首页> 中国专利> 投影镜头及使用该投影镜头的投影式显示装置及背面投影式显示装置

投影镜头及使用该投影镜头的投影式显示装置及背面投影式显示装置

摘要

提供这样一种投影镜头,它既是正面投影,又有良好的像差性能,能够以合理的结构来实现对投影式显示装置要求的以下性能,即低F值、广角、长后焦距、高周边光量比。本发明是把空间光调制元件(设置在像面5附近)上形成的光学图像放大投影到屏幕(4)上的本发明的投影镜头(1)具有:由上述屏幕(4)侧向像面(5)侧依次设置的前侧透镜组(2)和后侧透镜组(3)。在后侧透镜组(3)中上设置相对于在上述前侧透镜组(2)和后侧透镜组(3)共通的光轴(7)偏心的光圈(6)。使上述后侧透镜组(3)不旋转而是使其在上述光轴(7)方向上移动,进行聚焦调整。

著录项

  • 公开/公告号CN1860398A

    专利类型发明专利

  • 公开/公告日2006-11-08

    原文格式PDF

  • 申请/专利权人 松下电器产业株式会社;

    申请/专利号CN200480028548.1

  • 发明设计人 和田充弘;

    申请日2004-06-24

  • 分类号G02B13/16(20060101);G02B13/18(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人胡建新

  • 地址 日本大阪府

  • 入库时间 2023-12-17 17:51:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-08-13

    未缴年费专利权终止 IPC(主分类):G02B13/16 授权公告日:20080220 终止日期:20130624 申请日:20040624

    专利权的终止

  • 2008-02-20

    授权

    授权

  • 2007-01-03

    实质审查的生效

    实质审查的生效

  • 2006-11-08

    公开

    公开

说明书

及背面投影式显示装置

技术领域

本发明涉及把空间光调制元件上形成的光学图像放大投影到屏幕上的投影镜头、以及使用该投影镜头的投影式显示装置和背面投影式显示装置。

背景技术

过去,大画面用的图像设备,已知的是采用各种空间光调制元件的投影式显示装置。并且,最近,引人注目的是像DMD(数字微镜装置)那样的显示效率高的反射式空间光调制元件(例如参照特开2000-98272号公报)。

图29表示作为空间光调制元件而采用DMD的投影式显示装置的结构。图29A表示平面图,图29B表示侧面图。并且,图30表示说明DMD工作原理的概要图。

如图29所示,该投影式显示装置具有:发出白色光的灯251;对从灯251来的发出光进行聚光的椭圆面镜252;从灯251的发出光中除去紫外线和红外线的VU-IR滤光镜253;设置在椭圆面镜252的长焦点附近,依次有选择地使红(R)、绿(G)、蓝(B)三原色透射的旋转式滤色镜254;聚光透镜256;平面反射镜257;对入射光进行调制,形成光学图像的DMD258;把DMD258上形成的光学图像放大投影到屏幕(未图示)上的投影镜头259。

旋转式滤色镜254是把红、绿、蓝滤色镜组合成圆盘状来构成的,利用马达255使该旋转式滤色镜254旋转,即可使由椭圆面镜252聚光后的光中的红、绿、蓝光依次有选择地透射。并且,由此,把红、绿、蓝的照明光依次供给到DMD258上。

聚光镜256把透射旋转式滤色镜254的发散光会聚起来,高效率地引入到DMD258和投影镜头259内。

如图30所示,DMD258是对每个像素分别设置的微镜261进行2维排列而构成的。并且,对每个像素,利用微镜261正下边所设置的存储元件的静电场作用来控制该微镜261的倾斜,利用入射光的反射角度的变化来形成通/断状态。

在此,对于微镜相对于DMD面倾斜±10度的情况,参照图13进行说明。图31是表示DMD上的微镜的工作原理的模式图。如图31所示,若向DMD内射入相对于该元件面的法线倾斜20度的光272,则在微镜261为“通”的状态(倾斜角+10度)时,反射光273射入到投影镜头259内,在屏幕上显示出白色像素。另一方面,当微镜261为“断”的状态(倾斜角为-10度)时,反射光274不射入到投影镜头259内,在屏幕上显示出黑的像素。所以,对各个像素,通过在时间上对通/断的切换进行控制,即可表现出灰度。并且,同时,根据被供给的照明光的颜色来驱动DMD,即可进行彩色显示。

如图30所示,DMD258上的各个微镜261相对于显示区的长轴262,例如向方位角45度的方向倾斜。

如图29所示,平面反射镜257设置成这样的状态,即对从聚光镜256中射出的光的光路以3维方式返回,使该光按规定的入射角射入到DMD258内。

而且,为了避免投影镜头259和平面反射镜257等的光学部件的干扰,必须使照明光的光轴和投影光的光轴所形成的角度尽量增大。因此,DMD258的中心轴258a与投影镜头259的光轴260不一致,DMD258和投影镜头259设置在光轴互相偏置(偏移)的状态下。所以,投影镜头259在有效像圈中仅使用一部分视场角,对DMD258上的光学图像进行投影。

一般,对于像上述那样的投影式显示装置中所使用的投影镜头,有以下要求。

第1,要求具有高分辩率性能。这对于投影高清晰电视等高精细图像来说是很重要的,因此,必须具有包括应变弯曲在内的良好像差性能。

第2,要求具有低F数值。这对于获得明亮的投影图像来说是很重要的,因此,最好能够以广角来对从光阀射出的光进行聚光。

第3,要求具有达到画面周边的高开口效率。这对抑制投影图像的画面周围部分的光量降低是很重要的。

第4,要求能够以短的投影距离来实现大画面投影。也就是说,最好是广角透镜,因此,需要焦距短的透镜。

第5,要求具有足够长的后焦距空间。这对分离投影光和照明光,确保有足够空间来设置光学部件是很重要的。

第6,要求图像质量和亮度的均匀性良好。

在实际的透镜设计中,重要的是如何以合理且批量生产率高的结构来实现这些要求的性能。

对此,过去的投影镜头以及采用它的投影式显示装置存在以下问题。

一般,为实现更合理结构的透镜,减小F数值和获得更好的像差性能是互相矛盾的要求。并且,要求广角和确保长的后焦距也是一样。

所以,很难实现既能够完全满足上述要求性能,又能够合理且批量生产率高的投影镜头。

并且,过去,为了避免投影光和照明光的光路干扰,或者投影镜头和平面反射镜等光学部件的干扰,一般,把空间光调制元件和投影镜头设置在光轴互相偏移的状态下,进行偏移投影(参见图29)。偏移投影是使作为投影对象的空间光调制元件的显示区在投影镜头的有效像圈内偏移来进行投影的方法。在利用该方法的情况下,投影图像的画面视角对称性受到损害。其结果,在采用偏移投影的情况下,存在的问题是,投影图像的分辩率和亮度相对于其画面中心不对称。并且,仅使用有效像圈的一部分画面视角,所以,浪费增多,不能够合理化。再者,在利用透射式屏幕来构成的背面投影式显示装置中若采用偏移投影,则该透射式屏幕也必须偏移,在合理性这一点上,存在的问题是,对背面投影式显示装置不适合偏移投影。

对此,过去提出了在投影镜头和空间光调制元件(例如DMD)之间设置全反射棱镜,不需要投影系统偏移的结构(以下称为“正面投影”)(例如参照WO98/29773号公报)。

但是,该结构由于全反射棱镜非常贵,所以,妨碍包括投影镜头在内的投影系统的合理化。并且,由于全反射棱镜的内部包含微小的空气层,所以存在的问题是该空气层的间隙公差造成投影镜头的像差性能显著降低。

发明内容

本发明是解决现有技术的上述问题的方案,其目的是提供这样一种投影镜头,它既是正面投影,又有良好的像差性能,能够以合理的结构来实现对投影式显示装置要求的性能,即低F值、广角、长后焦距、高周边光量比。并且,本发明的目的是提供一种用该投影镜头能够提高亮度,显示出高质量图像的投影式显示装置和背面投影式显示装置。

为了达到上述目的,涉及本发明的投影镜头,把空间光调制元件上形成的光学图像放大投影到屏幕上,其特征在于,具有从上述屏幕侧向像面侧依次设置的前侧透镜组和后侧透镜组,上述后侧透镜组具有相对于在上述前侧透镜组和后侧透镜组共通的光轴偏心的光圈,使上述后侧透镜组不旋转而是使其在上述光轴方向上移动,由此进行聚焦调整。

最好在上述本发明的投影镜头的结构中,通过使上述前侧透镜组在上述光轴方向上移动,来进行倍率调整。

最好在上述本发明的投影镜头的结构中,在上述后侧透镜组和上述像面之间还具有辅助透镜组。并且,在此情况下,最好上述辅助透镜组由凸面朝向上述屏幕侧的1块平凸透镜构成。

再者,在此情况下,最好上述前侧透镜组由负倍率的第1透镜组构成;上述后侧透镜组由从上述屏幕侧起依次设置的正倍率的第2透镜组和正倍率的第3透镜组构成,上述辅助透镜组由正倍率的第4透镜组构成,当把上述第1透镜组和上述第2透镜组之间的轴上空气间隔设为t12,把上述第3透镜组和上述第4透镜组之间的轴上空气间隔设为t34,把全系统的焦距设为f时,满足下列各条件式:

                 6.2<t12/f<10.5……(1)

                 2.7<t34/f<4.4……(2)。

在此情况下,还最好上述第1透镜组由从上述屏幕侧起依次设置的、凸面朝向上述屏幕侧且至少1个面是非球面的负凹凸透镜和负透镜构成;上述第2透镜组由从上述屏幕侧起依次设置的、正透镜、负透镜和正透镜的粘合透镜、以及凸面朝向上述屏幕侧的正凹凸透镜构成;上述第3透镜组由从上述屏幕侧起依次设置的,凸面朝向上述屏幕侧的负凹凸透镜、正透镜、正透镜和负透镜的粘合透镜、正透镜和正透镜构成;上述第4透镜组由1块正透镜构成。

再者,在此情况下,最好当把构成上述第2透镜组中所包含的上述粘合透镜的上述正透镜的阿贝数和折射率设为v2p、n2p,把构成上述第2透镜组中所包含的上述粘合透镜的上述负透镜的阿贝数和折射率设为v2n、n2n时,满足以下各条件式:

                  v2p<v2n……(8)

                  n2p<n2n……(9)。

再者,在此情况下,最好当把构成上述第3透镜组中所包含的上述粘合透镜的上述正透镜的阿贝数和折射率设为v3p、n3p,把构成上述第3透镜组中所包含的上述粘合透镜的上述负透镜的阿贝数和折射率设为v3n、n3n时,满足以下各条件式:

                  v3p>v3n……(10)

                  n3p<n3n……(11)。

在此情况下,还最好上述第1透镜组由从上述屏幕侧起依次设置的、凸面朝向上述屏幕侧且至少1个面是非球面的负凹凸透镜和负透镜构成;上述第2透镜组由从上述屏幕侧起依次设置的、正透镜、凸面朝向上述屏幕侧的负凹凸透镜、以及凸面朝向上述屏幕侧的正凹凸透镜构成;上述第3透镜组由从上述屏幕侧起依次设置的、负透镜和正透镜的第1粘合透镜、负透镜和正透镜的第2粘合透镜、以及正透镜构成;上述第4透镜组由1块正透镜构成。

再者,在此情况下,最好当把构成上述第3透镜组中所包含的上述粘合透镜的上述正透镜的阿贝数和折射率设为v3p、n3p,把构成上述第3透镜组中所包含的上述粘合透镜的上述负透镜的阿贝数和折射率设为v3n、n3n时,满足以下各条件式:

                  v3p>v3n……(10)

                  n3p<n3n……(11)。

在此情况下,还最好上述光圈设置在上述第2透镜组和上述第3透镜组之间。

在此情况下,还最好上述第1透镜组的最靠近上述屏幕的位置上设置的透镜是非球面透镜。

在此情况下,还最好上述辅助透镜组由凸面朝向上述屏幕侧的1块平凸透镜构成。

在此情况下,还最好上述第3透镜组的最靠近上述空间光调制元件的位置上设置的透镜由异常分散玻璃构成。

在此情况下,还最好当把上述第4透镜组和上述像面之间的轴上空气间隔设为d时,满足下列各条件式:

                 1.6<t34/d<2.6……(3)

                 4.2<(t34+d)/f<6.0……(4)。

在此情况下,还最好当把上述第1透镜组的焦距设为f1,把上述第2透镜组的焦距设为f2,把上述第3透镜组的焦距设为f3时,满足下列各条件式:

                 -2.9<f1/f<-2.1……(5);

                 7.3<f2/f<14.5……(6);

                  5.7<f3/f<7.5……(7)。

最好在上述本发明的投影镜头的结构中,在上述前侧透镜组和上述后侧透镜组之间还具有光路弯曲机构。并且,在此情况下,最好上述光圈在与包含上述光路弯曲机构的前后的上述光轴的面相平行或者相垂直的方向上偏心。并且,在此情况下,最好将上述光路弯曲机构的前后的上述光轴所形成的角度设为θ时,满足以下关系式:

                 45度≤θ≤90度……(13)。

并且,在此情况下,最好上述光路弯曲机构是介质多层膜反射镜。

最好在上述本发明的投影镜头的结构中,上述光圈的开口部大致上是椭圆形状。并且,在此情况下,最好当把上述光圈的偏心量设为D1,把上述光圈的位置上的有效开口半径设为D2时,满足下面的条件式:

D1/D2<0.5……(12)。

最好在上述本发明的投影镜头的结构中,上述空间光调制元件的有效显示区是具有长轴和短轴的矩形状,上述光圈在沿着上述长轴的方向或者沿着上述短轴的方向上偏心。

并且,涉及本发明的投影式显示装置,具有:空间光调制元件,形成与图像信号相对应的光学图像;照明装置,照明上述空间光调制元件;以及,投影镜头,把上述空间光调制元件上形成的上述光学图像投影到屏幕上;其特征在于,上述投影镜头采用上述本发明的投影镜头。

最好在上述本发明的投影式显示装置的结构中,上述空间光调制元件是把多个微镜进行2维排列而构成的DMD(Digital Micro-mirrorDevice)。

最好在上述本发明的投影式显示装置的结构中,在上述投影镜头的上述屏幕侧还具有视场光圈。

最好在上述投影式显示装置的结构中,上述照明装置形成红(R)、绿(G)、蓝(B)三原色光按时间切换的照明光,上述空间光调制元件把上述三原色光所对应的上述光学图像按时间切换来进行显示。

并且,涉及本发明的背面投影式显示装置,具有投影式显示装置、以及映出来自上述投影式显示装置的投影图像的透射式屏幕,其特征在于,上述投影式显示装置采用上述本发明的投影式显示装置。

最好在上述本发明的背面投影式显示装置的结构中,在上述投影式显示装置和上述透射式屏幕之间,还具有用于使光路弯曲的反射机构。

根据本发明能够提供这样一种投影镜头,即尤其适用于利用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值为2.0左右的光亮条件下也能够取得良好的像差性能,利用合理的结构能够实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能。并且,通过采用该投影镜头,能够提供能显示明亮和高质量图像的、小型廉价的投影式显示装置和背面投影式显示装置。

附图说明

图1是表示本发明的投影镜头的基本结构的设置图。

图2是表示本发明的投影镜头的另一结构(在基本结构上增加了光路弯曲机构的结构)的设置图。

图3是表示本发明的投影镜头的再另一结构(在基本结构上增加了辅助透镜组的结构)的设置图。

图4是表示本发明的投影镜头的再另一结构(在基本结构上增加了光路弯曲机构和辅助透镜组的结构)的设置图。

图5是表示参考例1中的投影镜头的结构的设置图。

图6是表示参考例1中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图7是表示参考例2中的投影镜头的结构的设置图。

图8是表示参考例2中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图9是表示参考例3中的投影镜头的结构的设置图。

图10是表示参考例3中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图11是表示参考例4中的投影镜头的结构的设置图。

图12是表示参考例4中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图13是表示本发明第1实施方式中的投影镜头的结构的设置图。

图14是表示本发明第1实施方式中的投影镜头中所使用的光圈从光轴方向来看的状态的概要图。

图15是表示本发明第1实施方式中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图16是表示本发明第2实施方式中的投影镜头的结构的设置图。

图17是本发明第2实施方式中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图18是本发明第3实施方式中的投影镜头的结构的设置图。

图19是本发明第3实施方式中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图20是表示本发明第4实施方式中的投影镜头的结构的设置图。

图21是表示本发明第4实施方式中的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

图22是表示本发明第5实施方式中的投影式显示装置的结构的设置图(x-z平面图)。

图23是表示本发明第5实施方式中的投影式显示装置的结构的设置图(y-z平面图)。

图24是表示本发明第5实施方式中的投影式显示装置的结构的设置图(x-y平面图)。

图25是本发明第5实施方式中的投影式显示装置的构成照明光学系统的第1透镜阵列的结构图,A是断面图,B是平面图。

图26是本发明第5实施方式中的投影式显示装置的构成照明光学系统的第2透镜阵列的结构图,A是断面图,B是平面图。

图27是表示本发明第6实施方式中的表示背面投影式显示装置的设置图,A是正面图,B是侧面图。

图28是表示本发明第7实施方式中的表示背面投影式显示装置的设置图。

图29是表示作为现有技术中的空间光调制元件而采用DMD的投影式显示装置的结构的设置图,A是平面图,B是侧面图。

图30是用于说明DMD的工作原理的概要图。

图31是表示DMD上的微镜的工作原理的模式图。

具体实施方式

图1是表示本发明的投影镜头的基本结构的设置图。图2是表示本发明的投影镜头的另一结构(在基本结构上增加了光路弯曲机构的结构)的设置图。图3是表示本发明的投影镜头的再另一结构(在基本结构上增加了辅助透镜组的结构)的设置图。图4是表示本发明的投影镜头的再另一结构(在基本结构上增加了光路弯曲机构和辅助透镜组的结构)的设置图。

如图1所示,把形成在空间光调制元件(设置在像面5附近)上的光学图像放大投影到屏幕4上的本发明的投影镜头1,具有从屏幕4侧向像面5侧依次排列设置的前侧透镜组2和后侧透镜组3。

后侧透镜组3具有相对于对前侧透镜组2和后侧透镜组3共通的光轴7形成偏心状态的光圈6。

通过不是对后侧透镜组3进行旋转,而是在光轴7的方向上移动,来进行聚焦调整。

并且,最好通过在光轴7的方向上移动前侧透镜组2,来进行倍率调整。

并且,如图2所示,也可以采用这样的结构,即在前侧透镜组2和后侧透镜组3之间设置作为光路弯曲机构的平面反射镜8。并且,在此情况下,也是相对于前侧透镜组2和后侧透镜组3共通的光轴9、10,光圈6处于偏心状态。而且,在此情况下,光圈6最好在与平面反射镜8前后的包括光轴9、10在内的面相平行的方向或者相垂直的方向上处于偏心状态。

并且,如图3所示,也可以采用这样的结构,即以前侧透镜组2和后侧透镜组3为主透镜组12,在主透镜组12和像面5之间设置辅助透镜组11。再者,在此情况下,也可以采用这样的结构,即如图4所示,在前侧透镜组2和后侧透镜组3之间设置作为光路弯曲机构的平面反射镜8。

以下以具体的实施方式为例,进一步详细说明本发明。首先,在以下参考例1~4中,说明不使光圈偏心的结构,接着在以下第1实施方式中说明使光圈偏心的结构。

(参考例1〉

图5是表示参考例1中的投影镜头的结构的设置图。

如图5所示,本参考例中的投影镜头13由从屏幕4侧向像面5侧依次设置的以下各部分构成:负倍率的第1透镜组G1,其由作为前侧透镜组的2块透镜L1、L2构成;正倍率的第2透镜组G2,其由作为后侧透镜组的4块透镜L3、L4、L5、L6构成;正倍率的第3透镜组G3,其同样地由作为后侧透镜组的6块透镜L7、L8、L9、L10、L11、L12构成;以及正倍率的第4透镜组G4,其由作为辅助透镜组的单透镜L13构成。

并且,在第2透镜组G2和第3透镜组G3之间设有光圈14。

在本参考例的投影镜头13中,第1~第4透镜组G1~G4和像面5设置成,对第1~第2透镜组G1~G4共通的光轴7通过像面5的中心,这样,能够使空间光调制元件上形成的光学图像正面投影到屏幕4上。而且,在本说明书中“光轴通过像面中心”,不仅是指光轴准确地通过像面中心,而且也包括具有可以允许的范围的误差的情况。

在下述[表1]中表示图5所示的投影镜头13的各透镜的具体数值例。

[表1]

  透镜   第i面    ri    di  ni    vi  L1   L2   L3   L4  L5   L6    L7   L8   L9  L10   L11   L12   L13    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25    164.134    39.178    -145.947    31.636    132.437    -716.525    -49.478    34.302    -133.727    47.032    174.892    Infinity    105.245    46.491    931.813    -71.322    54.736    -33.119    70.960    88.324    -73.673    68.948    -60.557    75.500    Infinity    3.800    22.566    2.000    98.000    3.300    1.800    1.500    5.000    0.300    3.500    10.000    14.704    1.500    2.000    4.000    0.300    7.500    1.500    1.200    4.300    0.300    7.700    40.000    5.000    16.410  1.49015   1.58913   1.80609   1.69680  1.64769   1.64769    1.80609   1.51680   1.49700  1.80609   1.49700   1.49700   1.83400     57.2     61.3     33.3     55.5    33.8     33.8      33.3     64.2     81.6    33.3     81.6     81.6     37.3 

(非球面数据)

透镜第i面  cc A4 A6A8 A10L1 12  -138.58270  -0.73495 3.39809E-06 -3.42123E-06 -4.79187E-10 6.95073E-09-7.64881E-14-6.21352E-12 6.80210E-17 1.43583E-15

在上述[表1]中,ri表示从屏幕4侧开始数第i个面(第i面)的曲率半径(mm),di表示从屏幕4侧开始数第i面和第(i+1)面之间的沿光轴7的距离(轴上距离、面间隔)(mm),ni表示从屏幕4侧开始数第i透镜的对d线的弯曲率,vi表示从屏幕4侧开始数第i透镜的对d线的阿贝数(下述其他参考例和实施方式也是一样)。

并且,全系统的焦距为f=9.851mm,F值为Fno.=2.00,半视场角为ω=45.4度。

构成第1透镜组G1的屏幕4侧的透镜L1的两面为非球面,非球面形状由下面的公式1来定义(下述其他参考例和实施方式也是一样)。

[公式1]

>>x>=>>(>>y>2>>/>r>)>>>(>1>+>>1>->>(>cc>+>1>)>>>y>2>>/>>r>2> >)>>+>A>4>·>>y>4>>+>A>6>·>>y>6>>+>A>8>·>>y>8>>+>A>10>·>>y>10>>>s>

在上述公式1中,cc表示圆锥系数,A4、A6、A8、A10分别表示4次、6次、8次、10次的非球面系数,r表示曲率半径,x表示下垂量(面的光轴方向的位置),y表示离开光轴的高度。在上述表1中,也示出了这些非球面系数的具体数值例。

在本参考例的投影镜头13中,当设全系统的焦距为f,第1透镜组G1和第2透镜组G2之间的轴上距离(轴上空气间隔)为t12,第3透镜组G3和第4透镜组G4之间的轴上空气间隔为t34时,最好满足下列各条件式。

              6.2<t12/f<10.5    (1)

              2.7<t34/f<4.4     (2)

上述式(1)、(2)是在良好的像差性能的情况下,为了在第1透镜组G1和第2透镜组G2之间、以及第3透镜组G3和第4透镜组G4之间,确保较长的空气间隔而需要的条件式。若超过上述式(1)的上限值,则透镜长度过长,投影镜头13增大,同时在视场角大的部分光晕增大,画面周围部分的亮度降低。并且,若小于上述式(1)的下限值,则第1透镜组G1的负倍率过大,所以,尤其畸变像差和慧形像差很难校正。并且,这样,若小于上述式(1)的下限值,则例如在第1透镜组G1和第2透镜组G2之间设置光路弯曲用的平面反射镜等的实际应用非常困难。并且,若超过上述式(2)的上限值,则后焦距过长,像差很难校正。并且,若小于上述式(2)的下限值,则投影镜头13和照明用的光学部件容易产生干涉,在第3透镜组G3和第4透镜组G4之间,很难设置照明用的光学部件。

并且,最好在本参考例的投影镜头13中,当设第4透镜组G4和像面5之间的轴上空气间隔为d时,满足以下各条件式:

               1.6<t34/d<2.6       (3)

               4.2<(t34+d)/f<6.0   (4)

如上,若设计成满足上述式(3)、(4),则能够进一步提高投影镜头13的性能,也能扩大其应用范围。

上述式(3)、(4)是为了解决在良好的像差性能的情况下对比度下降和照明用光学部件的干涉等、在与照明系统相组合的实际使用状态下的问题而需要的条件式。若超过上述式(3)的上限值,则第4透镜组G4和像面5过分接近,所以,因设置在像面5附近的空间光调制元件和第4透镜组G4之间的不必要的反射而产生杂散光,造成重影的产生和对比度的降低。并且,若小于上述式(3)的下限值,则第4透镜组G4的孔径增大,所以,构成第4透镜组G4的单透镜L13大型化,造成成本提高。并且,若超过上述式(4)的上限值,则后焦距过长,像差很难校正。再者,在此情况下,若要充分校正像差,则必须有足够的镜头总长,所以,投影镜头13大型化。并且,若小于上述式(4)的下限值,则后焦距缩短,在实际使用状态下,投影镜头13和照明用的光学部件容易干涉。

并且,最好在本参考例的投影镜头13中,当设第1透镜组G1的焦距为f1,第2透镜组G2的焦距为f2,第3透镜组的焦距为f3时,满足下列各条件式:

                -2.9<f1/f<-2.1    (5)

                7.3<f2/f<14.5     (6)

                5.7<f3/f<6.9      (7)

上述式(5)~(7)是用于进一步补偿像差性能的条件式。通过满足这些条件式(5)~(7),即可适当设定第1透镜组G1、第2透镜组G2、第3透镜组G3的放大比分配,取得更高的成像性能。

在下述(表2)中,表示与以上说明的本参考例的投影镜头13有关的上述条件式的数值。

[表2]

t12/f=9.9   t34/f=4.0

t34/d=2.4   (t34+d)/f=5.7

f1/f=-2.7   f2/f=13.9    f3/f=6.5

第1透镜组G1和第2透镜组G2的合成焦距f12为正时适用于像差的校正。合成焦距f12为负,表示第1透镜组G1的负倍率增大,所以,畸变像差和慧形像差增大。在本参考例的投影镜头13的情况下,第1透镜组G1和第2透镜组G2的合成焦距为f12=2768mm。

图6是表示图5所示的投影镜头13的像差性能图(球面像差、像散像差、畸变像差)。并且,在球面像差图中,实线表示对e线(546nm)的值,长虚线表示对C线(656nm)的值,短虚线表示对F线(486nm)的值。并且,在像散像差图中,实线表示弧矢方向(S)的值,虚线表示子午线方向(m)的值(下述其他参考例和实施方式也是一样)。

从图6所示的像差性能图中可以看出,本参考例的投影镜头13通过满足上述各条件,即可进行充分的像差校正,获得良好的成像性能。

[参考例2]

图7是表示参考例2中的投影镜头的结构的设置图。本参考例的投影镜头15,在从第1透镜组G1到第4透镜组G4的基本结构以及光轴7和像面5的位置关系方面,与上述参考例1的投影镜头13相同。

本参考例的投影镜头15与上述参考例1的投影镜头13的不同点是,构成第1投影镜头组G1、第2投影镜头组G2、第3投影镜头组G3和第4投影镜头组G4的透镜的倍率分配和面间隔等参数。

在下列表3中表示图7所示的投影镜头15的各个透镜的具体数值例。

[表3]

    透镜   第i面    ri    di    ni    vi    L1     L2     L3     L4    L5     L6      L7     L8     L9    L10     L11     L12     L13    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25    88.734    32.175    -192.835    24.846    70.074    423.730    -59.297    42.668    -285.827    36.773    128.435    Infinity    83.795    36.728    82.024    -76.736    46.611    -25.532    111.738    210.224    -138.279    59.664    -58.356    65.000    Infinity    3.800    21.641    2.000    68.000    3.000    1.800    2.000    5.500    6.000    3.500    3.500    15.946    2.000    1.500    4.300    0.300    7.200    2.000    0.800    4.300    0.300    7.000    31.000    5.000    16.410    1.49015     1.62041     1.80609     1.69680    1.64769     1.62004      1.83400     1.49700     1.49700    1.80609     1.49700     1.49700     1.83400     57.2     60.3     33.3     55.5    33.8     36.3      37.3     81.6     81.6    33.3     81.6     81.6     37.3 

(非球面数据)

透镜第i面  cc A4  A6A8 A10L1 12  75.07691  -1.01734 4.57640E-06 -4.89142E-06  2.15349E-12  1.36940E-08-7.14138E-13-1.45652E-11 3.70308E-16 4.28218E-15

并且,全系统的焦距为f=10.377mm,F值为Fno.=2.03,半视场角ω=44.0度。

本参考例的投影镜头15中,最好也满足上述各条件式(1)~(7)。

在下列表4中示出与本参考例的投影镜头15有关的上述条件式的数值。

[表4]

t12/f=6.5    t34/f=3.0

t34/d=1.9    (t34+d)/f=4.6

f1/f=-2.2    f2/f=8.4    f3/f=6.6

图8是表示图7所示的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

从图8所示的像差性能图中可以看出,本参考例的投影镜头15,通过满足上述各条件,能够充分校正像差,能够获得良好的成像性能。

[参考例3]

图9是表示参考例3中的投影镜头的结构的设置图。本参考例的投影镜头16在从第1投影镜头组G1到第4透镜组G4的基本结构、以及光轴7和像面5的位置关系方面,与上述参考例1的投影镜头13相同。

本参考例的投影镜头16与上述参考例1的投影镜头13的不同点是构成第1透镜组G1、第2透镜组G2、第3透镜组G3和第4透镜组G4的透镜的倍率分配、以及面间隔等的参数。

下列表5中示出图9所示的投影镜头16的各透镜的具体数值例。

[表5]

    透镜   第i面    ri    di    m    vi    L1     L2     L3     L4    L5     L6      L7     L8     L9    L10     L11     L12     L13    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25    87.736    33.259    -166.115    27.934    103.945    -238.804    -50.052    38.521    -100.075    38.581    81.37    Infinity    127.741    40.904    516.734    -61.259    46.095    -30.355    59.458    90.637    -82.510    58.084    -55.249    80.00    Infinity    4.031    24.328    2.121    79.551    3.500    1.909    1.591    5.303    0.318    3.712    6.894    12.384    1.591    2.121    4.243    0.318    7.955    1.591    1.273    4.561    0.318    8.167    33.000    5.300    17.630    1.49015     1.58913     1.62004     1.62041    1.62588     1.62004      1.80609     1.48749     1.49700    1.80609     1.51680     1.49700     1.83400     57.2     61.3     36.3     60.3    35.7     36.3      33.3     70.4     81.6    33.3     64.2     81.6     37.3 

(非球面数据)

透镜第i面  cc  A4  A6  A8  A10L112  -25.88879  -0.60968  3.43305E-06  -3.86345E-06  -3.13137E-10  5.67433E-09  -1.31401E-13  -5.23038E-12  1.13297E-16  9.62579E-16

并且,全系统的焦距为f=11.181mm,F数值为Fno.=2.02,半视场角为ω=43.5度。

本参考例的投影镜头16中,最好也满足上述各条件式(1)~(7)。

在下列表6中示出与本参考例的投影镜头16有关的上述条件式的数值。

[表6]

t12/f=7.1    t34/f=2.9

t34/d=1.9    (t34+d)/f=4.5

f1/f=-2.3    f2/f=7.7    f3/f=6.2

图10是表示图9所示的投影镜头16的像差性能图(球面像差、像散像差、畸变像差)。

从图10所示的像差性能图中可以看出,本参考例的投影镜头16,通过满足上述各条件,能够充分校正像差,能够获得良好的成像性能。

[参考例4]

图11是表示参考例4中的投影镜头的结构的设置图。本参考例的投影镜头17在从第1透镜组G1到第4透镜组G4的基本结构、以及光轴7和像面5的位置关系方面,与上述参考例1的投影镜头13相同。

本参考例的投影镜头17与上述参考例1的投影镜头13的不同点是构成第1透镜组G1、第2透镜组G2、第3透镜组G3和第4透镜组G4的透镜的倍率分配、以及面间隔等参数。

下列表7中示出图11所示的投影镜头17的各透镜的具体数值例。

[表7]

  透镜    第i面      ri    di    ni     vi  L1   L2   L3   L4  L5   L6    L7   L8   L9  L10   L11   L12   L13    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25    137.548    32.902    -141.738    28.227    83.999    -288.161    -41.991    25.645    -105.810    35.985    82.49    Infinity    149.645    39.126    313.632    -53.406    44.978    -26.070    57.753    86.958    -64.325    57.715    -46.579    75.50    Infinity    3.800    23.330    2.000    75.096    3.300    1.800    1.500    5.000    0.300    3.500    6.386    10.737    1.500    2.000    4.000    0.300    7.500    1.500    1.200    4.300    0.300    7.700    31.000    5.000    16.400    1.49015     1.58913     1.62004     1.62041    1.62588     1.62004      1.80609     1.48749     1.49700    1.80609     1.51680     1.49700     1.83400     57.2     61.3     36.3     60.3    35.7     36.3      33.3     70.4     81.6    33.3     64.2     81.6     37.3 

(非球面数据)

  透镜第i面    cc    A4    A6    A8    A10  L1 12    -91.88655    -0.60615    3.78951E-06    -4.49233E-06    -5.39148E-10    8.10351E-09    -1.49128E-13    -7.81770E-12    1.34374E-16    1.64759E-15

并且,全系统的焦距为f=9.495mm,F数值为Fno.=2.01,半视场角为ω=46.5度。

本参考例的投影镜头17中,最好也满足上述各条件式(1)~(7)。

在下列表8中示出与本参考例的投影镜头17有关的上述条件式的数值。

[表8]

t12/f=7.9    t34/f=3.3

t34/d=1.9    (t34+d)/f=5.0

n/f=-2.4     f2/f=9.3    f3/f=6.2

图12是表示图11所示的投影镜头的像差性能图(球面像差、像散像差、畸变像差)。

从图12所示的像差性能图中可以看出,本参考例的投影镜头17通过满足上述各条件,能够充分校正像差,能够获得良好的成像性能。

[第1实施方式]

图13是表示本发明第1实施方式中的投影镜头的结构的设置图。本实施方式的投影镜头18在从第1投影镜头G1到第4透镜组G4的基本结构、以及光轴7和像面5的位置关系方面,与上述参考例1的投影镜头13相同。

本实施方式的投影镜头18与上述参考例1的投影镜头13的不同点是,构成第1透镜组G1、第2透镜组G2、第3透镜组G3和第4透镜组G4的透镜的倍率分配、以及面间隔等的参数、以及光圈14的开口部相对于对第1~第4透镜组G1~G4共通的光轴7形成偏心状态。

下列表9中示出图13所示的投影镜头18的各透镜的具体数值例。

[表9]

  透镜    第i面     ri     Di     ni     vi   L1   L2   L3   L4  L5   L6    L7   L8   L9  L10   L11   L12   L13    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25    91.906    29.766    -147.847    27.081    82.032    -616.766    -53.084    35.819    -103.750    33.752    51.33    Infinity    90.906    40.773    198.916    -53.079    49.859    -26.986    62.530    81.403    -90.228    64.245    -46.511    75.50    Infinity    3.800    23.277    2.000    77.284    3.600    1.800    1.500    5.000    0.300    3.500    5.500    13.728    1.500    2.000    4.000    0.300    7.500    1.500    1.000    4.800    0.300    7.700    31.000    5.000    15.480    1.49015     1.58913     1.80609     1.69680    1.64769     1.62004      1.80609     1.48749     1.49700    1.80609     1.48749     1.49700     1.83400     57.2     61.3     33.3     55.5    33.8     36.3      33.3     70.4     81.6    33.3     70.4     81.6     37.3 

(非球面数据)

  透镜  第i面  cc  A4  A6A8 A10  L1   1  2  -41.15915  -0.81969  3.78951E-06  -4.49233E-06  -5.39148E-10  8.1035 1E-09-1.49128E-13-7.81770E-12 1.34374E-16 1.64759E-15

并且,全系统的焦距为f=9.647mm,F数值为Fno.=2.01,半视场角为ω=46.0度。

以下参照图14,详细说明光圈14的具体形状。图14是表示本发明第1实施方式中的投影镜头中所使用的光圈从光轴方向看的状态的概要图。

在图14中,D1表示光圈14的偏心量,D2表示光圈14的位置上的有效开口半径。如图14所示,光圈14的开口部19是由以D2为半径的圆形外周部22和半椭圆21所包围的、用斜线表示的大致上为椭圆形状的区域(以下亦可称为“椭圆开口”)。半椭圆21是利用由长轴A和短轴B(偏心方向)决定的椭圆的长轴A进行二等分的单侧部分,使半椭圆21的中心20相对于投影镜头18的光轴7的偏心量为D1。

这样,在本实施方式的投影镜头18中,光圈14处于偏心状态。所以,若在聚焦调整时旋转光圈14,则各视场角的成像性能也随光圈14而旋转。所以,在本实施方式的投影镜头18中,进行聚焦调整时使光圈14不会相对于光轴7旋转。具体来说,光圈14固定在作为后侧透镜组的第2透镜组G2或第3透镜组G3上,不使这些作为后侧透镜组的第2和第3透镜组G2、G3旋转,而是在光轴7的方向上移动,来进行聚焦调整。

光圈14的偏心量D1只要考虑照明用的光学部件的设置、照明光的入射角、亮度、像差性能等来适当设定即可。

在本实施方式中,设定为:长轴A=20.8mm,短轴B=12.6mm,光圈14的偏心量D1=5.4mm,光圈14位置上的有效开口半径D2=11.7mm。

本实施方式中的F值(Fno.=2.01)是考虑了图14所示的园形外周部22的全区的值,表示投影镜头18可以允许的最大聚光范围。所以,偏心的光圈14相对于开口部19的有效的F值约为3.0。

在本实施方式的投影镜头18中,最好也满足上述各条件式(1)~(7)。但本实施方式的投影镜头18最好还满足下列条件式

D1/D2<0.5    (12)

上述式(12)是用于对光圈14设定最佳偏心量的条件式。若超过上述式(12)的上限值,则光圈14的偏心量过大,因此,对光轴7的对称性损失很大,成像性能的非对称性显著,所以效果不好。并且,若超过上述式(12)的上限值,则在光圈14中,在圆形外周部22全区中开口部19所占的比例减小。这意味着对于投影镜头18在性能上能够允许的最大聚光范围来说,实际能够使用的范围减小,在光圈14中,浪费的区域增加。

而且,通过使作为前侧透镜组的第1透镜组G1在光轴7的方向上移动,来进行倍率调整。因为本镜头不是变焦镜头,所以,这里所说的倍率调整是指对因聚焦调整所发生的倍率变化进行校正。以下相同。

在下列表10中示出与本实施方式的投影镜头18有关的上述条件式的数值。

[表10]

t12/f=8.0    t34/f=3.2

t34/d=2.0    (t34+d)/f=4.8

f1/f=-2.4    f2/f=10.3    f3/f=6.0

D1/D2=0.46

图15是表示图13所示的投影镜头18的像差性能图(球面像差、像散像差、畸变像差)。这里表示把圆形外周部22的全区看作是光圈的情况下的像差性能。在椭圆开口的情况下,使用其一部分,所以如果对圆形外周部22的全区进行充分的像差校正,则即使是椭圆开口,也能够获得良好的成像性能。

从图15所示的像差性能图中可以看出,本实施方式的投影镜头18通过满足上述各条件,能够进行充分的像差校正,获得良好的成像性能。所以,本实施方式的投影镜头18,在由上述公式12规定的偏心量范围内,也有良好的成像性能,其对称性不会受损。

若采用以上说明的本实施方式的投影镜头18的结构,则能够提供这样的投影镜头:即使在F值约为2.0的明亮条件下,也能够获得良好的像差性能,用合理的结构能够实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的规格。尤其采用“使光圈14偏心”这样的结构,不进行偏移投影也能够避免投影镜头18和其光学部件(例如照明用的反射镜等)的干涉,所以,尤其能够用DMD等反射式空间光调制元件来进行正面投影。

以下以使光圈偏心的结构的投影镜头的另一实施方式为例,进一步具体说明本发明(第2~第4实施方式)。

[第2实施方式]

图16是表示本发明第2实施方式中的投影镜头的结构的设置图。

如图16所示,本实施方式的投影镜头23由从屏幕4侧向像面5侧依次设置的以下各个部分构成:负倍率的第1透镜组G1,其由作为前侧透镜组的2块透镜L1、L2构成;正倍率的第2透镜组G2,其由作为后侧透镜组的3块透镜L3、L4、L5构成;正倍率的第3透镜组G3,其同样由作为后侧透镜组的5块透镜L6、L7、L8、L9、L10构成;以及正倍率的第4透镜组G4,其由作为辅助透镜组的单透镜L11构成。

并且,在第1透镜组G1和第2透镜组G2之间,设置作为光路弯曲机构的平面反射镜8。当把平面反射镜8的前后的光轴9、10所构成的角设定为θ时,最好满足下列关系式:

45°≤θ≤ 90°    (13)

若超过上述式(13)的上限值,则光路弯曲所必须的第1透镜组G1和第2透镜组G2的间隔增大,所以,投影镜头23的全长增大,造成投影镜头23的大型化和周边光量减少。并且,若小于上述式(13)的下限值,则平面反射镜8所需要的有效反射面积增大,所以,造成上述平面反射镜8大型化。

在本实施方式中,设定为θ=70度。

作为平面反射镜8,最好尽量采用反射率高的平面反射镜。在反射率低的情况下,在投影镜头23的镜筒内部产生很多不需要的光,造成闪烁的发生和对比度的降低。因此,作为平面反射镜8,最好采用在其反射面上蒸镀了介质多层膜的介质多层膜反射镜等。介质多层膜反射镜的反射率高,通过采用它,能够抑制镜筒内部的不需要的光的发生。

光圈14设置在第2透镜组G2和第3透镜组G3之间,具有相对于平面反射镜8前后的前侧透镜组和后侧透镜组所共通的光轴9、10偏心的开口部。光圈14的具体的开口形状和偏心量,和上述第1实施方式中说明的一样进行适当设定,在本实施方式中,设定为:长轴A=17.0mm,短轴B=12.0mm,光圈14的偏心量D1=3.0mm,光圈14位置上的有效开口半径D2=9.0mm(参见图14)。

在本实施方式的投影镜头23中,第1~第4透镜组G1~G4的像面5设置成:第1~第4投影组G1~G4所共通的光轴9、10通过像面5的中心。这样,能够将空间光调制元件上形成的光学图像正面投影到屏幕4上。

在下述表11中示出图16所示的投影镜头23的各透镜的具体数值例。

[表11]

  透镜   第i面    Ri    di    ni    vi  L1   L2    L3   L4   L5    L6  L7   L8  L9   L10   L11    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22    403.546    36.117    -193.196    20.074    Infinity    58.596    -657.064    31.487    20.668    22.355    46.72    Infinity    -66.952    25.832    -42.734    96.259    24.575    -62.896    34.931    -52.426    65.000    Infinity    3.700    16.389    2.000    40.000    25.000    3.100    0.300    1.700    10.041    2.500    6.500    8.346    1.500    5.000    0.300    1.500    6.000    0.300    6.000    25.000    3.800    10.485    1.49015     1.71300      1.80517     1.71300     1.62004      1.83400    1.48749     1.80517    1.51680     1.49700     1.83400     57.2     53.9      25.5     53.9     36.3      33.3    70.4     25.5    64.2     81.6     33.3 

(非球面数据)

透镜   第i面  cc  A4  A6  A8  A10L1    1   2  0.00000  -7.95748  1.47367E-05  2.47708E-05  -9.66061E-09  -1.08407E-08  3.50758E-12  -1.84706E-11  1.01123E-15  9.07824E-15

并且,全系统的焦距f=7.098mm,F值为Fno.=2.03、半视场角为ω=45.0度。

而且,偏心的光圈14对开口部的有效F值约为2.6。

本实施方式的投影镜头23最好也满足上述各条件式(1)~(8)。

在下列表12中示出与本实施方式的投影镜头23有关的上述条件式的数值。

[表12]

t12/f=9.2    t34/f=3.5

t34/d=2.4    (t34+d)/f=5.0

f1/f=-2.3    f2/f=7.7    f3/f=7.1

D1/D2=0.33

图17示出图16所示的投影镜头23的像差性能图(球面像差、像散像差、畸变像差)。

从图17所示的像差性能图中可以看出,本实施方式的投影镜头23通过满足下列各条件,能够充分校正像差,获得良好的成像性能。

根据以上说明的本实施方式的投影镜头23的结构,能够提供这样一种投影镜头,它尤其适用于利用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值约为2.0的明亮条件下也能够获得良好的像差性能,能够以合理的结构来实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能。

[第3实施方式]

图18是本发明第3实施方式中的投影镜头的结构的设置图。

如图18所示,本实施方式的投影镜头24和上述第2实施方式的投影镜头23一样,由从屏幕4侧向像面5侧依次设置的以下各个部分构成:负倍率的第1透镜组G1,由作为前侧透镜组的2块透镜L1、L2构成;正倍率的第2透镜组G2,由作为后侧透镜组的3块透镜L3、L4、L5构成;正倍率的第3透镜组G3,同样由作为后侧透镜组的5块透镜L6、L7、L8、L9、L10构成;以及正倍率的第4透镜组G4,由作为辅助透镜组的单透镜L11构成。

并且,和上述第2实施方式的投影镜头23一样,在第1透镜组G1和第2透镜组G2间设置作为光路弯曲机构的平面反射镜8。平面反射镜8前后的光轴9、10形成的角θ和上述第2实施方式中说明的一样进行适当设定,在本实施方式中设定为θ=60度。

光圈14设置在第2透镜组G2和第3透镜组G3之间,具有相对于平面反射镜8前后的前侧透镜组和后侧透镜组所共通的光轴9、10偏心的开口部。

在本实施方式中,使光圈14在与包括平面反射镜8前后的光轴9、10的面(纸面)相垂直的方向上偏心。也就是说,当作为空间光调制元件的DMD的有效显示区是具有长轴和短轴的矩形状时,光圈14在沿上述长轴的方向上偏心。光圈14的具体的开口形状和偏心量,和上述第1实施方式中说明的一样进行适当设定,在本实施方式中,设定为:长轴A=15.3mm,短轴B=10.2mm,光圈14的偏心量D1=3.2mm,光圈14位置上的有效开口半径D2=8.3mm(参见图14)。

在本实施方式的投影镜头24中,第1~第4透镜组G1~G4和像面5设置成:第1~第4投影组G1~G4所共通的光轴9、10通过像面5的中心。这样,空间光调制元件上形成的光学图像,能够正面推影到屏幕4上。

以下具体说明本实施方式的投影镜头24的镜头结构。

第1透镜组G1包括从屏幕4侧依次设置的、凸面朝向屏幕4侧的负凹凸透镜L1和负透镜L2。从整体上看具有负光焦度。负凹凸透镜L1的两面为非球面。通过把非球面设置在轴外光线最强的、与第1透镜组G1的屏幕4最接近的位置上,能够对在第1透镜组G1发生的较大畸变像差进行校正,同时,对轴外的各像差的平衡进行适当的控制。

第2透镜组G2包括从屏幕4侧依次设置的、正透镜L3、凸面朝向屏幕4侧的负凹凸透镜L4、凸面朝向屏幕4侧的正凹凸透镜L5,从整体来看具有正光焦度。

第3透镜组G3包括从屏幕4侧依次设置的、负透镜L6和正透镜L7的第1粘合透镜、负透镜L8和正透镜L9的第2粘合透镜、以及正透镜L10,从整体来看具有正光焦度。

最接近第3透镜组G3的像面5(空间光调制元件)的位置上所设置的正透镜L10,由异常分散玻璃构成。由于该部分使用异常分散玻璃,所以,能够对其他粘合透镜不能完全校正的轴外色差进行校正。

第4透镜组G4由凸面朝向屏幕4侧的1块平凸透镜L11构成,具有正光焦度。

在下列表13中示出图18所示的投影镜头24的各透镜的具体数值例。

[表13]

    透镜    第i面     ri     di     ni     vi     L1     L2      L3     L4     L5      L6    L7     L8    L9     L10     L11    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22    82.588    26.848    -551.850    19.760    Infinity    42.880    -5270.000    31.933    18.141    21.577    36.52    Infinity    -91.500    26.351    -44.091    112.115    24.690    -56.750    34.910    -46.965    65.000    Infinity    3.500    17.300    2.000    38.000    20.000    3.200    0.300    1.500    10.100    3.000    5.500    8.600    1.500    5.500    0.300    1.500    6.500    0.300    6.500    22.000    3.800    12.500    1.49015     1.71300      1.80517     1.71300     1.64769      1.83400    1.48749     1.80517    1.51680     1.49700     1.83400     57.2     53.9      25.5     53.9     33.8      33.3    70.4     25.5    64.2     81.6     33.3 

(非球面数据)

  透镜第i面cc  A4A6 A8 A10  L112-8.44121-3.87040  8.58356E-06  2.22619E-05-6.56373E-10-1.56617E-08 -2.58456E-12 9.58095E-12 3.17977E-15 -1.54987E-14

并且,全系统的焦距f=7.104mm,F值为Fno.=2.02、半视场角为ω=45.0度。

而且,偏心的光圈14对开口部的有效F值约为2.7。

本实施方式的投影镜头24最好也满足上述各条件式(1)~(8)。

在下列表14中示出与本实施方式的投影镜头24有关的上述条件式的数值。

[表14]t12/f=8.2         t34/f=3.1

      t34/d=1.8         (t34+d)/f=4.9

      f1/f=-2.4         f2/f=8.8    f3/f=6.1

      D1/D2=0.39

图19示出图18所示的投影镜头24的像差性能图(球面像差、像散像差、畸变像差)。

从图19所示的像差性能图中可以看出,本实施方式的投影镜头24通过满足下列各条件,能够充分校下像差,获得良好的成像性能。

最好在本实施方式的投影镜头24中,当将构成第3透镜组G3中所包含的粘合透镜的正透镜L7的阿贝数和折射率分别设为v3p和n3p,将构成第3透镜组G3中所包含的粘合透镜的负透镜L6的阿贝数和折射率分别设为v3n和n3n时,满足下列各条件式。

                 v3p>v3n     (10)

                 n3p<n3n     (11)

当满足这些条件式时,即可有效地校正轴外色差。

根据以上说明的投影镜头24的结构,能够提供这样一种投影镜头,它尤其适用于利用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值约为2.0的明亮条件下也能够获得良好的像差性能,能够以合理的结构来实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能。

[第4实施方式]

图20是本发明第4实施方式中的投影镜头的结构的设置图。

如图20所示,本实施方式的投影镜头25,由从屏幕4侧向像面5侧依次设置的以下各个部分构成:负倍率的第1透镜组G1,由作为前侧透镜组的2块透镜L1、L2构成;正倍率的第2透镜组G2,由作为后侧透镜组的4块透镜L3、L4、L5、L6构成;正倍率的第3透镜组G3,同样由作为后侧透镜组的6块透镜L7、L8、L9、L10、L11、L12构成;以及正倍率的第4透镜组G4,由单透镜L13构成。

并且,和上述第2实施方式的投影镜头23一样,在第1透镜组G1和第2透镜组G2之间设有作为光路弯曲机构的平面反射镜8。平面反射镜8前后的光轴9、10形成的角θ和上述第2实施方式中说明的一样进行适当设定,在本实施方式中设定为θ=60度。

光圈14设置在第2透镜组G2和第3透镜组G3之间,具有相对于平面反射镜8前后的前侧透镜组和后侧透镜组所共通的光轴9、10偏心的开口部。

在本实施方式中,使光圈14在与包括平面反射镜8前后的光轴9、10的面(纸面)相平行、且与光轴10相垂直的方向上偏心。也就是说,当作为空间光调制元件的DMD的有效显示区是具有长轴和短轴的矩形状时,光圈14在沿上述短轴的方向上偏心。光圈14的具体的开口形状和偏心量,和上述第1实施方式中说明的一样进行适当设定,在本实施方式中,设定为:长轴A=22.2mm,短轴B=14.8mm,光圈14的偏心量D1=4.6mm,光圈14位置上的有效开口半径D2=12.0mm(参见图14)。

在本实施方式的投影镜头25中,第1~第4透镜组G1~G4和像面5,设置成:第1~第4投影组G1~G4所共通的光轴9、10通过像面5的中心。这样,能够将空间光调制元件上形成的光学图像正面推影到屏幕4上。

以下,具体说明本实施方式的投影镜头25的透镜结构。

第1透镜组G1包括从屏幕4侧依次设置的、凸面朝向屏幕4侧的负凹凸透镜L1和负透镜L2,从整体上看具有负光焦度。负凹凸透镜L1的两面为非球面。把非球面设置在轴外光线最强的、与第1透镜组G1的屏幕4最接近的位置上,能够对第1透镜组G1产生的较大畸变像差进行校正,同时,对轴外的各像差的平衡进行适当的控制。

第2透镜组G2包括从屏幕4侧依次设置的、正透镜L3、负透镜L4和正透镜L5的粘合透镜、凸面朝向屏幕4侧的正凹凸透镜L6,从整体来看具有正光焦度。

第3透镜组G3包括从屏幕4侧依次设置的、凸面朝向屏幕4侧的负凹凸透镜L7、正透镜L8、正透镜L9和负透镜L10的粘合透镜、以及正透镜L11和正透镜L12,从整体来看具有正光焦度。

最接近第3透镜组G3的像面5(空间光调制元件)的位置上所设置的正透镜L12,由异常分散玻璃构成。由于该部分使用异常分散玻璃,所以,能够对其他粘合透镜不能完全校正的轴外色差进行校正。

第4透镜组G4由凸面朝向屏幕4侧的1块平凸透镜L13构成,具有正光焦度。

在下列表15中示出图20所示的投影镜头25的各透镜的具体数值例。

[表15]

    透镜   第i面    ri    di    ni    vi    L1     L2      L3     L4    L5     L6      L7     L8     L9    L10     L11     L12     L13    1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25     75.819    28.397    -143.750    26.920    Infinity    122.160    -186.000    -50.246    41.810    -126.000    37.30    94.210    Infinity    131.950    40.409    138.690    -58.300    50.500    -27.200    71.850    128.160    -70.570    59.510    -48.82    75.500    Infinity    3.800    22.400    2.200    49.500    27.500    3.100    1.300    1.400    4.500    0.300    3.000    5.000    15.000    1.300    1.600    3.700    0.300    7.300    1.500    0.700    4.300    0.300    7.000    31.000    5.000    15.430    1.49015     1.58913      1.80609     1.69680    1.64769     1.62004      1.80609     1.48749     1.49700    1.80609     1.48749     1.49700     1.83400     57.2     61.3      33.3     55.5    33.8     36.3      33.3     70.4     81.6    33.3     70.4     81.6     37.3 

(非球面数据)

透镜  第i面ccA4 A6A8  A10L1   1  2-24.28822-0.775382.97888E-06-6.35826E-06 8.78179E-10 9.94300E-09-1.07634E-12-9.44795E-12  4.32077E-16  2.03492E-15

并且,全系统的焦距f=9.963mm,F值为Fno.=2.01、半视场角为ω=45.2度。

而且,偏心的光圈14对开口部的有效F值约为2.7。

最好本实施方式的投影镜头25也满足上述各条件式(1)~(8)。

在下列表16中示出与本实施方式的投影镜头25有关的上述条件式的数值。

[表16]

t12/f=7.8    t34/f=3.1

t34/d=2.0    (t34+d)/f=4.7

f1/f=-2.4    f2/f=8.7    f3/f=6.3

D1/D2=0.38

图21是图20所示的投影镜头25的像差性能图(球面像差、像散像差、畸变像差)。

从图21所示的像差性能图中可以看出,本实施方式的投影镜头25通过满足下列各条件,能够充分校正像差,获得良好的成像性能。

最好在本实施方式的投影镜头25中,当将构成第2透镜组G2中所包含的粘合透镜的正透镜L5的阿贝数和折射率分别设为γ2p和n2p,将构成第2透镜组G2中所包含的粘合透镜的负透镜L4的阿贝数和折射率分别设为γ2n和n2n时,满足下列各条件式。

                   v2p<v2n    (8)

                   n2p<n2n    (9)

最好在本实施方式的投影镜头25中,当将构成第3透镜组G3中所包含的粘合透镜的正透镜L9的阿贝数和折射率分别设为γ3p和n3p,将构成第3透镜组G3中所包含的粘合透镜的负透镜L10的阿贝数和折射率分别设为γ3n和n3n时,满足下列各条件式:

                  v3p>v3n    (10)

                  n3p<n3n    (11)

当其满足这些条件式时,即可有效地校正轴外色差。

根据以上说明的投影镜头25的结构,能够提供这样一种投影镜头,它尤其适用于利用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值约为2.0的明亮条件下也能够获得良好的像差性能,能够以合理的结构来实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能。

而且,在上述参考例1~4和第1~第4实施方式中,以构成第1透镜组G1的屏幕4侧的透镜L1的两面为非球面的情况为例进行了说明。但是,如果能够得到满足目的的像差校正,那么,也可以采用仅任意一个面为非球面的结构。

并且,投影镜头的具体透镜结构并不仅限于上述参考例1~4和第1~第4实施方式说明的结构。如果其结构是,具有从屏幕4侧向像面5侧依次设置的、前侧透镜组和后侧透镜组,上述后侧透镜组具有相对于上述前侧透镜组和上述后侧透镜组所共通的光轴7(或9)偏心的光圈14,不使上述后侧透镜组旋转,而是使其在光轴7(或9)的方向上移动,这样来进行聚焦调整,那么,就能够达到本发明的预期目的。

并且,在上述参考例1~4以及第1~第4实施方式中,以作为辅助透镜组的第4透镜组G4由凸面朝向屏幕4侧的一块平凸透镜构成的情况为例进行了说明。但是并不限于作为辅助透镜组的第4透镜组G4一定是上述结构,也可以是由多块透镜构成的、或者凸面朝向像面5侧的结构。

[第5实施方式]

图22~图24是表示本发明第5实施方式中的投影式显示装置的结构的设置图,图22表示X-Z平面,图23表示y-z平面,图24表示x-y平面。

如图22~图24所示,本实施方式的投影式显示装置的投影光学系统195具有:作为空间光调制元件的DMD190,用于形成与图像信号相对应的光学图像;从灯181起到平面反射镜189为止的照明光学系统196,作为对DMD190进行照明的照明机构;以及投影镜头197,用于使DMD190上形成的上述光学图像投影到屏幕(未图示)上。

照明光学系统196形成用于照明DMD190的照明光。具体来说,照明光学系统196利用椭圆面镜182对从灯181来的发出光进行聚光,在透射用于从上述发出光中除去紫外线和红外线的UV-IR滤光片183之后,在旋转式滤光片184附近形成聚光点。

灯181采用超高压水银灯或氙灯等。这些灯亮度高,发光部较小,所以,利用椭圆面镜182能够高效率地对发出光进行聚光。

旋转式滤色镜184是把红、绿、蓝滤色片组合成圆盘状而构成的,利用马达185来使该旋转式滤色镜184旋转,即可使由椭圆面镜182聚光后的光中的红、绿、蓝光依次有选择地透射。并且,这样一来,作为照明装置的照明光学系统196形成红(R)、绿(G)、蓝(B)三原色光按时间进行切换的照明光,作为空间光调制元件的DMD190,可将上述三原色光所对应的光学图像按时问切换来进行显示。

透射了旋转式滤色镜184的发射光,在由聚光透镜186进行聚光后,通过第1透镜阵列187、第2透镜阵列188、平面反射镜189和透镜191来对DMD190进行照明。

图25表示第1透镜阵列187的结构。图25A是断面图,图25B是平面图。如图25所示,第1透镜阵列187是将具有和DMD190大致相似的形状的多个第1透镜187a进行2维排列而构成的。因此,由聚光透镜186聚光后的光束射入到第1透镜阵187后,被该光束被第1透镜187a分割成多个微小光束。

图26表示第2透镜阵列188的结构。图26A是断面图,图26B是平面图。如图26所示,第2透镜阵列188是将数量与第1透镜187a相同的配对的多个第2透镜188a进行2维排列而构成的。

第1透镜187a把射入到该第1透镜187a内的微小光束,聚集到与其相对应的第2透镜188a上。因此,第1透镜187a根据第2透镜188a的排列,分别适当地行偏心排列。并且,第2透镜188a对与其相对应的第1透镜187a内所射入的微小光束进行放大,在DMD190上成像。因此,第2透镜188a根据与其相对应的第1透镜187a和DMD190的位置关系,分别适当地进行偏心排列。

如上所述,通过作为照明光学系统196中的光学部件而采用第1和第2透镜阵列187、188,能够利用第1透镜187a来把由聚光镜186聚光后的、亮度不均匀和颜色不均匀较明显的光束分割成多个微小光束,用对应的第2透镜188a对其进行放大,重叠在DMD190上,所以,能够实现亮度不均匀和颜色不均匀均比较小的、均匀的照明。

DMD190和图30所示的一样,是将每个像素设置的微镜进行2维排列而构成的反射式空间光调制元件,通过改变微镜的倾斜角,控制光的反射方向,由此可对入射的照明光进行调制。图22所示的DMD190的各微镜的倾斜角为±12度。

在DMD190上,形成一种利用上述调制作用的光学图像,该光学图像通过投影镜头197而放大投影到屏幕上。

投影镜头197具有与图20所示的上述第4实施方式的投影镜头相同的结构,包括:包括第1~第3透镜组在内的主透镜组192、以及作为辅助透镜组的由平凸透镜191构成的第4透镜组。因此,投影镜头197具有图21所示的良好的成像性能,能够获得图像质量高的投影图像。并且,在第3透镜组(主透镜组192的、平凸透镜191侧的透镜组)和第4透镜组(平凸透镜191)之间确保充分长的空气间隔,所以,在其空间内能够设置照明光学系统196的平面反射镜189,其结果,能够使投影式显示装置实现小型化。

再者,如图23所示,投影镜头197的光圈193相对于光轴194偏心,而且,具有图14所示的椭圆开口。因此,在结构上,照明光的光轴198和投影光的光轴199所形成的角度增大(投影光和照明光能够分离),虽然是平面投影,但投影镜头197和平面反射镜189等光学部件不易产生干涉。

并且,平凸透镜191共通照明光(光轴198)和投影光(光轴199)的光路,使投影镜头197的光圈193和第2透镜阵列188的面形成共轭关系。因此,如图26所示,使第2透镜阵列188的外形是与光圈193的开口部大致相似的椭圆形状,设计成能够使照明光高效率地通过光圈193。

而且,在本实施方式中,以投影镜头197采用上述第4实施方式中说明的投影镜头的情况为例进行了说明。但即使采用在上述第1~第3实施方式中说明的投影镜头,也能够获得同样的效果。

并且,如果把视场光圈设置在投影镜头197的屏幕侧,则能够切断从投影式显示装置射出的不需要的光。

根据以上说明的本实施方式的投影式显示装置的结构,由于采用了上述第1~第4实施方式中说明的投影镜头,即尤其适合于用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值为2.0左右的明亮条件下,也能够获得良好的像差性能,能够以合理的结构来实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能,所以,能够提供明亮、显示图像质量好的小型化低成本的投影式显示装置。

[第6实施方式]

图27是表示本发明的第6实施方式中的背面投影式显示装置的设置图,图27A是正面图,图27B是侧面图。

如图27所示,本发明实施方式的背面投影式显示装置具有投影式显示装置231、和用于映出从投影式显示装置231中来的投影图像的透射式屏幕232。投影式显示装置231采用与上述第5实施方式中说明的投影式显示装置相同结构的装置,该投影式显示装置231设置在对透射式屏幕232进行保持的框体233内。

从投影式显示装置231的投影镜头中射出的光,由作为反射机构的折回反射镜234进行反射,射入到透射式屏幕232内,该反射设置在投影式显示装置231和透射式屏幕232之间,用于使光路折弯。

透射式屏幕232例如由菲涅耳透镜和双凸透镜构成。菲涅耳透镜的焦距设定为大致上等于从菲涅耳透镜到投影镜头的光路长度,该菲涅耳透镜使入射光适当折射,向透射式屏幕232的前方透射。观众可以通过透射式屏幕232来观看投影式显示装置231放大投影的图像。

根据以上说明的本实施方式的投影式显示装置的结构,由于采用了上述第1~第4实施方式中说明的投影镜头,该镜头尤其适合于用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值为2.0左右的明亮条件下,也能够获得良好的像差性能,能够以合理的结构来实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能。所以,能够提供明亮、显示图像质量好的小型化低成本的投影式显示装置。

[第7实施方式]

图28是表示本发明第7实施方式中的表示背面投影式显示装置的设置图。

在图28中,241表示投影式显示装置,该投影式显示装置241采用了与上述第5实施方式中说明的投影式显示装置相同结构的装置。并且,在对4块透射式屏幕242进行保持的框体243内,设置了按照与透射式屏幕242相同数量配对的多个投影式显示装置241。

在对从多个投影式显示装置241中来的图像进行排列显示出多个画面时,希望对单位画面之间的边界进行夹持的两侧的亮度、分辩率和白色平衡的差较小。在本实施方式的背面投影式显示装置中,采用与上述第5实施方式中说明的投影式显示装置的结构相同的投影式显示装置241。投影式显示装置241如上所述,包括:照明光学系统,用于实现亮度和颜色均匀的照明;以及投影镜头,用于实现均匀性高的分辩率,所以,能够大大减小单位画面之间的白色平衡、亮度、分辩率的误差。

根据以上说明的本实施方式的背面投影式显示装置的结构,和上述第6实施方式的情况一样,能够提供明亮、显示图像质量好的、小型化低成本的背面投影式显示装置。

而且,在上述第5~第7实施方式中,以采用反射式的DMD作为空间光调制元件的情况为例进行了说明,但是,空间光调制元件也可以采用例如反射式或透射式液晶板。

并且,DMD例如微镜的倾斜角和倾斜方向也可以不同于图30、图31所示和上述实施方式中说明的。

再者,在上述第5~第7实施方式中,照明装置以包括第1和第2透镜阵列187、188在内的照明光学系统196为例进行了说明。但是照明装置的结构也可以不采用第1和第2透镜阵列的、或者采用玻璃棒等组合元件。

产业上的可利用性

如上所述,本发明的投影镜头尤其适合于用DMD等反射式空间光调制元件来进行正面投影的情况,即使在F值为2.0左右的明亮条件下,也能够获得良好的像差性能,能够以合理的结构来实现广角、长后焦距、高周边光量比这些对投影式显示装置要求的性能,所以,能够用于实现明亮、显示图像质量好的小型化低成本的投影式显示装置或背面投影式显示装置。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号