首页> 中国专利> 提供实质上为参考电压的输出电压的集成电路和方法

提供实质上为参考电压的输出电压的集成电路和方法

摘要

本发明公开一种用来提供实质上为参考电压的输出电压的集成电路,包含有耦接于参考电压的低压差稳压器、耦接于低压差稳压器的快速导通电路以及耦接于低压差稳压器的快速截止电路。低压差稳压器用来在输出端产生输出电压,快速导通电路用来根据第一控制信号在输出端快速地供应输出电流,而快速截止电路用来根据第二控制信号自输出端快速地汲取放电电流。上述集成电路具有快速达到致能状态的能力以提供充足的电流及电压至负载装置,也可快速达到失能状态以避免在期望的电源关闭期间后消耗不必要的电源。本发明还公开了一种提供实质上为一参考电压的一输出电压的方法。

著录项

  • 公开/公告号CN101187818A

    专利类型发明专利

  • 公开/公告日2008-05-28

    原文格式PDF

  • 申请/专利权人 联发科技股份有限公司;

    申请/专利号CN200710139150.0

  • 发明设计人 蔡明达;

    申请日2007-07-26

  • 分类号G05F1/46;G05F1/56;

  • 代理机构北京三友知识产权代理有限公司;

  • 代理人任默闻

  • 地址 台湾省新竹科学工业园区

  • 入库时间 2023-12-17 20:15:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-01-11

    授权

    授权

  • 2008-07-23

    实质审查的生效

    实质审查的生效

  • 2008-05-28

    公开

    公开

说明书

技术领域

本发明是关于一种提供参考电压装置和方法,尤指一种提供实质上为参考电压的输出电压的集成电路和方法。

背景技术

参考电压电路在任何装置,例如测试设备、便携式电子产品、医疗设备及通信系统中均为一个重要的元件,用来提供稳定且可靠的电压准位至任何电子电路,在理想的情况下,当负载或电子电路中的电流变动时,电压准位并不会跟着变动,因此,对电子电路的操作来说,最理想的电压条件是在各种条件下均能可靠地维持稳定。

低压差稳压器(low drop-out voltage regulator)是一种现有的参考电压电路。图1为一种现有技术的低压差稳压器100的示意图。低压差参考电压电路100包含有运算放大器(operational amplifier)102,运算放大器的一输入端会接收输入的参考电压(VREF),而另一输入端则是接收反馈(feedback)电压。运算放大器102将两输入端间的差值放大后自输出端输出,运算放大器102的输出端耦接于输出晶体管104,输出晶体管104一般为一电源装置,用来提供电流至输出端108。低压差参考电压电路100也包含有一电阻-电容电路106,其包含负载电容CL以及并联的电阻R1及R2,设置在输出端108及接地电位(ground potential)之间,而电阻-电容电路106中电阻R1及R2间的端点110所产生的反馈电压会反馈至运算放大器102。

一般而言,负载电容CL的电容值会略大(例如至少1mμF)以确保回路的稳定性。低压差参考电压电路100也接收提供给运算放大器102的致能(Enable)信号ENABLE,当致能信号ENABLE作用时,低压差参考电压电路100中的运算放大器102被致能,运算放大器102的输出使输出晶体管104被致能以将输出端108的电压提升至电源供应电压(VDD)并产生已知的输出参考电压(VOUT)。

然而,在某些情况下可能会需要快速地提供参考电压。若负载为电容性元件时,其自输出端108汲取电流的速度可能会较输出晶体管104最初提供电流至输出端108时的速度更快。因此,在电容性负载累积足够的电荷以达到期望的稳定状态前,可能会使期望的输出电压变低,若一开始没有提供足够的电流及电压的话,在达到稳定状态前,期望的输出电压可能会被拉低。

另一方面,当致能信号ENABLE不作用而使运算放大器102失能时,运算放大器102的输出不会使输出晶体管104被致能,在这种情况下,理想上,输出电压(VOUT)会立即降至接地电位。然而,在低压差参考电压电路100中,由于电阻-电容电路106耦接于输出端108,因此储存在负载电容CL中的电荷在输出电压(VOUT)降至趋近接地电位前必须先经由电阻R1及R2放电。

由于电阻-电容电路106耦接于输出端108,因此电阻-电容时间常数延迟被感应而减缓输出电压(VOUT)在降至趋近接地电位时的衰减。此外,由于负载电容CL的电容值通常很大,且电阻R1及R2的电阻值也很大(例如通常为10k奥姆或更高),所感应的大电阻-电容时间常数使得输出电压(VOUT)在失能状态时衰减速度缓慢,因此,当大负载电容应用于参考电压电路来确保回路稳定性时,可能会不慎阻碍参考电压电路100快速失能的功能。

无法提供快速失能功能或延迟提供快速失能功能都可能会造成不良的影响。举例来说,假设参考电压电路需要提供精确的参考电压至电子系统(例如便携式运算装置),在此应用中,当参考电压电路失能时应该要立即地自便携式运算装置中移除电源供应。然而,参考电压电路在失能时其输出电压(VOUT)过慢的反应会造成便携式运算装置在等待参考电压电路达到完全失能(例如,VOUT=0)的这段时间内非预期性地消耗功率,由于便携式运算装置会持续地自电源(例如电池)汲取电流直到参考电压电路完全失能为止,将造成电子系统的电源管理效能不彰。

此外,低压差稳压器100更须具备良好的电源供应纹波抑制比(PowerSupply Ripple Rejection Ratio,PSRR),其中电源供应纹波抑制比是测量电路在不同频率下抑制输入端涟波的能力的基准。通常高电源供应纹波抑制比代表较好的质量,然而,高电源供应纹波抑制比却会使回路更难稳定并使用来控制电源供应纹波抑制比的增益-频宽乘积(gain-bandwidth product)的控制受到限制。因此,改变电源供应纹波抑制比可能会移动装置转换函数(device transferfunction)中主要极点(dominant pole)的位置,进而影响频宽及噪声特性。由于低压差稳压器100的噪声特性会随着电源供应纹波抑制比的增大而增加,因此,为了符合低压差稳压器100整体的设计目标,必须要选择一个适当的折衷方案。

因此,一种在提供低噪声输出及高电源供应纹波抑制比的同时,另可维持稳定且快速切换及形成致能状态与失能状态的参考电压电路是有需要的。

发明内容

为克服现有技术的参考电压电路无法快速切换及形成致能状态与失能状态的缺陷,有必要提供一种用来提供实质上为参考电压的输出电压的集成电路和方法,以快速导通及/或快速截止对参考电压的提供。

解决技术问题的一种技术方案为:提供一种用来提供实质上为参考电压的输出电压的集成电路,包含有:低压差稳压器,快速导通电路和快速截止电路。低压差稳压器耦接于参考电压,用来在输出端提供输出电压;快速导通电路耦接于低压差稳压器,通过减小电阻-电容延迟以提升根据第一控制信号在输出端供应输出电流的速度;快速截止电路耦接于低压差稳压器,通过减小电阻-电容延迟以提升根据第二控制信号自输出端汲取放电电流的速度。

解决技术问题的另一种技术方案为:提供一种提供实质上为参考电压的输出电压的方法,包含有:在输出端提供输出电压;通过减小电阻-电容延迟以提升根据第一控制信号在输出端供应输出电流的速度;以及通过减小电阻-电容延迟以提升根据第二控制信号自输出端汲取放电电流的速度。

解决技术问题的又一种技术方案为:提供一种用来提供实质上为参考电压的输出电压的集成电路,包含稳压电路和快速导通电路。稳压电路耦接于参考电压,用来在输出端提供输出电压;快速导通电路耦接于稳压电路,快速导通电路通过减小电阻-电容延迟以提升根据第一控制信号在输出端供应输出电流的速度。

解决技术问题的又一种技术方案为:提供一种用来提供实质上为参考电压的输出电压的集成电路,包含稳压电路和快速截止电路。稳压电路耦接于参考电压,用来在输出端提供输出电压;快速截止电路耦接于低压差稳压器,通过减小电阻-电容延迟以提升根据第二控制信号自输出端汲取放电电流的速度。

上述提供实质上为参考电压的输出电压的集成电路和方法,具有快速达到致能状态的能力以提供充足的电流及电压至负载装置,也可快速达到失能状态以避免在期望的电源关闭期间后消耗不必要的电源。

附图说明

图1是现有技术的低压差稳压器的示意图。

图2是本发明用来提供实质上为参考电压的输出电压的集成电路第一实施方式的示意图。

图3(a)是图2中快速截止电路的实施方式的示意图。

图3(b)是图2中快速截止电路的另一实施方式的示意图。

图4(a)是图2中快速导通电路的实施方式的示意图。

图4(b)是图2中快速导通电路的另一实施方式的示意图。

图5是图4(a)中充电电流源的实施方式的示意图。

图6是图4(a)中充电电流源的另一实施方式的示意图。

图7是本发明具有快速导通能力且用来提供实质上为参考电压的输出电压的集成电路的实施方式的示意图。

图8是本发明具有快速截止能力且用来提供实质上为参考电压的输出电压的集成电路的实施方式的示意图。

图9是本发明稳压电路的实施方式的示意图。

图10是本发明稳压电路的另一实施方式的示意图。

具体实施方式

本发明是关于一种参考电压电路,其具有快速达到致能状态的能力以提供充足的电流及电压至负载装置,也可快速达到失能状态以避免在期望的电源关闭期间后消耗不必要的电源。此外,通过本发明的设计,可以达到低输出噪声及高电源供应纹波抑制比的目的。本发明参考电压电路可以是参考电压集成电路或电压稳压器,在一实施方式中,参考电压电路包含低压差的电压装置。

当本发明应用在便携式电子装置时,由于利用了快速截止电路(fastturn-off circuit)来让驱动电路立即失能,可使装置的电源管理更有效率,故特别地实用;另外,快速导通电路(fast turn-on circuit)可立即地提供装置电源,有助于确保电压条件尽快地达到最佳的稳定状态以及时为装置运作提供最佳条件。相较于现有技术,本发明的快速导通电路还可耦接一个第三控制信号以对参考电压电路输出的输出电流进行调整。对输出电流进行调整(或间歇性停止)可帮助降低参考电压电路在输出端发生的电压过冲(overshoot)情形。此外,本发明中噪声及电源供应纹波抑制比的特性可以受到控制,故在维持高电源供应纹波抑制比的同时也可提供低噪声且限制频宽的电压稳压功能。

在介绍本发明的细节之前,请注意,在说明书及后续的权利要求当中使用了某些词汇来指称特定的元件。所属领域中具有通常知识者应可理解,硬件制造商可能会用不同的名词来称呼同一个元件。本说明书及后续的权利要求并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准则。在通篇说明书及后续的请求项当中所提及的“包含”为开放式的用语,故应解释成“包含但不限定于”。以外,“耦接”一词在此包含任何直接及间接的电气连接方法。因此,若文中描述第一装置耦接于第二装置,则代表第一装置可直接电气连接于第二装置,或通过其它装置或连接方法间接地电气连接至第二装置。

图2是本发明用来提供实质上为参考电压的输出电压的集成电路的第一实施方式示意图。电路200包含有:稳压电路210,用来接收输入的参考电压VREF以及在输出端204输出电压VOUT;快速导通电路220耦接在输出端204,用来根据第一控制信号201快速地提供输出电压至输出端204;快速截止电路230同样会经由输出端204耦接于稳压电路210,并用来根据第二控制信号202快速地自输出端204汲取放电电流。请注意,在某些情况下,根据不同的设计目的,本发明可以只使用快速导通电路220与快速截止电路230两者其一,详细的内容将揭示于说明书的后续段落中。

接下来将详细介绍电路200的运作。交流电源提供参考电压VREF至稳压电路210,其中交流电源会指示出输出电压VOUT所应维持的期望的电压准位,因此,稳压电路210会用来提供实质上接近或正比于参考电压VREF的输出电压VOUT。在某些实施方式中,稳压电路210可为电压稳压器,例如类似于图1所示的低压差稳压器,由于一般熟知此项技艺者会对电压稳压器具有相当的了解,故详细的说明便在此省略而不再赘述。然而,稍后将介绍稳压电路210的一实施方式,其应用于电路200时可有效地使稳压电路210具有低噪声及高电源供应纹波抑制比的特性。

当电路200开始运作时,第一控制信号201将快速导通电路220致能,接着快速导通电路220快速地提供输出电流至输出端204以确保无论电路耦接至哪种负载装置均可达到期望的输出电压VOUT,因此,输出端204所耦接的负载装置可在不浪费时间或降低效率的情况下立即达到期望的操作电压。

相反地,当电路200即将要关闭时,第二控制信号202会控制快速截止电路230自输出端204汲取放电电流以立即地避免任何电流流入至负载装置。如同现有技术,在许多例子中稳压电路210可能具有电容性元件耦接于其输出端,且耦接于输出端204的负载装置也可能具有电容性电荷储存元件。在这些情形下,快速截止电路230会立即地自输出端204汲取电流以有效率地汲取当时储存在输出端204的电流/电荷,如此一来,输出端204供应的输出电流将会立即被汲取,从而避免负载装置自稳压电路210消耗不必要的电力,因此,负载装置在电路200即将关闭的一段时间后会禁止运作,使得电源效率达到最佳化。

在电路200的另一种实施方式中,第三控制信号203可用来提供快速导通电路220额外的控制。如同先前所述,在第一控制信号201作用后,快速导通电路220会提供输出电流至输出端204,然而,此时有可能会发生过冲的现象,也即在稳压电路210内部的反馈元件发现输出电压VOUT大于期望的电压准位VREF并进行适当调整以将输出电压VOUT维持在接近或正比于参考电压VREF前,输出电压VOUT有一段时间会大于期望的电压准位VREF。因此,第三控制信号203会用来调整或停止电流输出至输出端204以避免过冲现象的产生,请注意,在某些实施方式中,第三控制信号203可以是自稳压电路210或低压差稳压器中撷取出的控制信号。

如同熟知此项技艺的人士所熟习的,负载装置的驱动电压VOUT发生过冲现象时可能会使其操作电压超出范围而不慎对负载装置造成损害,例如负载装置内部元件的电流/电压值可能超出最大极限值而使内部元件熔化、过热或受到静电损伤。此外,当电流超过负载装置所需的操作电流时可能会消耗多余电力,且由于输出电压VOUT的过冲现象使得期望的输出电压VOUT不自然的增加,因而需要更多时间来达到稳定状态,故输出电压VOUT的过冲现象也可能会不小心地造成快速导通电路产生延迟。因此,防止输出电压VOUT产生过冲现象可避免过多的电源输出至负载装置,并有助于避免耦接在输出端204的负载装置受到损伤。

在另一实施方式中,电路200还包含有控制器240,用来提供第一控制信号201、第二控制信号202及第三控制信号203。控制器240可整合于稳压电路210,并/或使上述操作在负载电路需要开启电源时同步进行,以立即地致能快速导通电路220。此外,控制器240会相应地产生第三控制信号203来避免过冲现象发生,并产生第二控制信号202来立即停止电路200的运作。控制器240可通过逻辑数组、一组逻辑控制装置、微处理器或任何相关的控制元件来加以实现。而控制器240的实际操做方式可存在有多种变化,只要其可正确的提供第一控制信号201、第二控制信号202及第三控制信号203来操作电路200即隶属于本发明的范畴。在某些实施方式中,第三控制信号203可以是自稳压电路210或低压差稳压器中撷取出的控制信号。

图3(a)及3(b)是图2中快速截止电路230的实施方式的示意图。在图3(a)中,快速截止电路230包含有放电电流源310,用来根据第二控制信号202自输出端204汲取放电电流Idischarge。在某些实施方式中,第二控制信号202可耦接至开关312以便如先前所述般控制放电电流源310的运作。

图3(b)显示另一种实施方式,请一并参阅图2。在本实施方式中,快速截止电路230采用的放电电流源310包含有用来提供预设的参考电流Iref的参考电流源320以及开关322。开关322的第一端耦接于参考电流源320,以根据第二控制信号202选择性地将预设的参考电流Iref耦接至开关322的第二端。另外放电电流源310也包含第一晶体管330,第一晶体管330的第一端耦接于开关322的第二端,第一晶体管330的第一端与控制端相耦接,而第一晶体管330的第二端则耦接至供应电压。此外,上述的元件再加上第二晶体管340即可完成本实施方式的放电电流源310。其中,第二晶体管340的第一端耦接于输出端204,第二晶体管340的控制端耦接于第一晶体管330的控制端,而第二晶体管340的第二端耦接于供应电压。在本实施方式中,晶体管330及340实质上会形成一个电流镜(current mirror),其中晶体管340可用来汲取实质上等同于预设的参考电流Iref的放电电流Idischarge,且电流镜会在第二控制信号202将开关322致能时开始运作以完成本电路。

图4(a)及4(b)是图2中快速导通电路220的实施方式的示意图。在图4(a)显示的实施方式中,快速导通电路220包含有根据第一控制信号201供应输出电流Icharge至输出端204的充电电流源410,在某些实施方式中,第一控制信号201可耦接至开关412以便如先前所述般控制充电电流源410的运作。类似地,在某些实施方式中,第三控制信号203可藕接至第二开关414以便如前所述般调整充电电流源。

图4(b)是显示另一实施方式,请一并参阅图2。在本实施方式中,快速导通电路220采用的充电电流源410包含具有第一端及第二端并用来提供预设的参考电流Iref的参考电流源420以及第一晶体管430。第一晶体管430的第一端耦接于第一供应电压,第一晶体管430的控制端与第二端相耦接。另外,充电电流源410也包含有第一开关422,用来根据第一控制信号201选择性地将第一晶体管430的第二端耦接至参考电流源420的第一端,以及第二开关424,用来根据第三控制信号203选择性地将参考电流源420的第二端耦接至第二供应电压。最后,充电电流源410也包含有第二晶体管440,第二晶体管440的第一端耦接于第一供应电压,第二晶体管440的控制端耦接于第一晶体管430的控制端,而第二晶体管440的第二端耦接于输出端204的输出电压VOUT。在本实施方式中,晶体管430及440实质上会形成电流镜,其中晶体管440可用来供应实质上等同于预设的参考电流Iref的充电电流Icharge,且电流镜会在第一控制信号201将开关422致能时开始运作以完成电流镜的电路。第三控制信号203会用来控制开关424的运作,由于开关424可调整(或停止)参考电流Iref,因此,第三控制信号203可通过调整(或停止)参考电流Iref来避免输出端204发生过冲现象。

图5是图4(a)中充电电流源410的一实施方式的示意图。在本实施方式中,充电电流源410可被视为分成两个主要单元:开关控制单元501以及电流源单元502。电流源单元包含有第一晶体管510以及第二晶体管520,其中,第一晶体管510的第一端耦接于第一供应电压,而第一晶体管510的第二端耦接于第一晶体管510的控制端。此外,第二晶体管520则包含有控制端、耦接于第一晶体管510第二端的第一端以及耦接于第二供应电压的第二端。最后,电流源单元也包含第五晶体管550。第五晶体管550的第一端耦接于第一供应电压,第五晶体管的控制端耦接于第一晶体管510的控制端,第五晶体管的第二端耦接于输出端204。在本实施方式中,充电电流源410的电流源单元的运作会类似于图4(b)中的电流镜,而参考电流Iref会经由第二晶体管520提供,因此,充电电流Icharge会复制(mirror)参考电流Iref以达成快速地供应电流至电路200的输出端204的目的。

在本实施方式中,电流源单元会受到开关控制单元的控制,开关控制单元包含有第三晶体管530,第三晶体管530的第一端耦接于第一供应电压,第三晶体管530的控制端耦接于第一控制信号201,而第三晶体管530的第二端耦接于第二晶体管520的控制端。此外,开关控制单元还包含有第四晶体管540,第四晶体管540的第一端耦接于第三晶体管530的第二端,第四晶体管540的控制端耦接于第三控制信号203,而第四晶体管540的第二端耦接于第二供应电压。请注意,图5仅表示本发明的一个实施方式,并非用来作为本发明的限制条件,例如在其它实施方式中,第一控制信号201以及第三控制信号203还可通过以单一控制信号控制的数字电路(图中未显示)而整合在一起。在本实施方式中,第一控制信号201会用来使第三晶体管530致能以使得第二晶体管520被致能而产生参考电流Iref,这会使电流镜据以产生充电电流Icharge而快速地提供电流至输出端204。此外,第三控制信号203会通过第四晶体管540来调整(或停止)参考电流Iref以避免发生过冲现象,例如,在某些实施方式中,经过一段电流充电时间后,当输出端204的电压达到(或接近)期望的输出电压时,第三控制信号203即通过第四晶体管540来停止参考电流Iref,以停止充电电流Icharge对输出端204继续充电。

当晶体管530及540均为致能状态时,会引发一个流经晶体管530及540的非预期静态电流(quiescent current),且不幸的是,在本实施方式中,当充电电流源410处于稳定状态时,晶体管530及540会受到第一及第三控制信号201、203的控制而维持导通状态,为了消除静态电流并降低功率消耗,第一控制信号201在图5所示的充电电流源410进入稳定状态时另会使第三晶体管530失能。

图6是显示图4(a)中充电电流源410的另一实施方式的示意图。在本实施方式中,充电电流源410同样可被视为两个主要单元:开关控制单元690以及电流源单元691。在本实施方式中,电流源单元的结构及运作会类似于图5中的电流源单元,故有关本实施方式的电流源单元的详细叙述便在此省略而不再赘述。以下将详细介绍本实施方式中开关控制单元的操作。

在本实施方式中,电流源单元会由开关控制单元690来控制,开关控制单元690包含有第三晶体管630,第三晶体管630的第一端耦接于第二晶体管620的控制端,第三晶体管630的第二端耦接于第二供应电压,第三晶体管630的控制端耦接于第一控制信号201。另外,开关控制单元还包含有第四晶体管640,第四晶体管640的第一端耦接于第二晶体管620的控制端,第四晶体管640的第二端耦接于第二供应电压,第四晶体管640的控制端耦接于第三控制信号203。开关控制单元690还包含有第五晶体管650,第五晶体管具有控制端,耦接于第一供应电压的第一端,及耦接于第二晶体管620的控制端的第二端。开关控制单元690还包含有第六晶体管660,第六晶体管660具有控制端,耦接于第一供应电压的第一端,及耦接于第五晶体管650的控制端的第二端。开关控制单元还包含有用来对输入信号进行反相操作的反相器601,反相器601的输入端耦接于第三控制信号203,反相器601的输出端耦接于第六晶体管660的控制端。最后,开关控制单元还包含有第七晶体管670,第七晶体管670的第一端耦接于第五晶体管650的控制端,第七晶体管670的第二端耦接于第一控制信号201,第七晶体管670的控制端耦接于第三控制信号203。同样地,开关控制单元690会用来控制充电电流源410中的电流源单元,而有关开关控制单元690的操作将详细描述于以下段落中。

在本实施方式中,第一控制信号201及第二控制信号202会用来使多个晶体管致能(如图所示),晶体管致能后会使得第二晶体管620导通而产生参考电流Iref,并使得电流镜(电流源单元)据此产生充电电流Icharge以快速地提供电流至输出端204。此外,第三控制信号203会用来调整(或停止)参考电流Iref,以调整(或停止)充电电流Icharge来避免发生过冲现象。

另外,本实施方式的开关控制单元690具有不须增加额外控制元件即可避免静态电流效应的优点。如同前一实施方式(图5)中所述,静态电流会在位于相同路径上的晶体管均被开启时产生,幸运的是本实施方式的电路布局并不会有这样的路径发生,在图6的充电电流源410达到稳定状态前,晶体管650已经在第三控制信号203所控制的反相器601及晶体管660的运作下被关闭。换句话说,与前一实施方式不同的是,本实施方式的充电电流源410并不会产生静电电流,因此不须使用额外的控制元件,故不会造成多余的功率消耗。

因此,综上所述,本发明提供了一种可提供实质上为参考电压的输出电压的集成电路,并具有快速导通及快速截止的能力,上述的参考电压电路不仅在稳定状态下可维持稳定,并可快速切换至致能状态以提供充足的输出电压,或在电源设定关闭时快速切换至失能状态。

虽然上述实施方式中的参考电压电路会同时具有快速导通及快速截止的能力,但请注意,其它的实施方式并不必须要同时具备这两种能力,也即可根据使用者的需求来设计,例如可只具有快速导通或快速截止的能力。

图7是具有快速导通能力且用来提供实质上为参考电压的输出电压的集成电路700的一实施方式的示意图。集成电路700包含有稳压电路710,用来接收输入的参考电压Vref,并在输出端704提供输出电压VOUT;另外,快速导通电路720耦接于输出端704,用来根据第一控制信号快速地提供输出电压至输出端704。

接着将介绍电路700的运作。外部电源提供参考电压Vref至稳压电路710,参考电压Vref会指示出输出电压VOUT所应维持的期望的电压准位,而稳压电路710负责提供大致上类似于或正比于参考电压Vref的输出电压VOUT。如同上述实施方式,稳压电路710可以是电压稳压器(例如类似于图1所示的低压差稳压器),由于电压稳压器为熟知此项技艺者所熟习,有关电压稳压器的详细描述便在此省略而不再赘述。

当电路700开始运作时,第一控制信号会将快速导通电路720致能,而快速导通电路720可用来快速地提供输出电流至输出端704以确保不论电路所连接的负载装置为何,输出端704均可达到期望的输出电压VOUT,因此,连接到输出端704的负载装置可立即达到期望的操作电压而不会有任何时间或效率上的浪费。

如同图2中的快速导通电路220,图7中的快速导通电路720可以包含有相同于图4(a)、图4(b)、图5、图6的实施方式中的组成元件及功能,因此,进一步的描述便在此省略。

在电路700的另一实施方式中,第三控制信号(图中未显示)可用来额外控制快速导通电路720。如同先前所述,在第一控制信号作用后,快速导通电路720会提供输出电流至输出端704,然而此时可能会发生过冲现象,使得输出电压VOUT高于期望的电压准位VREF直到稳压电路710内部的反馈元件检测到这种现象而进行适当的调整以使输出电压VOUT接近或正比于参考电压VREF为止。因此,第三控制信号会用来调整或停止供应至输出端704的输出电流以避免上述过冲现象的发生,请注意,在某些情况下,第三控制信号可以是撷取自稳压电路710或低压差稳压器的控制信号。

如同熟知此项技艺者所了解的,当负载装置的驱动电压VOUT发生过冲现象时,由于操作电压超出预期,可能会对负载装置造成损害,例如负载电路的内部元件可能因承受超出最大极限的电流/电压而过热、熔化或受到静电损害。此外,超过负载装置操作所需电流供应量的电流可能造成电力的浪费,且输出电压VOUT的过冲现象也可能使快速导通电路无法“快速”导通,这是由于过冲现象使输出电压VOUT并非在预期的电压准位,需要再花更多时间将其调整至期望的输出电压VOUT。因此,避免过冲现象的发生可以避免供应多余的电源至负载装置,并避免耦接于输出端704的负载装置受到损伤。

图8是具有快速截止能力且可用来提供实质上为参考电压的输出电压的集成电路800的一实施方式的示意图。电路800包含有稳压电路810,用来接收输入的参考电压VREF并在输出端804输出电压VOUT。此外,快速截止电路830耦接于输出端804,用来根据第二控制信号自输出端804快速地汲取放电电流。

在正常的情况下,外部电源会提供参考电压VREF至稳压电路810,参考电压Vref会指示出输出电压VOUT所应维持的期望的电压准位,而稳压电路810负责提供大致上类似于或正比于参考电压Vref的输出电压VOUT。如同上述实施方式,稳压电路810可以是电压稳压器(例如类似于图1所示的低压差稳压器)。

当电路800即将关闭时,第二控制信号会作用于快速截止电路830使快速截止电路830自输出端804汲取放电电流以立即地避免任何多余的电流流至负载装置。如同现有技术中所描述的,在许多情况下,稳压电路810的输出端可能具有电容性元件,而耦接于输出端804的负载装置也同样可能具有电容性的电荷储存元件。在这些情形下,快速截止电路830会立即地自输出端804汲取电流以有效地汲取储存在输出端804的电流/电荷,这样一来,输出端804的输出电流会被立即地汲取而避免负载装置自稳压电路810消耗不必要的功率,因此,电路800可通过在预期的关闭时间后停止负载电路的操作来达到最佳的电源效能管理。

如同图2中的快速截止电路230,图8中的快速截止电路830可以包含相同于图3的实施方式中的组成元件及功能,因此,进一步的描述便在此省略。

如同前述,本发明的另一目的是在降低稳压电路210的噪声的同时提供高电源供应纹波抑制比,而此目的可通过降低稳压电路210的频宽来达成。例如在低压差稳压器中增加耦合电容Cad以形成如图9及图10所示的稳压电路210,图9及图10所示的稳压电路210可降低噪声的影响并维持高电源供应纹波抑制比。

如图9所示,稳压电路210可以是低压差稳压器910,包含有运算放大器902以及晶体管904。运算放大器902具有耦接于参考电压VREF的第一输入端,而晶体管904的第一端耦接于运算放大器902的输出端,第二端耦接于稳压电路210的输出端,控制端耦接于第一供应电压VDD。另外,第一电阻耦接于晶体管904的第二端及运算放大器902的第二输入端之间,第二电阻耦接于运算放大器902的第二输入端及第二供应电压(可能是接地准位)之间,负载电容906耦接于晶体管904的第二端以及第二供应电压之间,以及耦合电容Cad耦接于晶体管904的第一端及第二供应电压之间。

在本实施方式中,新增的耦接于第二供应电压(接地准位或接近接地准位)的耦合电容在低频操作下可提供高电源供应纹波抑制比。图10则提供了稳压电路的另一实施方式,其可在高频操作下提供较佳的效能。

如图10所示,稳压电路210可以是低压差稳压器1010,包含有运算放大器1012以及晶体管1014。运算放大器1012具有耦接于参考电压VREF的第一输入端,而晶体管1014的第一端耦接于运算放大器1012的输出端,第二端耦接于稳压电路210的输出端,控制端耦接于第一供应电压VDD。此外,第一电阻耦接于晶体管1014的第二端及运算放大器1012的第二输入端之间,第二电阻耦接于运算放大器1012的第二输入端及第二供应电压(可能是接地准位)之间,负载电容1016耦接于晶体管1014的第二端以及第二供应电压之间,以及耦合电容Cad耦接于晶体管1014的第一端及第一供应电压VDD之间。

上述快速截止电路的实施方式可快速地使驱动电压失能以提高电源的管理效率并降低可能浪费掉的电源。另外,上述快速导通电路的实施方式可快速地提供电源至耦接的装置,确保可快速地达到稳定电压状态的条件。快速导通电路还包含有第三控制信号,用来调整参考电压电路的输出电流,帮助降低在参考电压电路输出端发生的电压过冲现象的影响。

因此,上述的实施方式不但可快速地供应或汲取稳压电路输出端的输出电流,也可在降低噪声的同时提供高电源供应纹波抑制比。

虽然本发明已以实施方式揭示如上,但是对于本领域的技术人员,依据本发明实施方式的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号