首页> 中国专利> 容量可变型双旋转压缩机及其驱动方法和具有该压缩机的空调器及其驱动方法

容量可变型双旋转压缩机及其驱动方法和具有该压缩机的空调器及其驱动方法

摘要

公开了一种容量可变型双旋转压缩机及其驱动方法和一种使用该压缩机的空调器及其驱动方法。即使当叶片(124)启动或压缩机切换其驱动时,叶片(124)可以快速地并稳定地保持与滚动活塞(124)接触,以便防止在改变容量时由叶片(124)引起的噪音,因而大大减小压缩机的噪音。通过交替地驱动压缩单元(110,120)并允许容量根据两个以上的步骤改变,可以满足例如空调器的组装产品的各种需要,并通过减少不必要的动力浪费而提高能量效率。

著录项

  • 公开/公告号CN101065580A

    专利类型发明专利

  • 公开/公告日2007-10-31

    原文格式PDF

  • 申请/专利权人 LG电子株式会社;

    申请/专利号CN200580027294.6

  • 申请日2005-08-09

  • 分类号F04C18/356(20060101);F04C23/00(20060101);

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人王爱华;田军锋

  • 地址 韩国首尔

  • 入库时间 2023-12-17 19:20:12

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-09-30

    未缴年费专利权终止 IPC(主分类):F04C18/356 授权公告日:20090805 终止日期:20140809 申请日:20050809

    专利权的终止

  • 2013-07-03

    专利权的转移 IPC(主分类):F04C18/356 变更前: 变更后: 登记生效日:20130605 申请日:20050809

    专利申请权、专利权的转移

  • 2009-08-05

    授权

    授权

  • 2007-12-26

    实质审查的生效

    实质审查的生效

  • 2007-10-31

    公开

    公开

说明书

技术领域

本发明涉及容量可变型双压缩机(twin compressor),并特别地涉及一种能够防止在改变容量时可能出现的叶片跳跃现象和能够进行各种容量改变驱动的容量可变型双压缩机及其驱动方法,以及一种具有该压缩机的空调器及其驱动方法。

背景技术

通常,压缩机把机械能转化成可压缩流体的压能,并且通常可分为往双式、离心式和叶片式。

旋转压缩机通常用于空调器。目前,由于空调器的功能的多样化,从而需要能够改变容量的旋转压缩机。为此,已知一种通过控制压缩机转数而改变压缩机容量的方法。然而,该方法需要复杂的控制器,因而增加了产品价格。需要提供一种便宜且稳定的容量改变单元。本发明涉及这种技术方案。

图1是根据现有技术的双旋转压缩机,图2是在现有的容量可变型双旋转压缩机中用来改变容量的简图,而图3到6是平面图,示出了根据现有容量可变型双旋转压缩机中的各个驱动的叶片改变。

如在这里示出的,现有的双旋转压缩机(如图1所示)包括:外壳1,它安装吸气管(SP)和排气管(DP),使得吸气管(SP)和排气管(DP)相互连通;电机单元2,它包括安装在外壳1上侧的定子2a和转子2b,用于产生旋转力;以及竖直地安装在外壳1的下侧的第一压缩单元10和第二压缩单元20,它们借助旋转轴3接收由电机单元2产生的旋转力并单独地压缩制冷剂。

如图2所示,一个用来从吸入的制冷剂分离液体制冷剂的储液器4安装在吸气管(SP)与压缩单元10和20中每一个之间。为三通阀的制冷剂切换阀5安装在储液器4出口和排气管(DP)之间,用来切换制冷剂并把制冷剂供给到第二压缩单元。

此外,储液器4的出口与第一气缸11的进口11a和制冷剂切换阀5的进口侧入口5a连接,旁通管32从排气管(DP)分叉出并与制冷剂切换阀5的排出侧入口5b连接,并且制冷剂切换阀5的进口侧出口5c连接到第二压缩单元20的进口侧,所有这些在后面描述。

如图1和2所示,第一压缩单元10包括:第一气缸11,它具有环形的形状并安装在外壳1的内部;主支撑件12和中支撑件13,它们覆盖第一气缸11的上下侧,形成第一内部空间(V1)并径向支撑旋转轴;第一滚动活塞14,它可旋转地与旋转轴3的上偏心部分接合并压缩制冷剂,并在第一气缸11的第一内部空间(V1)内绕动;第一叶片(未示出),它可移动地与第一气缸11沿径向方向接合,从而挤压接触第一滚动活塞14的外周向表面并把第一气缸11的第一内部空间(V1)分成第一吸入室和第一压缩室;以及第一排出阀15,它可打开地接合到形成于主支撑件12的中心附近的第一排出口12a的前端,以便控制从第一压缩室排出的制冷剂的排出。

第一气缸11形成第一叶片狭缝(未示出),该第一叶片狭缝通过把第一叶片(未示出)插入形成第一内部空间(V1)的内周向表面的一侧而沿径向方向往复运动,且形成与储液器4的出口连通的第一进口11a并引起在第一叶片狭缝的一侧吸入制冷剂,以及在第一叶片狭缝的另一侧形成第一排出槽11b,该排出槽11b把从第一压缩室排出的制冷剂气体排出到外壳1中。

如图1到3所示,第二压缩单元20包括:第二气缸21,它具有环形的形状并安装在外壳1内部第一气缸11的下方;中支撑件13和下支撑件22,它们覆盖第二气缸21的上下侧,形成第二内部空间(V2)并在径向和轴向方向上支撑旋转轴3;第二滚动活塞23,它可旋转地与旋转轴3的下偏心部分接合并压缩制冷剂,并在第二气缸21的第二内部空间(V2)内绕动;第二叶片(示出于图3)24,它可移动地与第二气缸21沿径向方向接合,从而挤压接触第二滚动活塞23的外周向表面并把第二气缸21的第二内部空间(V2)分成第二吸入室和第二压缩室;以及第二排出阀25,它可打开地与形成于下支撑件22的中心附近的第二排出口22a的前端接合,并控制从第二室排出的制冷剂气体的排出。

第二气缸21在形成第二内部空间(V2)的内周向表面的一侧形成第二叶片狭缝21a使得第二叶片24沿径向方向往复运动,在叶片狭缝21a的一侧形成第二进口21b以便通过连接第二制冷剂导管33与制冷剂切换阀5的进口侧出口5c而使吸入的制冷剂或排出的制冷剂流入,并且在第二叶片狭缝21a的另一侧形成第二排出槽21c用来把从第二压缩室排出的制冷剂排出到外壳1中。

与外壳1的内部连通的扩展槽形成于第二叶片狭缝21a的后端,使得第二叶片24的后侧受外壳1的内部压力影响,并且永久磁体26安装在扩展槽21d以便吸引第二叶片24。未描述的参考标记31表示第一制冷剂导管。

下面将描述现有的双旋转压缩机的驱动。

就是说,当动力供给到电机单元2的定子2a从而旋转转子2b时,旋转轴3与转子2b一起旋转并把电机单元2的旋转力传递到第一压缩单元10和第二压缩单元20。第一压缩单元10和第二压缩单元20执行动力驱动(power driving)以便因而产生大容量制冷能力,或者仅仅第一压缩单元10执行动力驱动(saving driving)而第二压缩单元执行节能驱动以便因而产生小容量制冷能力。

这里,将详细描述关于双旋转压缩机的第二压缩单元的各种驱动。

首先,在如图3所示的启动状态中,通过使制冷剂切换阀5的进口侧的出口5c和入口5a相互连通,平衡压力的制冷剂气体通过第二进口21b被吸入第二气缸21的第二内部空间(V2)。当外壳1内部的压力仍然保持平衡压力(Pb)时,制冷剂气体的压力(PB)推动第二叶片24的后端,而第二内部空间(V2)的压缩室压力(Pb)保持近似的平衡状态。

因此,第二叶片24由永久磁体24的磁力吸引,向第二叶片狭缝21a的外部移动并从第二滚动活塞23分离,从而不发生压缩。在这种状态下,反复发生所谓的叶片跳跃(vane jumping)现象,即外壳1的内部压力增加,使得第二叶片24从永久磁体26分离而与第二滚动活塞23接触,并再次连接到永久磁体26。

接下去,如图4所示,在动力状态下,当驱动在上述的启动状态下继续时,外壳1内部的压力增加到排出压力(Pd),而吸入第二内部空间(V2)的制冷剂气体的压力减小到吸入压力(Ps)。

因此,当第二叶片24的后侧压力与前侧压力相比显著增加时,第二叶片24从永久磁体26分离并与第二滚动活塞23挤压接触,从而开始制冷剂气体的压缩。

接下去,在如图5所示的节能状态中,当制冷剂切换阀5驱动以致于排出侧入口5b和进口侧出口5c相互连通时,排出压力(Pd)的制冷剂气体的一部分流入第二气缸21的第二内部空间(V2)。这里,当外壳1的内部压力仍然保持排出压力(Pd)状态时,第二叶片24的后侧压力和前侧压力变得处于平衡状态。借助磁力,第二叶片24移向存在永久磁体26的后侧,并从第二滚动活塞23分离。结果,在第二气缸21中不发生压缩。

同时,当改变驱动状态时,例如,如图5所示,当第二压缩单元20从节能状态改变到动力状态时,在流入第二进口21b的制冷剂的压力从排出压力(Pd)改变到吸入压力(Ps)的时刻,第二叶片24和第二滚动活塞23之间的接触变得不稳定,并再次出现叶片跳跃现象。就是说,当制冷剂切换阀5中的进口侧入口5a和进口侧出口5c相互连通时,压力比排出压力(Pd)减小得小,并变成中间压力(Pd-a)。在另一方面,当外壳1内部的压力仍然保持排出压力(Pd)时,由压差引起的力大于由永久磁体26的磁力引起的力。因此,第二叶片24克服磁力并与第二滚动活塞23接触以把第二内部空间(V2)分成压缩室和吸入室,从而在第二气缸的内部空间(V2)中执行压缩。然而,当第二内部空间(V2)的压缩室压力再次达到排出压力(Pd)时,由压差引起的力变得大于磁力。当第二叶片25由永久磁体26拉回并从第二滚动活塞23分离时,不发生压缩,且驱动状态改变到动力状态。

然而,在现有的容量可变型双旋转压缩机中,当发生所谓的叶片跳跃现象(当压缩机启动或切换其驱动时,由于压差和磁力之间的不均衡,第二叶片24从第二滚动活塞23分离)时,压缩机的噪音增加。此外,考虑到在启动期间的这种情况,为了减小压缩机噪音,必须在第二叶片24从第二滚动活塞23完全分离时,即仅仅在节能模式下执行启动。

此外,在现有的容量可变型双旋转压缩机中,当第二压缩单元20执行可变驱动,而第一压缩单元10总是执行正常驱动时,该压缩机被构造成执行两步容量可变驱动,这使空调器功能的多样控制受到限制,并且由于产生大于必要的制冷能力和增加不必要的功率消耗,降低了能量效率。

发明内容

因此,本发明的一个目的是提供一种容量可变型双旋转压缩机及其驱动方法和一种具有该压缩机的空调器及其驱动方法,在压缩机启动或切换其驱动时,通过消除叶片跳跃现象,该压缩机能够减小压缩机的噪音,并因而能够在动力模式和节能模式下启动压缩机。

此外,本发明的另一个目的是提供一种容量可变型双旋转压缩机及其驱动方法和一种具有该压缩机的空调器及其驱动方法,该压缩机通过允许压缩机容量根据两个以上的步骤改变而具有空调器的各种功能,并通过减小动力消耗而增加能量效率。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种容量可变型双旋转压缩机,该压缩机包括:外壳,它具有特定的内部空间并连接排气管,使得该排气与该内部空间连通;第一气缸和第二气缸,它们固定地安装在所述外壳的内部空间以便相互分离,各个气缸基于各个叶片狭缝在周向的两侧上均具有直接连接吸气管的进口和与该排气口连通的排出口,并在其中一个所述叶片狭缝的外直径侧形成扩展槽,从而把该扩展槽从所述外壳的内部空间分离;第一叶片和第二叶片,它们分别沿径向方向滑动地插在所述气缸的叶片狭缝中;第一滚动活塞和第二滚动活塞,它们分别插在旋转轴的偏心部分中,以便与相应的叶片挤压接触并压缩制冷剂,并且在所述气缸内部绕动;叶片侧压力改变单元,它直接地连接到从所述外壳的内部空间分离的所述扩展槽,并在需要时交替地供给吸入压力或排出压力的制冷剂,使该叶片与相应的滚动活塞挤压接触从而执行动力驱动,或使该叶片从相应的滚动活塞分离从而执行节能驱动;气缸侧压力改变单元,它安装在具有所述叶片侧压力改变单元的所述吸气管的中部,并在需要时交替地把吸入压力或排出压力的制冷剂供给到相应的气缸,使得所述叶片和所述叶片侧压力改变单元一起与所述滚动活塞挤压接触或从该滚动活塞分离;和叶片支撑单元,它安装在连接所述叶片侧压力改变单元的所述气缸的扩展槽,并沿所述滚动活塞方向支撑相应叶片的后侧。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种容量可变型双旋转压缩机,该压缩机包括:外壳,它具有特定的内部空间并连接排气管,使得该排气与该内部空间连通;第一气缸和第二气缸,它们固定地安装在所述外壳的内部空间以便相互分离,各个气缸基于各个叶片狭缝在周向的两侧上均具有直接连接吸气管的进口和与所述排气口连通的排出口,并且每个气缸在所述叶片狭缝的外直径侧形成扩展槽,从而把该扩展槽从该外壳的内部空间分离;第一叶片和第二叶片,它们分别沿径向方向滑动地插在所述气缸的叶片狭缝中;第一滚动活塞和第二滚动活塞,它们分别插在旋转轴的偏心部分中,以便与相应的叶片挤压接触并压缩制冷剂,并且在所述气缸内部绕动;第一叶片侧压力改变单元和第二叶片侧压力改变单元,它们直接地连接到从所述外壳的内部空间分离的所述扩展槽,并在需要时交替地供给吸入压力或排出压力的制冷剂,使所述叶片与相应的滚动活塞挤压接触从而执行动力驱动,或使该叶片从相应的滚动活塞分离从而执行节能驱动;第一气缸侧压力改变单元和第二气缸侧压力改变单元,它们分别安装在所述气缸的扩展槽,所述叶片侧压力改变单元与相应叶片的后表面连接并沿相应的滚动活塞方向支撑该叶片的后表面。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种用来驱动容量可变型双旋转压缩机的方法,该方法包括:当驱动容量可变型双旋转压缩机时,在具有从所述外壳的内部空间分离的所述扩展槽的所述气缸的启动驱动期间,控制相应的气缸侧压力改变单元和叶片侧压力改变单元,使得相应的叶片借助所述叶片支撑单元总是与所述滚动活塞的外周表面接触,并且通过把相同压力的制冷剂供给到所述气缸的进口和扩展槽而压缩所述制冷剂。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种用来驱动容量可变型双旋转压缩机的方法,该方法包括:当驱动容量可变型双旋转压缩机时,在具有从所述外壳的内部空间分离的所述扩展槽的所述气缸的动力驱动期间,控制相应的气缸侧压力改变单元和所述叶片侧压力改变单元,使得相应的叶片借助所述气缸内部压力和所述扩展槽内部压力之间的压差和相应叶片支撑单元的排斥力总是与所述滚动活塞的外周表面接触,并且通过把吸入压力的制冷剂供给到所述气缸的进口和把排出压力的制冷剂供给到所述气缸的扩展槽而压缩所述制冷剂。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种用来驱动容量可变型双旋转压缩机的方法,该方法包括:当驱动容量可变型双旋转压缩机时,在具有从所述外壳的内部空间分离的所述扩展槽的所述气缸的节能驱动期间,控制相应的气缸侧压力改变单元和所述的叶片侧压力改变单元,使得相应的叶片借助所述气缸内部压力克服所述扩展槽内部压力和所述叶片支撑单元的排斥力而被推向后侧并从所述滚动活塞的外周表面分离,并且通过把排出压力的制冷剂供给到所述气缸的进口而把吸入压力的制冷剂供给到该气缸的扩展槽,所述制冷剂从压缩室漏到吸入室。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种用来驱动容量可变型双旋转压缩机的方法,该方法包括:当驱动容量可变型双旋转压缩机时,在具有从所述外壳的内部空间分离的所述扩展槽的所述气缸中,当所述节能驱动切换到所述动力驱动时,控制相应的气缸侧压力改变单元和所述的叶片侧压力改变单元,使得相应的叶片借助第二中间压力和第一中间压力之间的压差和相应叶片支撑单元的排斥力总是与所述滚动活塞的外周表面接触,并且通过把逐渐减小、小于排出压力的第一中间压力的制冷剂供给到所述气缸的内部空间和逐渐增加、大于吸入压力的第二中间压力的制冷剂,从而压缩制冷剂。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种具有所述容量可变型双旋转压缩机的空调器。

为了实现这些目标和其它优点,并根据在此具体实施和概括描述的本发明的目的,提供了一种用来驱动具有容量可变型双旋转压缩机的空调器的方法,该方法包括:检测室内温度,并且当该室内温度到达[期望温度+A℃]时,把压缩机的驱动模式切换到动力驱动模式;当室内温度到达期望温度时,把所述转换器的驱动模式切换到节能驱动模式;和当室内温度再次增加并连续地处于[期望温度+A℃]两分钟时,再次把所述转换器的驱动模式切换到所述的动力驱动模式,否则,如果室内温度减小并到达[期望温度-B℃],则停止所述压缩机。

当结合附图阅读下面本发明的详细描述时,本发明的前述的和其它的目的、特征、方面和优点将变得更加显然。

附图说明

包含用来进一步理解本发明的、并入且构成本说明书的一部分的附图示出了本发明的实施例,并且与描述部分一起用于说明本发明的原理。

在附图中:

图1是纵向剖视图,示出了现有的容量可变型双旋转压缩机的一个实例;

图2是在现有的容量可变型双旋转压缩机中用来改变容量的简图;

图3到6是平面图,示出了根据现有容量可变型双旋转压缩机中的各个驱动状态的叶片改变;

图7是在根据本发明的容量可变型双旋转压缩机的一个实例中用来改变容量的简图;

图8到11是平面图,示出了根据在本发明的容量可变型双旋转压缩机中的各个驱动状态的叶片的变化;

图12是在根据本发明的容量可变型双旋转压缩机的另一实施例中用来改变容量的简图;

图13到16是平面图,示出了在本发明的容量可变型双旋转压缩机的另一实施例中根据各个驱动状态的叶片的变化;

图17是流程图,示出了具有根据本发明的容量可变型双旋转压缩机的一种空调器的驱动方法;和

图18是示出了前述空调器驱动方法的一个实例根据时间的展开图。

具体实施方式

现在将详细参考根据本发明的一个实施例的容量可变型双旋转压缩机及其驱动方法,本发明的实例示出于附图。

图7是纵向剖视图,示出了根据本发明的容量可变型双旋转压缩机的一个实例,而图8到11是平面图,示出了在本发明的容量可变型双旋转压缩机中根据各个驱动状态的叶片的变化。

如在此示出的,根据本发明的容积可变型双旋转压缩机包括:外壳1,它安装吸气管(SP)和排气管(DP),使得吸气管(SP)和排气管(DP)相互连通;电机单元2,它安装在外壳1的上侧并产生旋转力;以及竖直地安装在外壳1的下侧的第一压缩单元110和第二压缩单元120,它们借助旋转轴3接收由电机单元2产生的旋转力并单独地压缩制冷剂。

此外,一个用来从吸入的制冷剂分离液体制冷剂的储液器130安装在吸气管(SP)与压缩单元110和120中每一个之间。为四通阀的制冷剂切换阀140安装在储液器出口130和排气管(DP)之间,用来切换制冷剂并把制冷剂供给到第二压缩单元120。

此外,储液器130的第一出口131与将在后面描述的第一气缸111的进口111b连接,并且储液器130的第二出口132通过第三制冷剂导管153与将在后面描述的制冷剂切换阀140的进口侧入口141连接。

第一压缩单元110包括:第一气缸111,它具有环形的形状并安装在外壳1的内部;主支撑件112和中支撑件113,它们覆盖第一气缸111的上下侧,形成第一内部空间(V1)并径向支撑旋转轴3;第一滚动活塞114,它可旋转地与旋转轴3的上偏心部分接合并压缩制冷剂,并在第一气缸111的第一内部空间(V1)内绕动;第一叶片(未示出)115,它可移动地与第一气缸111沿径向方向接合,从而挤压接触第一滚动活塞114的外周向表面并把第一气缸111的第一内部空间(V1)分成第一吸入室和第一压缩室;第一叶片弹簧116,它是压缩弹簧,用来弹性地支撑第一叶片115的后侧;以及第一排出阀15(示出于图1),它可打开地接合到形成于主支撑件112的中心附近的第一排出口12a(示出于图1)的前端,以便控制从第一内部空间(V1)的压缩室排出的制冷剂的排出。

第一气缸111在形成第一内部空间(V1)的内表面的一侧形成第一叶片狭缝(未示出)使第一叶片115沿径向方向往复运动,基于第一叶片狭缝111a在周向的一侧上形成第一进口111b以便把制冷剂引入第一内部空间(V1),并且基于第一叶片狭缝111a在周向的另一侧沿轴向方向形成第一排出槽111c以便把制冷剂排出到外壳1中。

第一叶片狭缝111a用来把第一叶片115沿径向方向滑动地插入并安装到它里面,并且通过在第一叶片狭缝111a的后端形成第一扩展槽111d,安装由压缩弹簧形成的第一叶片弹簧116,以便在第一叶片狭缝111a的后侧,即在第一扩展槽111d弹性地支撑第一叶片115。

第一进口111b径向地形成以致于从第一气缸111的外周向表面到其内周向表面穿透第一气缸111,并且其入口端直接与储液器130的第一出口131连通。此外,相对于将在后面描述的第二排出槽121c,第一进口111b和第一排出槽111c可形成在同一轴线上。然而,为了精确地控制压缩机,优选的是,它们形成在同一轴线上。

同时,虽然未在附图中示出,但是,除第一叶片弹簧外,也可以由相同极性相互朝向的永久磁铁支撑第一叶片115。

第二压缩单元120包括:第二气缸121,它具有环形的形状并安装在外壳1内部第一气缸111的下方;中支撑件113和下支撑件122,它们覆盖第二气缸21的上下侧,形成第二内部空间(V2)并在径向和轴向方向上支撑旋转轴3;第二滚动活塞123,它可旋转地与旋转轴3的下偏心部分接合并压缩制冷剂,并在第二气缸121的第二内部空间(V2)内绕动;第二叶片(示出于图3)124,它可移动地与第二气缸121沿径向方向接合,从而挤压接触第二滚动活塞123的外周向表面并把第二气缸121的第二内部空间(V2)分成第二吸入室和第二压缩室;第二叶片弹簧125,它是压缩弹簧,用来弹性地支撑第二叶片124的后侧;以及第二排出阀25(示出于图1),它可打开地与形成于下支撑件122的中心附近的第二排出口22a的前端接合,并控制从第二室排出的制冷剂气体的排出。

第二气缸121在形成第二内部空间(V2)的内周向表面的一侧形成第二叶片狭缝使得第二叶片124沿径向方向往复运动,基于叶片狭缝121a在周向的一侧上沿径向方向形成第二进口121b以便把制冷剂引入第二内部空间(V2),并且基于第二叶片狭缝121a在周向的另一侧沿径向方向形成第二排出槽121c以便把制冷剂排出到外壳1中。

第二叶片狭缝121a用来把第二叶片124沿径向方向滑动地插入并安装到它里面,并形成第二扩展槽121d,以便使该第二扩展槽121d从内部空间分离。此外,包括压缩弹簧以便弹性地支撑第二叶片124的第二叶片弹簧125安装在第二扩展槽121d中,并且将在后面描述的制冷剂切换阀140的叶片侧出口143与第二叶片狭缝121a的入口端连接,即通过第二制冷剂导管152与第二扩展槽121d连接。

此外,优选地,提供用来限制第二叶片124的回缩距离的第二止动器(未示出),用来防止第二叶片弹簧125被压缩以致于使它的弹簧圈部分相互接触。

第二进口121b径向地形成以从第二气缸121的外周向表面到其内周向表面穿透第二气缸121,并且其入口端通过第一制冷剂导管151连接到将在后面描述的制冷剂切换阀140的气缸侧出口142。

虽然未在附图中示出,但是,除第二叶片弹簧外,也可以由相同极性相互朝向的永久磁铁(未示出)支撑第二叶片115。

同时,制冷剂切换阀140形成进口侧入口141并把进口侧入口141连接到储液器130的第一出口131,形成进口侧入口142并把进口侧入口142连接到第二气缸121的第二进口121b,形成叶片侧出口143并把叶片侧出口143连接到第二气缸121的叶片狭缝121a,以及形成排出侧入口144并把排出侧入口144连接到从排气管(DP)的中部叉出的旁通管154。

与现有技术中的那些相同的本发明的部分给予相同的参考标记。

未描述的参考标记2a、2b和160分别表示定子、转子和排出侧开关阀,该开关阀用来把排气管与旁通管连接或从旁通管断开。

根据本发明的容量可变型双旋转压缩机具有以下操作效果。

就是说,如果当动力供给到电机单元2的定子2a时转子2b旋转,则旋转轴3与转子2b一起旋转并把电机单元2的旋转力传递到第一压缩单元110和第二压缩单元120。第二压缩单元120根据空调器所需要的容量执行动力驱动以产生大容量制冷能力,或执行节能驱动以产生小容量制冷能力。

这里,在假设第一压缩单元110进行正常动力驱动而第二压缩单元120根据空调器所需要的容量重复可变驱动的情况下,将更详细地描述根据本发明的容量可变型双旋转压缩机的运转。

例如,在第一压缩单元110中,控制成:平衡压力的制冷剂(Pb)总是供给到气缸111的进口111b,并且通过第一叶片弹簧116,第一叶片115总是与第一滚动活塞114的外周向表面接触,以便把第一内部空间(V1)的压缩室和吸入室相互分开。因此,压缩机正常工作。

同时,如图7和8所示,当第二压缩单元120处于启动状态时,制冷剂切换阀140的进口侧入口141与气缸侧出口142连通,且储液器130通过第三制冷剂导管153与第二气缸121的第二进口121b连接,由此,将被逐渐减小的平衡压力的制冷剂气体(Pb)通过第二气缸121的第二进口121b被吸入第二内部空间(V2)。在另一方面,当制冷剂切换阀140的排出侧入口144与叶片侧出口143连通且排气管(DP)通过旁通管154与第二扩展槽121d连接时,将被逐渐减小的平衡压力的制冷剂气体被吸入第二气缸121的叶片狭缝121a的外直径侧,即吸入第二扩展槽121d。然而,当外壳1内部的压力仍然保持平衡压力时,通过排气管(DP)、制冷剂切换阀140的叶片侧出口143和第二制冷剂导管152流入第二扩展槽121d并因而推动第二叶片124的后端的压力(Pb),和第二内部空间(V2)的压缩室压力(Pb)保持近似平衡的状态。因此,第二叶片124由包括压缩弹簧或磁体的叶片支撑单元125的排斥力(F)推动,向着轴中心移动并由第二滚动活塞123的外周向表面压挤。结果,通过防止所谓的叶片跳跃现象(第二叶片124和第二滚动活塞123不断地相互分离)而进行正常的压缩。

接下去,如图7和9所示,当第二压缩单元120处于动力状态时,在制冷剂切换阀140保持与前述的启动状态相同的状态时,控制成,吸入压力(Ps)的制冷剂总被供给到第二气缸121的第二进口121b,而排出压力(Pd)的制冷剂总被供给到叶片狭缝121a的外直径侧,即供给到第二扩展槽121d。因此,第二叶片124由叶片狭缝121a的外直径侧的第二扩展槽121d和吸入室之间的压差和第二叶片支撑单元125的排斥力(F)推动,并因而保持第二叶片124由第二滚动活塞123的外周向表面压挤的状态。结果,正常压缩继续。

接下去,如图7和10所示,当第二压缩单元120处于节能状态时,当制冷剂切换阀140的排出侧入口144和气缸侧出口142相互连通且排气管(DP)和第二气缸121的进口121b通过旁通管154相互连接时,排出压力(Pd)的制冷剂气体通过第二气缸121的进口121b被吸入第二内部空间(V2)。在另一方面,当制冷剂切换阀140的进口侧入口141和叶片侧出口143相互连通,且储液器130和第二扩展槽121d通过第三制冷剂导管153相互连接时,吸入压力(Ps)的制冷剂气体通过第二制冷剂导管152被吸入第二气缸121的第二扩展槽121d。这里,由于通过第二气缸121的进口121b吸入的制冷剂气体的压力大于通过把吸入第二扩展槽121d的制冷剂气体的压力和第二叶片支撑单元125的排斥力加起来获得的动力,第二叶片124向后侧缩回并从第二滚动活塞123分离,并因而在第二气缸121内不发生压缩。

接下去,如图7和11所示,当第二压缩单元121的驱动状态从节能状态改变到动力状态时,当制冷剂切换阀140的排出侧入口144从气缸侧出口142切换到叶片侧出口143并和叶片侧出口143连通,而排气管(DP)通过旁通管154与第二扩展槽221d连接时,将逐渐处于排出压力(Pb)状态的中间压力(Ps+b)的制冷剂气体通过第二制冷剂导管152被吸入第二气缸121的第二扩展槽121d。在另一方面,当制冷剂切换阀140的进口侧入口141从叶片侧出口143切换到气缸侧出口142并与气缸侧出口142连通,且储液器130通过第三制冷剂导管153连接到第二气缸121的进口121b时,将逐渐处于第二压力(Pd-a)状态的制冷剂气体通过第一制冷剂导管151和第二气缸121的进口121b被吸入第二内部空间(V2)。这里,当切换驱动时,由于第二中间压力(Pd-a)高于第一中间压力(Ps+b)并随后颠倒的这种不稳定状态延续,可能发生第二叶片124连接到第二滚动活塞123的外周向表面并从该表面分离的叶片跳跃现象。

然而,由于支撑第二叶片124的第二叶片支撑单元125的排斥力(F)大于第二中间压力(Pd-a)和第一中间压力(Ps+b)之间的压差,因而第二叶片124总是与第二滚动活塞123的外周向表面接触。

因此,可以防止发生由叶片跳跃引起的噪音。

同时,下面将描述根据本发明的容量可变型双旋转压缩机的另一实施例。

就是说,在上述的一个实施例中,第一压缩单元和第二压缩单元中的一个压缩单元包括压力改变单元和叶片侧压力改变单元,以便通过改变压缩单元的驱动状态来增加和减小压缩机容量。然而,在本实施例中,第一压缩单元和第二压缩单元都分别具有气缸侧压力改变单元和叶片侧压力改变单元,以便独立地控制两个压缩单元的驱动状态,使得通过根据多于两个步骤的改变,可以增加和减小压缩机容量。

图12是在根据本发明的容量可变型双旋转压缩机的另一实施例中用来改变容量的简图,而图13到16是平面图,示出了在根据本发明的容量可变型双旋转压缩机的另一实施例中根据每个驱动状态的叶片的变化。

如在此示出的,根据本发明的容量可变型双旋转压缩机包括:外壳1,它安装吸气管(SP)和排气管(DP),使得吸气管(SP)和排气管(DP)相互连通;电机单元2,它安装在外壳1的上侧并产生旋转力;以及竖直地安装在外壳1的下侧的第一压缩单元210和第二压缩单元220,它们借助旋转轴3接收由电机单元2产生的旋转力并单独地压缩制冷剂。

此外,一个用来从吸入的制冷剂分离液体制冷剂的储液器230安装在吸气管(SP)与压缩单元210和220中每一个之间。为四通阀的第一制冷剂切换阀240安装在储液器的出口230和排气管(DP)之间,用来切换制冷剂并把制冷剂供给到第一压缩单元210和第二压缩单元220。

此外,储液器130的第一出口131通过第三制冷剂导管263与将在后面描述的第一制冷剂切换阀240的进口侧入口241连接,并且储液器230的第二出口232通过第七制冷剂导管267连接到将在后面描述的第二制冷剂切换阀250的进口侧入口251。

第一压缩单元210包括:第一气缸211,它具有环形的形状并安装在外壳1的内部;主支撑件212和中支撑件213,它们覆盖第一气缸211的上下侧,形成第一内部空间(V1)并径向支撑旋转轴3;第一滚动活塞214,它可旋转地与旋转轴3的上偏心部分接合并压缩制冷剂,并在第一气缸211的第一内部空间(V1)内绕动;第一叶片(未示出)215,它可移动地与第一气缸211沿径向方向接合,从而挤压接触第一滚动活塞214的外周向表面并把第一气缸211的第一内部空间(V1)分成第一吸入室和第一压缩室;第一叶片弹簧216,它是压缩弹簧,用来弹性地支撑第一叶片215的后侧;以及第一排出阀15(示出于图1),它可打开地接合到形成于主支撑件212的中心附近的第一排出口12a(示出于图1)的前端,以便控制从第一内部空间(V1)的压缩室排出的制冷剂的排出。

第一气缸211在形成第一内部空间(V1)的内表面的一侧形成第一叶片狭缝211a使第一叶片215沿径向方向往复运动,在第一叶片狭缝211a的一侧沿径向方向形成第一进口211b以便把制冷剂引入第一内部空间(V1),并且在第一叶片狭缝211a的另一侧形成第一排出槽211c以便把制冷剂排出到外壳1中。

第一叶片狭缝211a用来把第一叶片215沿径向方向滑动地插入并安装到它里面,并在外直径侧形成第一扩展槽221d,以便使该第一扩展槽221d从外壳1的内部空间分离。

此外,由压缩弹簧形成的以便弹性地支撑第一叶片215的第一叶片弹簧216安装在第一叶片狭缝211a的后侧,即安装在第一扩展槽211d,并且将在后面描述的第一制冷剂切换阀240的叶片侧出口243与第一叶片狭缝211a的入口端连接,即通过第二制冷剂导管252与第二扩展槽221d连接。此外,第一叶片狭缝211a和将在后面描述的第二叶片狭缝221a可以不在同一轴线上形成。然而,为了精确地控制压缩机,优选的是,它们形成在同一轴线上。此外,优选地,用来限制第一叶片125的回缩距离的第一止动器(未示出)被布置到第一叶片狭缝211a,用来防止第二叶片弹簧225被压缩以致于使它的弹簧圈部分相互接触。

第一进口211b径向地形成从而从第一气缸211的外周向表面到其内周向表面穿透第一气缸211,并且其入口端通过第一制冷剂导管261直接与第一制冷剂切换阀240的气缸侧出口242连通。

此外,相对于将在后面描述的第二排出槽221c,第一进口211b和第一排出槽211c可不形成在同一轴线上。然而,为了精确地控制压缩机,优选的是,它们形成在同一轴线上。

同时,虽然未在附图中示出,但是,除第一叶片弹簧外,也可以由相同极性相互朝向的永久磁铁支撑第一叶片215。

第二压缩单元120包括:第二气缸121,它具有环形的形状并安装在外壳1内部第一气缸111的下方;中支撑件113和下支撑件122,它们覆盖第二气缸21的上下侧,形成第二内部空间(V2)并在径向和轴向方向上支撑旋转轴3;第二滚动活塞123,它可旋转地与旋转轴3的下偏心部分接合并压缩制冷剂,并在第二气缸121的第二内部空间(V2)内绕动;第二叶片(示出于图3)124,它可移动地与第二气缸121沿径向方向接合,从而挤压接触第二滚动活塞123的外周向表面并把第二气缸121的第二内部空间(V2)分成第二吸入室和第二压缩室;第二叶片弹簧125,它是压缩弹簧,用来弹性地支撑第二叶片124的后侧;以及第二排出阀25(示出于图1),它可打开地与形成于下支撑件122的中心附近的第二排出口22a的前端接合,并控制从第二室排出的制冷剂气体的排出。

第二气缸121在形成第二内部空间(V2)的内周向表面的一侧形成第二叶片狭缝使得第二叶片124沿径向方向往复运动,基于叶片狭缝121a在周向的一侧上沿径向方向形成第二进口121b以便把制冷剂引入第二内部空间(V2),并且基于第二叶片狭缝121a在周向的另一侧沿径向方向形成第二排出槽121c以便把制冷剂排出到外壳1中。

第二叶片狭缝121a用来把第二叶片124沿径向方向滑动地插入到它里面,并在外直径侧形成第二扩展槽221d,以便与从外壳1分离。此外,包括压缩弹簧以便弹性地支撑第二叶片224的第二叶片弹簧225安装在第二叶片狭缝221a的后侧,即安装在第二扩展槽221d,并且将在后面描述的第二制冷剂切换阀250的叶片侧出口253通过第五制冷剂导管266与第二叶片狭缝221a的入口端连接。

此外,优选地,提供用来限制第二叶片224的回缩距离的第二止动器(未示出),用来防止第二叶片弹簧225被压缩以致于使它的弹簧圈部分相互接触。

第二进口221b径向地形成以从第二气缸121的外周向表面到其内周向表面穿透第二气缸121,并且其入口端通过第四制冷剂导管265连接到将在后面描述的制冷剂切换阀250的气缸侧出口252。

虽然未在附图中示出,但是,除第一叶片弹簧外,也可以由相同极性相互朝向的永久磁铁(未示出)支撑第二叶片224。

同时,第一制冷剂切换阀240形成进口侧入口241并把进口侧入口241连接到储液器230的第一出口231,形成第一气缸侧出口242并把第一气缸侧出口242连接到第一气缸211的第一进口211b,形成第一叶片侧出口243并把第一叶片侧出口243连接到第一气缸211的第二扩展槽211d,以及形成第一排出侧入口244并把第一排出侧入口244连接到从排气管(DP)的中部叉出的第一旁通管264。

此外,第二制冷剂切换阀250形成进口侧入口251并把进口侧入口251连接到储液器230的第二出口232,形成第二气缸侧出口252并把第二气缸侧出口252连接到第二气缸221的进口221b,形成第二叶片侧出口253并把第二叶片侧出口253连接到第二气缸221的第二扩展槽221d,以及形成第二排出侧入口254并把第二排出侧入口254连接到从排气管(DP)的中部叉出的第二旁通管268。

与现有技术中的那些相同的本发明的部分给予相同的参考标记。

未描述的参考标记2a、2b、271和272分别表示定子、转子和排出侧开关阀,该开关阀用来把排气管与第一旁通管连接或从第一旁通管断开,和用来把排气管与第二旁通管连接或从第二旁通管断开。

根据本发明的容量可变型双旋转压缩机具有以下操作效果。

就是说,如果当动力供给到电机单元2的定子2a时转子2b旋转,则旋转轴3与转子2b一起旋转并把电机单元2的旋转力传递到第一压缩单元210和第二压缩单元220。第一压缩单元210和第二压缩单元220均根据空调器所需要的容量执行动力驱动。或者,第一压缩单元210和第二压缩单元220中的一个执行动力驱动,而另一个压缩单元执行节能驱动以便由此产生定相的小容量制冷能力。

这里,在假设第一压缩单元210进行正常动力驱动而第二压缩单元220根据空调器所需要的容量重复可变驱动的情况下,将更详细地描述根据本发明的容量可变型双旋转压缩机的运转。

尽管第一压缩单元或第二压缩单元都可以进行可变驱动,但在图13到16中,第二压缩单元执行可变驱动。

就是说,在第一压缩单元210中,当第一制冷剂切换阀240的第一排出侧入口244与第一气缸侧出口242连通,且第一进口侧入口241与第一叶片侧出口243连通时,控制成,排出压力(Pd)的制冷剂总被供给到第一气缸211的第一进口211b,且吸入压力(Ps)的制冷剂总被供给到第一气缸211的第二扩展槽211d,以致于第一叶片215总是与第一滚动活塞214的外周向表面接触,从而把第一内部空间(V1)的压缩室和吸入室相互分离。

同时,如图12和13所示,当第二压缩单元220处于启动状态时,制冷剂切换阀250的进口侧入口251与气缸侧出口252连通,且第二气缸221的第二制冷剂切换阀250的进口251通过第六制冷剂导管267与储液器230连接,由此,将被逐渐减小的平衡压力(Pb)的制冷剂气体通过第二气缸221的进口221b被吸入第二内部空间(V2)。在另一方面,当制冷剂切换阀250的排出侧入口254与叶片侧出口253连通,且排气管(DP)通过第二旁通管268与第二扩展槽221d连接时,将被逐渐减小的平衡压力的制冷剂气体被吸入第二气缸221的第二扩展槽221d。这里,外壳1的内部压力逐渐增加,高压制冷剂被供给到与它连接的第二扩展槽221d。

因此,第二叶片224由施加在后表面的压力和包括压缩弹簧或磁体的叶片支撑单元225的排斥力(F)推向轴中心,并由第二滚动活塞223的外周向表面压挤。结果,通过防止所谓的叶片跳跃现象(第二叶片224和第二滚动活塞223不断地相互分离)而进行正常的压缩。

接下去,如图12和14所示,为了使第二压缩单元220处于动力状态,在制冷剂切换阀250保持与前述的启动状态相同的状态时,控制成,吸入压力(Ps)的制冷剂总被供给到第二气缸121的进口221b,而排出压力(Pd)的制冷剂总被供给到第二扩展槽221d。因此,第二叶片224由第二扩展槽221d和吸入室之间的压差与包括压缩弹簧或磁体的第二叶片支撑单元225的排斥力(F)推动,并保持第二叶片224由第二滚动活塞223的外周向表面压挤的状态。结果,正常压缩继续。

接下去,如图12和15所示,当第二压缩单元220处于节能状态时,且当第二制冷剂切换阀250的排出侧入口254和气缸侧出口252相互连通时,排出压力(Pd)的制冷剂气体通过排气管(PD)、第二旁通管268、第二制冷剂切换阀250的气缸侧出口252和第四制冷剂导管265并被导向到第二气缸22的进口221b,并且该制冷剂通过第二气缸221的进口221b被吸入第二内部空间(V2)。在另一方面,当制冷剂切换阀250的进口侧入口251和叶片侧出口253相互连通,且储液器230和第二气缸221的第二扩展槽221d通过第六制冷剂导管267相互连接时,吸入压力(Ps)的制冷剂气体被吸入第二叶片224的后侧,即吸入第二气缸221的第二扩展槽221b。这里,由于通过第二气缸221的进口221b吸入的制冷剂气体的压力大于通过把吸入第二扩展槽221d的制冷剂气体的压力和第二叶片支撑单元225的排斥力(F)加起来获得的动力,第二叶片224向后侧缩回并从第二滚动活塞223分离,并因而在第二气缸221内不发生压缩。

接下去,如图12和16所示,当第二压缩单元220的驱动状态从节能状态改变到动力状态时,当第二制冷剂切换阀250的排出侧入口254从气缸侧出口252切换到叶片侧出口253并和叶片侧出口253连通,而排气管(DP)通过第二旁通管268与第二扩展槽221d连接时,将逐渐处于排出压力(Pb)状态的第一中间压力(Ps+b)的制冷剂气体被吸入第二气缸221的第二扩展槽221d。在另一方面,当第二制冷剂切换阀250的进口侧入口251从叶片侧出口253切换到气缸侧出口252并与气缸侧出口252连通,且储液器230通过第六制冷剂导管267连接到第二气缸221的进口221b时,将逐渐处于第二压力(Pd-a)状态的制冷剂气体通过第二气缸121的进口221b被吸入第二内部空间(V2)。这里,当改变压缩单元的驱动时,由于第二中间压力(Pd-a)高于第一中间压力(Ps+b)并随后颠倒的这种不稳定状态延续某一压力段,从而可能发生第二叶片224连接到第二滚动活塞223的外周向表面并从该表面分离的叶片跳跃现象。然而,由于支撑第二叶片224的第二叶片支撑单元225的排斥力(F)大于第二中间压力(Pd-a)和第一中间压力(Ps+b)之间的压差,因而第二叶片224总是与第二滚动活塞223的外周向表面接触。因此,可以防止发生由叶片跳跃引起的噪音。

同时,如上所述,在需要时,第二压缩单元220执行正常动力驱动,而第一压缩单元210执行可变驱动,由此可改变压缩机的容量。在这种情况下,在与上述的一个实施例中的第一制冷剂切换阀240相同地操作第二制冷剂切换阀250的状态下,与上述的一个实施例的第二制冷剂切换阀250相同地操作第一制冷剂切换阀240,以便由此执行启动、动力、节能和驱动切换状态。

由此,通过分成三个步骤,可以控制压缩机的容量。例如,当第一压缩单元210设为总容量的60%,而第二压缩单元设为总容量的40%时,压缩单元210和220均执行正常驱动从而获得100%的制冷能力,即压缩机的总容量。在一方面,如果第一压缩单元210执行正常状态下的驱动,而第二压缩单元处于节能状态,则可获得40%的制冷能力。如果第一压缩单元210执行节能状态下的驱动,而第二压缩单元处于正常状态,则可获得60%的制冷能力。

以下将进行描述当这种压缩机应用到空调器时的操作。

就是说,如图17所示,利用安装在空调器的室内换热器上的温度传感器检测室内温度。如果室内温度达到[期望温度+0.5度],则关闭MICOM继电器(未示出),并且压缩机改变到动力驱动模式。

接下去,如果室内温度再次增加并连续地处于[期望温度+0.5度]两分钟,则压缩机再次改变到动力驱动模式。在另一方面,如果室内温度减小并到达[期望温度-1.0度],则压缩机停止。

这里,在压缩机改变到节能驱动模式并执行节能驱动后,如果压缩机由于室内温度的降低而连续停止两次,则压缩机改变到连续的节能驱动模式。优选地,如果压缩机的节能驱动模式的持续时间超过特定时间段,则压缩机立即改变到动力驱动模式并随后返回到早期阶段。

作为参考,图18是示出了前述空调器驱动方法的一个实例根据时间的展开曲线图。

如至此所描述的,在容量可变型双旋转压缩机中,在叶片的驱动可能是不稳定的启动状态和驱动切换状态中,该压缩机被构造成使得叶片可以快速地并稳定地与滚动活塞接触,以便防止在改变容量时由叶片产生噪音,从而显著减小压缩机噪音,并且即使在动力模式中,压缩机也可以启动而没有由叶片跳跃产生的噪音,因此,当该压缩机应用到空调器时,就可以快速地把室内温度设定到舒适的温度。

此外,由于压缩机被构造成第一压缩单元和第二压缩单元均可被控制,因而当各个压缩单元的容量不同时,可根据多于两个的步骤改变压缩机容量,因而可以满足例如空调器的组装产品的各种需要,并且通过减小不必要的动力浪费而减小动力消耗。

本发明通过防止噪音可以大大地减小压缩机的噪音,通过允许压缩机的容量根据两个以上的步骤改变而满足例如空调器的组装产品的各种需要,并且通过减小不必要的动力消耗而增加能量效率。

虽然本发明能够以数种形式实施而不偏离其要旨或必要特征,但也应理解到,除非以其它方式指定,上述实施例不受前述的任何细节的限制,而是应解释为广泛地处于本发明的要旨和如在所附权利要求中限定的范围内,因此意味着所附权利要求包含属于权利要求范围或其等同围内的所有改变和修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号