果预先确定的操作条件(例如,高车辆加速)不存在,则车辆在全电动模式下运行时,可在整个行驶循环期间关闭引擎。

如果电池不能单独提供足够的能量来满足驾驶员对功率的需求,则可启动引擎。例如,如果超过电池放电功率界限,或者如果电池运行温度太高,则可启动引擎来补充电池功率以满足驾驶员需求。

如果驾驶员需求需要将超过电动机驱动的部件的预定界限的电动机速度,则可启动引擎以保护连接到引擎的动力系部件以及电动机和电动机驱动的部件。如果需要引擎与电动机一起运行,则本发明的策略将建立实现合理的引擎效率的最小引擎功率。

策略将不允许引擎以小于预定最小值的功率运行,以免得引擎效率被显著降低。然而,尽管有时总燃料经济性可能降低,但因为至少以与校准最小引擎功率值一样高的功率值运行引擎,所以引擎的热效率可被允许减小到预定的最小值,以满足驾驶员对功率的需求。

附图说明

图1是能够使用本发明的策略的功率分流并行混合电动车动力系的示意性框图;

图1a是图1的框图中一般示出的类型的功率分流混合电动车动力系的硬件的示意图;

图2是示出本发明的能量损耗策略的流程图;

图3是图1和图1a的动力系中使用的引擎的引擎功率和热效率之间的关系的示图;

图4是当除了向车辆的主动轮传递动力之外的原因需要启动引擎时混合电动车动力系的引擎功率和驾驶员对功率的需求的示图;

图5是在驾驶员对功率的需求的最低值时不需要引擎功率的驱动条件下引擎功率和驾驶员对功率的需求的示图。

具体实施方式

图1和图1a的动力系配置是功率分流混合电动车动力系,其为在已知为并行混合电动车的混合电动车的动力系的类中的一个示例。尽管将具体描述图1和图1a的并行功率分流混合动力系,还可将本发明的策略应用于其他混合配置。例如,还可将其应用于具有单个电动机/发电机的混合动力系。

在图1中,车辆系统控制器10接收车辆驾驶员输入的信号,所述车辆驾驶员输入的信号包括油门踏板位置信号12和档位选择信号14。引擎16将引擎速度和引擎转矩信号传递到车辆系统控制器,如18所示。引擎将动力传递到功率分流传动装置20,所述功率分流传动装置20包括行星齿轮组22、发电机24和电动机26。因为发电机和电动机中的每一个作为电动机运行或用作发电机运行,所以发电机和电动机有时被称为电机。

发电机和电动机在传动装置(驱动桥)控制模块28的控制下。如30所示,发电机被可驱动地连接到电动机,行星齿轮组的动力输出部件通过如32所示的机械连接驱动发电机。动力传送齿轮34将行星齿轮组输出部件和电动机可驱动地连接到用于驱动主动轮的差速器和车轴总成(differential-and-axleassembly)36。

在图1a的示意图中更具体地示出了传动装置20的行星齿轮组22。行星齿轮组22包括环形齿轮44,环形齿轮44被可驱动地连接到齿轮装置34的齿轮部件42。引擎16被直接连接到传送装置(carrier)46,所述传送装置46与环形齿轮44和恒星齿轮48相啮合。可驱动地结合到恒星齿轮48的发电机24在驱动桥控制模块28的控制下,并随着发电机负载的改变调节引擎速度。电动机26被可驱动地连接到齿轮装置34的齿轮部件52。

电池和电池控制器54以电的方式被连接到发电机24和电动机26。当54的电池的充电状态接近耗尽时,如56所示,可通过使用外部网充电功率来对电池充电。

引擎和电动机向主动轮传递动力。可参考第6,994,360号美国专利,该专利描述了从两个动力源到车轮的动力传递路径。该专利被转让给本发明的受让人。

引擎和电动机都向图1和图1a的功率分流混合系统中的动力传动系统传递动力。车辆系统控制器10调节来自两个动力源的动力传递,以实现最好的燃料经济性、较好质量的排放、较好的性能和改善的驾驶性能。车辆系统控制器10向引擎控制器发出引擎转矩命令,并向传动装置控制模块28发出引擎速度命令和车轮转矩命令。

车辆系统控制器不向电池子系统发出电池功率命令。此外,通过创建驾驶员需要的功率和可用的引擎功率之间的差别来实现目标电池功率。如果驾驶员需要的功率大于引擎可用的功率,则对电池放电。如果驾驶员需要的功率小于可用的引擎功率,则对电池充电。本发明的充电损耗能量管理策略使用动力系部件来对电池充电和放电。

本发明的能量管理策略在不影响引擎效率的情况下使对电池中的电能的使用最大化。这可通过默认关闭引擎以使只在存在特定运行条件时才命令启动引擎来实现。如果这些条件不存在,则引擎保持关闭。

因为任何原因(例如,对电池充电)在给定行驶循环首次启动引擎,冷启动预热程序被执行,以使引擎达到最好废气排放质量的要求。如果在行驶循环没有满足启动引擎的标准,如随后所描述的,则车辆可只在电动模式下运行。

如果单独的电池不能提供为满足驾驶员对动力的需求所需要的动力,则启动引擎。如果驾驶员需求超过阈值(部分地按高压电池放电功率界限、按电池充电状态以及按电池温度来定义所述阈值),则启动引擎以满足驾驶员需求。如果这些参数中的任何参数都低于定义的阈值(包括迟滞(hysteresis)值以防止从一个状态(启动或关闭)到另一状态的急剧循环),则关闭引擎。这些阈值可以是常数,或者可通过本发明的充电损耗能量功率策略基于任何可用软件变量来实时确定这些阈值。

如果所述策略需要将功率减低到值Pmin,则如图3的点62和64所示,发生了热效率相对小幅减小。

如果不管驾驶员需求必须启动引擎,则图4示出驾驶员需要的功率Pdriver、目标引擎功率Pengine和电功率使用Pbatt之间的关系。Pbatt依赖高压放电界限、电池SOC、电池温度和其他硬件限制。可实时计算Pbatt,或者Pbatt可以是驾驶员选择的值。Pbatt可以是校准参数和高压电池放电界限中较小的一个。当驾驶员需求的功率Pdriver小于Pmin时,将Pengine设置为等于Pdriver。这通过图4中的66所示的线性关系来表示。当驾驶员需求的功率Pdriver大于Pmin但小于Pmim+Pbatt时,可将引擎功率Pengine保持为Pmin。,如在图4中的水平图示所示。就是Pengine和Pdriver之间的关系使得本发明的充电损耗策略在一点也不减低引擎效率的情况下使电池使用最大化。

当如图4中的70所示,驾驶员需求的功率Pdriver超过Pmin和Pbatt的和时,引擎功率Pengine关于Pdriver线性增加。这在图4中的72示出。这种关系保证驾驶员所请求的功率的传递。在74表示最大引擎功率。

图4的图示表示,当因为某些与充电损耗策略无关的原因(例如,附件功率的需要等)导致动力系系统和其他车辆系统需要引擎运行时,需要引擎运行,如线性关系66所示。只有在电池被损耗到电池无法向电驱动的附件提供足够的功率时或者如果引擎直接驱动所述附件时,才需要启动引擎。在其他情况(包括冷启动模式或有源部件保护模式)下也必须启动引擎。

当引擎状态(即,引擎启动或引擎关闭)不受硬件阈值的限制时,Pdriver和Pengine之间的关系与图4示出的关系有点不同。这在图5中被示出。在图5中,在驾驶员所需的功率的值大于最小功率Pmin处,图示与图4的图示类似,但在驾驶员所需的功率的值小于Pmin处,该图示与图4的图示不同。

图5显示驾驶员需要的用于引擎启动和关闭的阈值。在76处显示用于引擎启动的阈值,在78处显示用于引擎停止的阈值。尽管添加了主要的符号,但通过相同的参考符号表示与图4的图示类似的图5的图示的部分。此外,充电损耗能量管理策略通过当驾驶员需求的功率Pdriver在Pmin和Pmin+Pbatt之间时在Pmin运行引擎来在不降低引擎效率的情况下使电池的使用最大化。在启动引擎的点(Pstart)和在停止引擎的点(Pstop)之间的分开(迟滞)防止“on”和“off”状态之间不希望的循环。当在76的阈值启动引擎时,引擎以最小功率运行,如68所示。此时,电池功率被减低,从而引擎功率和电池功率的和将满足驾驶员对功率的需求。

图2的软件流程图示出了本发明的充电损耗策略。在图2中,如80所示,所述策略通过询问是否需要引擎满足驾驶员需求开始。如果需要启动引擎,则如动作方框82所示启动引擎。如果不需要引擎功率,则在84测试先前描述的硬件限制。如果硬件限制不需要启动引擎,则引擎保持关闭。

如果硬件限制需要启动引擎,则启动引擎,如82所示。然后,确定在行驶循环是否首次启动引擎,如86所示。如果首次启动引擎,则执行引擎冷启动预热策略,如动作方框88所示。这保证满足废气排放质量标准。如果如判断方框90所示冷启动预热策略被满足,则如92所示可进行程序,选择引擎功率运行点。如果冷启动预热策略没有结束,则保持引擎启动,直到冷启动模式结束。

在92选择的引擎功率运行点将是与热效率相应的值,所述热效率在与引擎功率60相应的最大热效率点62和与Pmin相应的减小的热效率点64之间。当动力系达到允许引擎关闭的情况时,在94做出关闭引擎的判定,如96所示。否则,程序将返回动作方框92。

尽管公开了本发明的实施例,但本领域的技术人员将清楚,在不脱离本发明的范围的情况下,可进行修改。本发明的这些修改和等同物意在被权利要求覆盖。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号