首页> 中国专利> 向便携式坐标测量机的操作员提供传感反馈的方法

向便携式坐标测量机的操作员提供传感反馈的方法

摘要

本发明提出了向便携式坐标测量机的操作员提供反馈的方法,其中坐标测量机包括具有连接的臂段的铰接臂。该方法包括当铰接臂置于负载之下时检测一部分所述铰接臂的变形,所述变形是施加到该铰接臂的外力大小的指示;及响应于所检测出的外力向坐标测量机的操作员提供反馈。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-29

    未缴年费专利权终止 IPC(主分类):G01B5/008 授权公告日:20081231 终止日期:20160813 申请日:20040813

    专利权的终止

  • 2008-12-31

    授权

    授权

  • 2006-11-15

    实质审查的生效

    实质审查的生效

  • 2006-09-27

    公开

    公开

说明书

发明背景

1.技术领域

本发明总体上涉及坐标测量机(CMM),尤其涉及具有铰接臂的便携式CMM。

2.背景技术

目前,提出了一种作为带有主机和应用软件的测量系统的便携式铰接臂。铰接臂通常用来对物体上的一些点进行测量,并且将这些测量到的点与存储在主机中的计算机辅助设计(CAD)数据进行比较以确定该物体是否在CAD规范之内。换句话说,CAD数据为基准数据,由铰接臂测量所获得的实际测量值与该基准数据进行比较。主机也可包含通过检验过程引导操作者的应用软件。在许多涉及复杂应用的情况下,这种安排是比较合适的,因为使用者将会在对应用软件中的复杂命令作出响应的同时观察主机上的三维CAD数据。

美国专利US5,402,582(下面简称为’582)公开了一种用于上述测量系统中的现有便携式CMM的例子,该专利已转让给本发明的受让人并通过引用组合于此。专利’582公开了一种普通的三维测量系统,其包括一种可人工操作的具有多个关节的铰接臂,该铰接臂的一端具有支承基座而在其另一端具有测量探针。主机通过中间控制器或串行盒(serial box)与铰接臂通信。应意识到的是,在专利’582中,铰接臂将与串行盒进行电子通信,串行盒顺次与主机进行电子通信。共同转让的美国专利US5,611,147(下面简称为’147)也以参引的方式包含在本申请中,其公开了类似的具有铰接臂的CMM。在该专利中,铰接臂包括一些重要的特征,包括:在探针末端处的附加旋转轴,用于提供具有2-1-3或2-2-3关节结构的臂(后一种情况为7轴臂);以及用于铰接臂中的轴承的改进的预加载荷的轴承结构。

其他有关的现有CMM还包括共同转让的美国专利US5,926,782(下面简称为’782)以及美国专利US5,956,857(下面简称为’857),专利’782提供具有可锁定的转移壳体的铰接臂,以消除一个或多个自由度;专利’857提供具有快速断开安装系统的铰接臂。

在此描述的较多现有类型的便携式CMM都不是必须采用中间控制器或串行盒,因为其功能现在被包含在主机所提供的软件中。例如,共同转让的美国专利US5,978,748(下面简称为’748),其通过引用组合于此,公开了一种具有板载控制器的铰接臂,该控制器存储一个或多个可执行程序及向使用者提供指令(例如检查过程)并存储用作基准数据的CAD数据。在专利’748中,控制器安装在该铰接臂上并运行可执行程序,该可执行程序通过进程如检查过程指引用户。在这样的系统中,可以采用主机来生成可执行程序。安装在铰接臂上的控制器用来运行可执行程序但不能用于生成可执行程序或修改可执行程序。通过模拟一些电子游戏系统,主机用作编写或修改电子游戏的平台,而安装在铰接臂上的控制器用作玩电子游戏的平台。控制器(如玩家)不能修改可执行程序。如在专利’748中所述,由于不是每一铰接臂都需要配备主机,因而可获得低成本的三维坐标测量系统。转让给在此的受让人并通过引用组合于此的美国专利申请09/775,236(下面简称为’236)公开了一种用于向使用专利’748中公开的坐标测量系统的用户发送可执行程序的方法和系统。该方法包括接收客户请求以生成可执行程序并获得与该可执行程序相关的信息。随后,开发出该可执行程序,其引导操作者通过一些将采用三维坐标测量系统执行的测量步骤。优选是通过在线网络例如因特网将可执行程序发送给该客户。

共同转让的美国专利US6,131,299(下面简称为’299,其所有内容均通过引用组合于此)公开了一种其上布置有显示装置的铰接臂,该显示装置便于操作者获得位置数据和系统菜单提示的方便显示。显示装置包括例如LED,其可指示系统是否通电、转换器位置状态以及出错情况。转让给本申请的受让人并通过引用组合于此的美国专利US6,219,928(下面简称为’928)公开了一种用于铰接臂的串行网络。串行网络将数据从位于铰接臂中的转换器传送给控制器。每个转换器都包括带有存储器的转换器接口,存储器保存转换器数据。控制器串行寻址每个存储器且将数据从转换器接口存储器传送到控制器。共同转让的美国专利US6,253,458以及US6,298,569(下面分别简称为’458以及’569)都公开了用于在此所描述的铰接臂便携式CMM的可调节的平衡机构。

尽管这些技术方案都能很好地适于其所要实现的目的,但是在该行业一直存在改进便携式CMM的需求,需要改进后的CMM能够使用简单、制造成本效益较好并能够使特性改良且销售成本较低。

发明内容

根据本发明,便携式CMM包括铰接臂,铰接臂具有多段连接臂段。在一实施例中,这些臂段包括轴承/编码器机芯,这些机芯采用双套筒接合彼此以预定的角度相互连接。每个机芯都包含至少一个预紧轴承组件(优选为两个)以及编码器(优选为光学编码器),所有这些构件组装在圆柱形外壳内。优选地,在每个接头中都采用两个或多个编码器读出磁头以产生可被均分的相消效应。由于臂是从基部较大直径逐渐变为探针端部的较小直径,因此臂段可通过螺纹连接的方式相互连接起来。

根据本发明的另一实施例,铰接臂的一段或多段连接臂段包括可替换保护罩和/或缓冲件,以限制较大的冲击和磨损及产生符合人机工程学且美感、舒适的抓握部位。

在本发明的另一个实施例中,铰接臂在其一个铰接关节内包括一体形成的内部平衡部件。该平衡部件采用具有相对较宽的端部环以及较窄的内环的螺旋弹簧,螺旋弹簧由金属圆柱加工而成。弹簧还包括至少两个(优选是三个)用于锁定在铰接臂的铰链构件中的柱子以及弹簧调节机构。

在本发明的另一个实施例中,铰接臂包括位于其端部的测量探针。该测量探针具有一体安装的接触触发探针,该探针可方便地转换成普通的硬探针。测量探针还包括一些改进的开关以及测量指示灯。在一实施例中,这些开关具有弧形、长方形,并且能够很容易地由操作者驱动。这些改进的开关具有不同的颜色、表面纹路和/或高度,以便操作者能够很容易地对它们进行区分,同时指示灯最好被标上色标以易于操作。

本发明的另一个实施例包括铰接臂,该铰接臂具有一体、板载电源再充电单元。该电源/再充电单元使CMM能实现充分的便携功能并使其能够很方便地在遥远的位置和/或在不需要将铰接臂直接接电的情况下使用CMM。

本发明另一实施例包括在一端具有测量探针的铰接臂。测量探针包括可旋转的手柄罩(handle cover)和开关组件,该组件包围测量探针。可旋转的手柄罩和开关组件使得测量探针可更容易地把持和激发而不需考虑手的位置。使用可旋转的手柄罩还使得在探针末端不再需要第三旋转轴,因此获得一种成本更低结构更简单的便携式CMM(相对于7轴CMM或在测量探针上具有第三旋转角度的CMM而言)。

在本发明的另一个实施例中,便携式CMM包括具有多段连接臂段的铰接臂,在该铰接臂一端具有测量探针而在其另一端为基座。根据该实施例的新特征,基座具有一体磁性固定件,用来将铰接臂固定到磁性表面。该一体磁性固定件最好是采用螺纹连接方式连接在铰接臂上并且具有开/关(on/off)控制杆以便于使用(该控制杆在固定件位于磁性表面上时最好可自动接合)。

本领域的普通技术人员将能够根据下面的详细说明和附图理解和认识本发明的上述以及其它优点和特征。

附图说明

现在参见附图,其中在多幅附图中相同的元件采用相同的数字标记。

图1是本发明的便携式CMM的前方透视图,其包括铰接臂及相连的主机;

图2是图1的CMM的后方透视图;

图3是图1的CMM的右侧视图(其中主机被去掉);

图3A是图1的CMM的右侧视图,其中罩在两个长关节上的防护罩略有改变;

图4是本发明的CMM的局部分解透视图,其示出了基座和第一铰接臂部分;

图5是本发明的CMM的局部分解透视图,其示出了基座、第一铰接臂部分以及局部分解的第二铰接臂部分;

图6是本发明的CMM的局部分解透视图,其示出了基座、第一铰接臂部分以及局部分解的第三铰接臂部分;

图7是根据本发明的一局部分解透视图,其示出了一对编码器/轴承机芯组装在两个双套筒接头之间;

图8是图7中所示的轴承/编码器机芯和双套筒接头的主视图;

图9是本发明的较短的轴承/编码器机芯的分解透视图;

图9A是与图9相似的分解透视图,但只示出了一个读出磁头;

图9B是与图9相似的分解透视图,但示出了四个读出磁头;

图9C是图9B组装后的透视图;

图9D是与图9相似的分解透视图,不同的是示出了三个读出磁头;

图9E是图9D组装后的透视图;

图10是图9中所示机芯的剖视图;

图11是本发明的较长的轴承/编码器机芯的分解透视图;

图11A是与图11相似的分解透视图,不同的是只示出了单个读出磁头;

图12是图11中所示机芯的剖视图;

图12A是图12中所示的机芯剖视图,示出了可与轴一起旋转的双读出磁头;

图13是本发明的另一轴承/编码器机芯的分解透视图;

图13A是与图13相似的分解透视图,不同的是只示出了单个读出磁头;

图14是图13中所示机芯的剖视图;

图15是本发明的轴承/编码器机芯以及平衡弹簧的分解透视图;

图15A是与图15相似的分解透视图,不同的是只示出了单个读出磁头;

图16是图15中所示机芯和平衡部件的剖视图;

图17是用于本发明的较大直径轴承/编码器机芯的双读出磁头组件的俯视图;

图18是沿图17中的线18-18的剖视图;

图19是图17中所示的双读出磁头组件的仰视图;

图20是用于本发明的较小直径轴承/编码器机芯的双读出磁头组件的俯视图;

图21是沿图20中线21-21所作的剖视图;

图22是图20中所示的双读出磁头组件的仰视图;

图23A是描述本发明的使用单读出磁头的CMM所采用的电子线路构造的方框图;图23B是描述本发明的使用双读出磁头的CMM所采用的电子线路构造的方框图;

图24是本发明的CMM纵向剖视图(其中去掉了基座);

图24A是图3A中所示的CMM的剖视图;

图25是图24中一部分的放大剖视图,示出了图24中的CMM的基座以及第一长关节;

图25A是根据本发明另一实施例的长关节和短关节之间相互连接状态的视图;

图25B是图25A中一部分的纵向正剖视图;

图26是图24中一部分的放大剖视图,示出了第二和第三长关节段;

图26A和B是图24A中一部分的放大剖视图,示出了第二和第三长关节及探针;

图27A是一分解侧视图,示出了本发明的第一短关节/平衡组件;

图27B是图27A中的元件的透视图;

图28是本发明的内部平衡部件的正剖视图;

图29是本发明的测量探针的第一实施例的侧向正剖视图;

图29A是本发明的测量探针的另一实施例的侧视图;

图29B是沿图29A中的线29B-29B所作的剖视图;

图29C是用于图29A-B中的一对“执行(take)”或“确认(confirm)”开关的透视图;

图30A-C依次是本发明的一体接触探针组件以及转换成硬式探针的的平面视图;

图31是本发明的测量探针的另一实施例的侧剖面视图;

图32是本发明的一体磁性基座的分解透视图;

图33是图32中的磁性基座的正剖视图;

图34是图32中的磁性固定件的顶部平面视图;

图35是源于Raab的’356专利中的具有双读出磁头的CMM接头的正剖视图;

图36是源于Eaton的’148专利中的具有双读出磁头的CMM接头的正剖视图;

图37是具有第七轴转换器的测量探针的侧视图;

图38是与图37类似的侧视图,不同的是其中包括可拆卸的手柄;

图39是图38中的测量探针的端部视图;

图40是图38中的测量探针的正剖视图;

图41为根据本发明的采用与多个传感器结合的读出磁头的轴承/编码器机芯的顶部平面视图;

图42是图41的机芯的透视图;及

图43是图42的机芯的上部的放大图。

具体实施方式

首先参见附图1-3,本发明的CMM总体上采用标记10表示。CMM10包括具有多个连接在一起的、可手动操作的铰接臂14,该铰接臂的一端连接在基座部分12上,而另一端连接在测量探针28上。铰接臂14基本上由两种类型的关节(joint)构成,即长关节(用于作回转运动)以及短关节(用于作铰接运动)。长关节基本上沿铰接臂的轴向或纵向方向布置,而短关节则最好相对于铰接臂的纵向轴线成90°布置。长关节和短关节配对出现,这种关节的配对构造通常称为2-2-2(尽管也可以采用其它的关节构造形式,例如2-1-2、2-1-3、2-2-3等)。图4-6示出了这些关节对中的每一对。

图4示出了第一关节对即长关节16和短关节18的分解视图。图4还示出了基座12的分解视图,包括便携式电源电子装置20、便携式电池组22、磁性固定件24以及两件式基座壳体26A和26B。所有这些元件均将在下面进行更详细的描述。

重要的是,应意识到铰接臂14的各种主要部件的直径都是从基座12到探针28逐渐变细。这种逐渐变细的过程是连续的,或者如图中的实施例所示,这种逐渐变细是不连续的或者是阶梯状的。此外,铰接臂14的每个主要部件都可以通过螺纹连接的方式进行连接,因此可消除现有CMM所需要的大量紧固件。例如,如下文中将要阐述的那样,磁性固定件24采用螺纹连接方式连到第一长关节16上。优选地,这种螺纹是锥形螺纹,它可以进行自锁并可以增加轴向/弯曲刚度。或者,如图25A和25B所示,并如下文中所述的那样,铰接臂的主要部件可以具有互补的锥形凸凹端部,这些端部具有相应的凸缘,凸缘可以通过螺栓连接在一起。

参见图5,所示的第二组长关节和短关节与第一组长关节和短关节连接。第二关节组包括长关节30和短关节32。和将磁性固定件24连到长关节16上一样,长关节30也通过螺纹连接方式连接在长关节16的内表面的螺纹上。同样,参见图6,第三关节组包括第三长关节34和第三短关节36。第三长关节34以螺纹连接方式连接在第二短关节32的内表面的螺纹上。如下文将要详细描述的那样,探针28也以螺纹连接方式连接在短关节36上。

优选地,每个短关节18、32以及36都由铸造和/或机械加工的铝质元件构成,或者也可以采用轻质刚性合金或合成物构成。每个长关节16、30以及34最好由铸造和/或机械加工的铝、轻质刚性合金或纤维补强的聚合物构成。三对前述关节对(即第一对包括关节对16、18,第二对包括关节对30、32,第三对包括关节对34、36)的机械轴相对于基座对齐以获得平滑一致的机械特性。前述从基座12到探针28逐渐变细的结构为优选结构,以能够在负载较大的基座处增加刚度,同时在通畅使用方面很重要的探针或手柄处的外形较小。如下文将详细描述的那样,每个短关节的两端上都装有保护性缓冲件38,而每个长探针上都罩有防护罩40或41。应意识到的是,第一长关节16受基座壳体26A、26B的保护,基座壳体所提供的保护和防护罩40、41为第二和第三长关节30、34所提供的保护类型相同。

根据本发明的重要特征,铰接臂的每一关节均采用模制轴承/编码器机芯,如图7和8所示的短机芯42以及长机芯44。这些机芯42、44安装在双套筒接头46、48的开口中。每个套筒接头46、48都包括具有第一凹部或套筒120的第一圆柱延伸部分47以及具有第二凹部或套筒51的第二圆柱延伸部分49。通常,套筒120和51彼此成90°角,不过也可以采用其它相对角结构。短机芯42布置在双套筒接头46和48的每一套筒51中以便构成铰接接头,同时长机芯44布置在接头46(见图25)的套筒120中而长机芯44’(见图26)布置在接头48的套筒120中,从而二者均构成纵向的回转接头。模制的轴承/编码器机芯42、44容许其上安装有模制编码器元件的预应力或预紧双轴承机芯的单独制造。该轴承编码器机芯随后可以固定安装到铰接臂14的外部骨架部件(即双套筒接头46、48)上。采用这种机芯的显著优点在于它能够高质量高速地生产铰接臂14的这些复杂的子部件。

在此所述的实施例中,有四种不同的机芯类型,即,两个用于关节30、34的长轴机芯、一个用于关节16的基座轴机芯、一个用于短关节18和16的基座机芯(其包括平衡部件)以及两个用于关节32和36的铰接机芯。此外,与逐渐变细的铰接臂14相一致,最靠近基座的机芯(例如,位于长关节16和短关节18中的机芯)的直径相对具有较小直径的关节30、32、34以及36而言要大些。每个机芯都包括预紧轴承结构和转换器,在该实施例中,转换器包括数字编码器。参见图9和10,现在对位于轴向长关节16中的机芯44进行说明。

机芯44包括一对由内座套54和外座套56分开的轴承50、52。重要的是轴承50、52上要预加载荷。在该实施例中,这种预载荷由座套54、56提供,座套54、56具有不同的长度(内座套54要比外座套56短大约0.0005英寸),从而在紧固时在轴承50、52上产生预先选定的预载荷。轴承50、52采用密封件58进行密封,这些部件构成的组件可旋转地安装在轴60上。在其上表面处,轴60终止于轴上部壳体62。在轴60和轴上部壳体62之间形成环形空间63。整个组件被布置在机芯外壳体64内,其中采用内螺母66和外螺母68的组合将轴60和其轴承组件牢固安装在机芯外壳体64上。需要注意的是,在组装时,外壳体64的上部65将被容纳在环形空间63内。应意识到的是,在对内外螺母66和68进行紧固时其对轴承施加压缩力,从而将上述预载荷施加到轴承50、52上,并且由于内外衬套54、56的长度不同,因此将施加所需的预载荷。

优选地,轴承50、62是成对双联向心推力球轴承。为了获得足够的预载荷,使轴承支承面尽可能平行是很重要的。该平行度会影响轴承周边上的预载荷的均匀度。不均匀的载荷会导致极为不均匀的扭矩感并且会导致不可预测的径向跳动和降低编码器性能。模块化安装的编码器盘(将在下面进行讨论)的径向跳动会在读出磁头下面导致不合需要的干涉条纹移位。这种情况会导致编码器角度测量出现重大的误差。而且,这种优选的成对双联向心推力球轴承结构的刚度也与轴承的分离直接相关。轴承相距越远,该组件越有刚性。采用衬套54、56可以增强轴承的分离。由于机芯外壳64优选为铝质外壳,因此衬套54、56优选也采用铝制成并且在长度和平行度方面进行精确加工。因此,温度改变不会导致不均匀的膨胀,这种不均匀的膨胀会影响到预载荷。如前所述,通过以一种已知方式设计衬套54、56的长度方面的差别可以获得预载荷。一旦螺母66、68被完全紧固后,长度差可以导致轴承预紧度。使用密封件58可以提供密封轴承,因为轴承的任何污染都会影响到所有旋转运动和编码器的精度以及关节感觉。

尽管机芯44优选包括一对间隔开的轴承,但是机芯44也可以包括单个轴承或三个或更多的轴承。因此,每个机芯至少需要一个轴承。

本发明的接头机芯既可以作无限的旋转运动,或者作为一种选择也可以作有限旋转运动。对于有限旋转运动,壳体64外表面上的凸缘72上的槽70形成容纳往复移送装置(shuttle)74的圆柱轨道70。往复移送装置74将行驶在轨道70中直到其抵靠可拆卸的往复移动装置止动件为止,往复移动装置止动件例如旋转止动调节螺钉76,通过该调节螺钉可以阻止旋转运动。旋转运动的转数可以根据需要进行改变。在一优选实施例中,可以将往复移送装置的转数限定为低于720°。此处旋转的往复移送装置止动件的类型在共同转让的美国专利US5,611,147中有详细的描述,该专利的所有内容通过引用组合于此。

如上所述,在另一实施例中,本发明所使用的关节进行无限的旋转运动。在这种情况下,采用一种已知的滑环组件。优选地,轴60具有中空或轴向孔78,该孔的一端有一直径较大的部分80。圆柱形滑环组件82与轴向孔78和80之间形成的台肩邻接。相对于在模制接头机芯中提出的预紧轴承组件而言,滑环组件82是不起结构作用的(也就是说,它并不提供任何机械功能,仅仅提供电的和/或信号传递功能)。尽管滑环组件82可以是任何市场上可以购买到的滑环,但在一优选实施例中,滑环组件82包括可以从大不列颠联合王国BERKSHRE Reading的IDM Electronics Ltd.公司购买的H系列滑环。这种滑环尺寸比较紧凑并且具有圆柱形结构,因而可完美地适用于轴60内的孔80。穿过轴60的轴向孔80终止于孔84处,孔84与槽道86连通,槽道86的大小和结构可以容纳来自于滑环组件82的电线。该电线由电线罩88固定就位并受到保护,该电线罩88卡装在槽道86和孔84中。这种电线由图10中的标记90示意性地表示。

如上所述,模制机芯44包括上述预紧轴承构件以及下面将要描述的模制编码器构件。还是参见图9和10,用于本发明的优选转换器包括模制光学编码器,该编码器具有两个主要部件,即读出磁头92和光栅盘94。在该实施例中,一对读出磁头92布置在读出磁头连接器板96上。连接器板96连到安装板100上。光栅盘94优选(优选采用适当的粘合剂)连接到轴60的下部支承表面102上并且与读出磁头92(该磁头通过板100支承固定)间隔开并且与该读出磁头对齐。电线箍104和密封盖106为壳体64的下端提供最外部的遮盖。电线箍104如图10所示的那样收纳和保持电线90。应意识到的是,编码器盘94由于在102上涂敷粘合剂而被固定在轴60上并可随着该轴旋转。图9和10示出了双读出磁头92,不过,应意识到可以使用两个以上的读出磁头,或者如图9A中所示使用单个读出磁头。图9B-C示出了安装在板100中的四个读出磁头92并且以90°的间隔间隔开(尽管采用不同的相对间隔也是合适的)。图9D-E示出了安装在板100中的三个读出磁头92并且以120°的间隔间隔开(尽管采用不同的相对间隔也是合适的)。

为了完全对齐盘94,在靠近盘94的位置提供穿过壳体64的孔(未示出)。随后采用一种工具(未示出)将盘94推动到同心对齐位置,在该位置处使盘94和轴60之间的粘合剂固化以将盘94锁定就位。随后将孔塞73插入壳体64中的所述孔(未示出)。

重要的是,应注意盘94和读出磁头92的位置可以反过来,从而盘94固定在外座套56上而读出磁头92可以与轴60一起旋转。图12A中示出了这样的实施例,其中板96’(通过粘合剂)固定在轴60’上以便与其一起旋转。一对读出磁头92’固定在板96’上并因此和轴60’一起旋转。盘94’布置在支承件100’上,该支承件100’固定在外壳64’上。在任何情况下,应意识到无论是盘94还是读出磁头92都可以安装成与轴一起旋转。重要的是盘94和读出磁头92要布置在机芯(或接头)中以便在维持光学连通的同时可以彼此相对旋转。

优选地,在本发明中所采用的旋转编码器比在美国专利US5,486,923以及US5,559,600中公开的要小,这两个专利的所有内容都通过参引的方式包含在本申请中。这种模制编码器可以从MicroESystems公司购买到,其商品名称为Pure Precision Optics。这些编码器都以物理光学为基础检测衍射级之间的干涉,从而从插入干涉条纹中的光电检测器阵列(如读出磁头)产生近乎完美的正弦信号。采用电子学的方法对该正弦信号进行内插值以便能够检测到仅仅一小部分光学条纹的位移。

采用激光源,首先用透镜使激光束成为平行光束,随后通过小孔调整大小。调整大小后的平行激光束穿过光栅,该光栅使得光衍射成具有0th的离散级(discrete order)以及受到光栅结构抑制的所有偶数级(even order)。由于该0级受到抑制,在离散的第三级之外存在一区域,在该区域内只有±1st级相互交迭形成一近乎纯粹的正弦干扰。在该区域内布置一个或多个光电检测器阵列(读出磁头),并且当光栅和检测器之间存在相对运动时该光电检测器阵列产生四个信道的几乎纯粹的正弦输出。将输出进行电子学放大、规格化并内插到理想的分辨水平。

对该编码器结构的简化产生几个优于现有光学编码器的优点。仅仅采用激光源及其平行光学器件、衍射光栅以及检测器阵列就可以进行测量。相对于较为粗笨的现有普通编码器而言,这使得本发明的编码器装置显得极为紧凑。此外,光栅和干涉条纹移动之间的直接关系减弱了编码器对外界环境所引起的误差的的敏感性,而现有的装置易于受到这种误差的影响。而且,由于该干扰区域较大,并且可以在该区域的任何位置获得几乎正弦干扰,因此,对准直容差的要求远比现有编码器在这方面的要求宽松得多。

前述光学编码器的一个显著的优点是,对读出磁头相对于编码器盘的偏离位置和距离的精度或距离和位置的严格程度要低得多。这样就能获得一种高精度的旋转测量以及一种易于组装的包装。采用这种“具有几何容忍性(geometry tolerant)”的编码器技术使得CMM10的成本显著降低并且使得制造更为容易。

应意识到的是,尽管上述优选实施例包括光盘94,但是本发明的优选实施例还可包括任何光学干涉条纹图案,该图案使得读出磁头能够检测到相对运动。如在此所使用的那样,这种干涉条纹图案可表示用来测量运动的光学元件的任何周期阵列。这些光学元件或干涉条纹图案可以安装到如上所述的旋转或固定的盘上,或者可以存放、固定或布置或安置在机芯的任何相对运动的部件(如轴、轴承或壳体)上。

实际上,读出磁头以及相关的周期阵列或图案并不必定需要完全基于(如上所述的)光学器件。广义上说,读出磁头还可以读出(或检测到)许多其他可测量的数量或特性的许多其他的周期图案,这些可测量的数量或特性可以用来检测运动,例如通常为旋转运动。这些其它可测量的特性可以包括例如反射率、不透明性、磁场、电容、电感或表面粗糙度(注意,表面粗糙度图案可以采用具有相机例如CCD相机的读出磁头或传感器来读出)。在这些情况下,读出磁头将会测量出例如磁场、反射率、电容、电感、表面粗糙度等的周期变化。因此,如在此所使用的,术语“读出磁头”表示任何用于分析这些可测量的数量或特性的传感器或转换器以及相关的电子学器件,光学读出磁头仅仅是优选实施例。当然,由读出磁头读出的周期图案可以位于任何表面上,只要读出磁头和周期图案之间存在相对运动(通常为旋转运动)。周期图案的一些例子包括存放在旋转或固定部件上的磁、感应或电容性媒介。而且,如果表面粗糙度为待读周期图案,就没有必要存放或提供独立的周期图案,因为可以使用任何与该相关的读出磁头(可能为相机如CCD相机)相连通的部件的表面粗糙度。

如上所述,图9和10表示的是用于轴向长关节16的模制轴承和编码器机芯的一些例子。图11和12所示的是用于轴向长关节30和34的轴承和编码器机芯。这些机芯组件基本上都与图9和10中所示的相似并且因此标记为44’。从这些图可以明显地得出区别于机芯44的一些细微的区别,这些区别如结构不同的电线盖/罩88’、略有不同的电线箍/套104’、106’以及凸缘72’在壳体64’上端处的的位置。同样,壳体64’和轴上部壳体62之间的凸缘是向外展开的。当然,图11和12中所示的各种部件的相对长度也与图9和10中所示略有不同。由于所有这些部件基本上都相似,因此这些部件都采用相同的数字加上一个符号“’”来指代。图11A与图11相似,不同的是所表示的为具有单个读出磁头的实施例。

参见图13和14,所示的是短铰接关节32和36中的轴承和编码器机芯的分解剖视图。如图11和12中的轴向长关节44’所示,用于短铰接关节32和36的机芯基本上与上面详细描述的机芯44类似,因此这些机芯的元件标记为44″,并且相似的元件采用原来的数字加上符号“″”来表示。应意识到的是,由于机芯44″将用于短关节32、36,因此不需要滑环组件,因为电线将由于这些关节的铰接运动而简单地穿过轴向孔78″、80″。图13A与图13类似,不同的是所表示的为单读出磁头的实施例。

最后,参见图15和16,短铰接关节18的模制轴承/编码器机芯图示为108。应意识到基本上机芯108的所有部件都与机芯44、44’以及44″中的部件相似或相同,其中重要的不同在于机芯108包含平衡组件。该平衡组件包括平衡弹簧110,该弹簧套装在壳体64″上并以下面将会参照图26-28进行描述的方式为CMM10提供重要的平衡功能。图15A与图15相似,但是所示的是单读出磁头实施例。

如上所示,在一优选实施例中,在编码器中可以采用一个以上的读出磁头。应意识到的是,可以通过由于所施加的负载而引起的盘的径向跳动或径向运动进行编码器的角度测量。已经确定的是,两个彼此成180°布置的读出磁头会导致径向跳动,该径向跳动会在每个读出磁头内产生相消效应。对这些相消效应求平均值获得最终的“不受影响的”角度测量值。因此采用两个读出磁头以及合成误差抵消会使得出错的可能性减小并且获得更为精确的编码器测量值。图17-19分别表示的是用于较大直径的机芯中的双读出磁头实施例的仰视图、剖视图以及俯视图,该大直径的机芯例如可在关节16和18(也就是最靠近基座的那些关节)中找到。因此,机芯端盖100上安装有一对电路板96,每个电路板96上都具有采用机械方式安装在其上的读出磁头92。读出磁头92优选布置成彼此间隔开180°,以提供由所述盘的径向跳动或径向运动所导致的误差抵消。每个电路板96还包括用于将该电路板96连接到下面将要进行说明的内部总线和/或其他电线上的连接器93。图20-22所示的部件基本上与图17-19中所示的部件相同,其中主要的区别是前者具有较小直径的机芯端盖100。该较小直径的双读出磁头实施例与关节30、32、34以及36的较小直径机芯关联。

使用至少两个读出磁头(或更多磁头,例如图9D-E中所示的三个读出磁头以及图9B-C中所示的四个读出磁头)也可被多种普通的坐标测量机所采用,从而显著地降低测量机的制造成本和复杂性。例如,美国专利US5,794,356(以下简称为Raab’356),其通过引用组合于此,所描述的坐标测量机中的每个关节的构造都相对简单,每个关节都包括第一壳体和第二壳体,该第一壳体保持固定并带有一关节半片(joint half),而第二壳体保持固定并具有第二关节半片,该第一和第二壳体具有预紧轴承,该轴承使其能够相对旋转。第一壳体固定一装好的编码器而第二壳体包括一轴向布置的内轴,该内轴延伸到第一壳体中并与从该装好的编码器中凸出的编码器轴相匹配。现有的装好的编码器要求没有载荷施加在其上,并且尽管该内轴的轴线与该装好的编码器的轴线对的不是太齐,但是第二壳体的运动要精确地传递到该编码器上以便维持较高精度的旋转测量。为了适应在轴向不对齐方面的制造公差,就需要在该编码器轴和该内轴之间连接一个特殊的联轴装置。这种构件如Raab’356中的图7所示。

相反,图35所示的是一种变化结构,Raab’356中CMM的联轴装置和装好的编码器被去掉并采用编码器盘96和端盖100替代。在此,两个关节彼此呈90°布置,每个关节具有第一壳体420和第二壳体410。内轴412从第二壳体420延伸到第一壳体410中。如图所示,编码器盘96例如采用粘合剂安装在内轴412的末端,而端盖100固定在第一壳体420内。不过,应理解的是,编码器盘96可以固定在第一壳体420内并且端盖100可以固定到内轴412上而不会影响到该关节的运转。

如上所述,采用两个(或更多的)读出磁头以及合成误差抵消会导致出错的可能性减小并且获得更为精确的编码器测量值,尽管轴线对得不是太齐。此外,光栅和干涉条纹运动之间的直接关系减弱了编码器对外界环境引起的误差的敏感性,而现有装置则易于受到该误差的影响。而且由于干扰区域较大,并且在该区域内的每个位置都可以获得几乎正弦干扰,因此对准直容差的要求要比前述现有编码器的要求宽松得多。

在另一实例中,Eaton的美国专利US5,829,148(以下简称为Eaton的专利’148),其通过引用组合于此,描述了一种现有CMM,其中装好的编码器通过提供主旋转轴承而形成每个关节的一体部分,因此不需要对如上所述的Raab专利’356中的轴向不对齐情况进行补偿。不过,由于该编码器提供了主旋转轴承,因此重要的是编码器应在结构上粗壮并且能够经受各种负载而不会影响到其性能。这就增加了该编码器的成本和粗笨程度。这种结构如Eaton的专利’148中的图4所示。

作为对比,图36所示的是一种变化结构,其中,Eaton的专利’148中的装好的编码器和其中一个关节的连接轴被去掉并由端盖100和编码器盘96替代。在此,第一壳体470保持端盖100并且通过轴承472保持第二壳体460的内轴462。内轴462延伸到末端靠近端盖100,并且编码器盘96如采用粘合剂安装在该内轴462的末端。如在图35中所示的实施例一样,采用两个(或更多的)读出磁头会显著地降低关节的成本和复杂性同时不会损失精度。

应意识到的是,周期图案的非环状运动是造成在此描述的旋转转换器的不准确的主要原因。这种非环状运动可能由多种现象造成,包括装配缺陷及外部变形。外部变形可能发生在CMM的任何地方,最可能发生在轴承结构和/或连接管道处。例如,这样的外部变形可源自不可重复的轴承径向跳动、轴承摇晃、轴承变形、热效应及轴承运动。如参见图17-21所述,在本发明的一实施例中,旋转转换器的不准确通过使用至少两个读出磁头而得以纠正,两读出磁头最好相互间隔180°进行安装。然而,在图41-43所示的本发明的另一实施例中,源自CMM变形和/或装配缺陷的可能误差通过使用至少一读出磁头和一个或多个传感器的结合进行纠正,传感器最好为多个近程传感器(或任何其它测量位移的传感器)。

应意识到在于此描述的任何特定机芯中,在轴和机芯的外壳之间有6个自由度。也就是说,轴包括6个自由度,即X、Y和Z轴位移和X、Y和Z轴旋转。现在参见图41-43,图中600示出了上述类型的机芯。机芯600包括旋转安装在外壳606内的轴承(未示出)上的内轴602。读出磁头板604将编码器读出磁头610和传感器S1-S5固定到外壳606。其上具有光学干涉图案的编码器盘608连到轴602以随其旋转。编码器读出磁头610(连到读出磁头板604)安装在光学干涉图案608的上面,且最好用于测量轴602的Z轴旋转。除读出磁头610之外,机芯600包括另外5个传感器,所有这些传感器均通过读出磁头板604固定到外壳606上;且所有这些传感器均用于测量轴602和外壳606之间的相对移动。这些另外的传感器包括测量轴602(相对于外壳606)的Y轴位移的位移传感器S1、测量轴602(相对于外壳606)的X轴位移的位移传感器S2。因此,轴602已与三个传感器相关联,即读出磁头610和传感器S1和S2,以分别测量其Z轴旋转和X及Y轴位移。优选地,轴602还包括另外三个与其相关联的传感器,以用于测量X及Y轴旋转和Z轴位移。具体地,传感器S3、S4和S5共同测量X及Y轴旋转和Z轴位移。在图41-43所示的实施例中,S3、S4和S5传感器以120°间隔沿读出磁头板604布置。这三个等距间隔的传感器的测量值以已知方式进行结合从而确定组合的X和Y轴旋转及Z轴位移。

因此,这另外5个传感器S1-S5测量并纠正CMM中的任何变形,包括连接管或轴承结构的变形,且这些传感器可用于纠正测量中出现的误差。因而,这些另外的传感器可用于测量轴和外壳之间的相对移动以确定不同于盘的转动的移动,因而纠正这些“其它”移动引起的任何误差。根据本发明,实现这些位移测量的任何适当类型的传感器均可以使用。优选地,传感器为近程传感器如使用Hall效应的近程传感器或基于磁发电机、电阻、电容或光学特征的近程传感器。

应意识到的是,例如,当接头置于载荷之下且轴承结构变形时(且由于该变形,传送光学图形608的轴602和具有读出磁头610的外壳将相互相对移动),将受这样的移动影响的角度测量可通过使用来自另外的传感器S1-S5的位移信息进行“校正”(应意识到本发明可能使用所有传感器S1-S5或其中部分,且还可能使用除S1-S5之外的传感器)。该校正导致实质上改善便携式CMM的准确度。还应意识到的是,当本发明使用包括另外的传感器S1-S5的至少一接头机芯时,在优选实施例中,所有机芯应包括这样的另外的传感器。同样,尽管图41-43实施例是以具有光学光栅盘的旋转编码器示出,任何先前描述的其它旋转编码器均可与在此描述的传感器S1-S5一起使用,所述旋转编码器检测和分析包括那些采用可测量特征如反射率、不透明度、磁场、电容、电感或表面粗糙度的可测量特征的周期图案。同样,尽管图41-43实施例示出了光盘关于轴602旋转的实施例,多个传感器S1-S5也可与图12A所示实施例一起使用,其中光盘静止不动。

如上所述,在另外的传感器可用于纠正轴承和其它臂变形引起的误差的同时,另外的传感器还可用于计算和测量对准接头的外力,其实际上导致那些结构变形。这些测量值可被有利地使用以向用户提供传感反馈。例如,在特定轴承结构或接头上某些范围的外力可被容忍;然而,对外力引起轴承装置变形的检测可表明这些范围已被超出,其后向用户提供传感反馈以采取补救措施来减轻这样的外力。即,用户可更改CMM的处理以改善测量。该传感反馈可以是听觉和/或视觉反馈的形式;并可以通过软件控制CMM而指示。因而,上述另外的传感器S1-S5可用作过载传感器并防止用户使臂超负载,从而保持最佳精度以确保准确的测量。事实上,特定接头上外力的测量不仅可与图41-43的实施例(其中使用了另外的传感器S1-S5)一起使用,而且可与上述使用两个或多个读出磁头的实施例一起使用。在两个读出磁头布置的例子中,角度测量源自两个读出磁头的平均值。其后,变形力可通过测量两个读出磁头读数之间的差获得。在图41-43的实施例中,变形可朝两个近程传感器的每一个的方向进行测量。这提供了另外的方向信息。使用所有六个传感器(S1-S5和读出磁头)将由于所有六个自由度的测量而提供每一接头中的变形的总体描述。

除了通过或使用两个读出磁头或使用一个读出磁头连同一个或多个近程传感器而改善转换器的角度准确度之外,源自测量变形力的信息还可用于纠正臂的运动,其通过使用这样的变形信息实时改变臂的尺寸从而改善测量准确度。因而。例如,如果轴承变形,该变形将导致臂段长度的变化。通过使用在此描述的传感器和读出磁头测量该变形,臂的长度的变化可在与CMM相关联的测量软件中进行考虑,继而用作校正以改善臂的最终测量准确度。

回头看图23A,其所示的是用于图9A、11A、13A以及15A中的单读出磁头实施例的电子线路的方框图。应意识到的是,CMM10优选包括外部总线(优选为USB总线)260以及内部总线(优选为RS-485)261,该外部总线设计成可扩展的,以便用于多个编码器以及从外部安装的扶手(rail)或附加的旋转轴,例如第七轴。该内部总线优选与RS485相一致,并且该总线优选设置成可以与用于传送来自便携式CMM铰接臂的转换器的数据的串行网络相同的方式用作一个串行网络,CMM铰接臂公开在共同转让的美国专利US6,219,928中,其全部内容通过引用组合于此。

参见图23A,应意识到的是,在每个机芯中的每个编码器都与编码器板相连。关节16中的机芯的编码器板被布置在基座12中并且在图25中被标记为112。关节18和30的编码器在一双编码器板上受到处理,该双编码器板位于第二长关节30中并且在图26中被标记为114。图26也表示了一种相似的双编码器板116,用于关节32和34中的编码器,编码器板116位于如图26所示的第三长关节34中。最后,端部编码器板118如图24所示位于测量探针手柄28内并且被用来处理短关节36中的编码器。这些编码器板114、116以及118中的每一个都连接有热电偶以便提供由于温度瞬变导致的热补偿。每个编码器板112、114、116以及118都包含嵌入式模数转换、编码器计数以及串行端口通信。每个编码器板都具有可读取编程的闪存以能将操作数据存储在本地。主处理器插接板112也是可通过外部USB总线260编程的区域。如上所述,内部总线(RS-485)261设计成可扩展的以用于更多的编码器,编码器也包括从外部安装的扶手和/或第七旋转轴。已设置了一轴孔以便为内部总线提供诊断。由于外部USB通信协议的容量的原因,可以将多个这些附图中表示为10的CMM连接到单一应用场合。而且也可以由于完全相同的原因而将多个应用连接到单一CMM10上。

优选地,每个编码器板112、114、116以及118都包括16位的数字信号处理器,例如可以从Motorola购买的标识为DSP56F807的处理器。该单一处理部件将包括串行通信、积分译码、A/D转换器以及板载存储器等多种处理特征结合起来,因此能够减少每个编码器板所需的芯片的总数。

根据本发明的另一重要特征,每个编码器都与具有个性化标识的芯片120相连。该芯片用来标识每一单个编码器并因此标识出每一单个轴承/编码器模制机芯,从而能够方便而快速地进行质量控制、测试以及修复。

图23B是与图23A相似的电子线路方框图,但是所示的是图10、12、14以及16-22中的双读出磁头实施例。

下面将参考图24-26对铰接臂14中每个机芯的组件进行描述(注意,图24所示的铰接臂14没有基座12。还有,图24-26采用了图9A、11A、13A以及15A中所示的单读出磁头实施例)。如图25所示,第一长关节16包括相对较长的机芯44,该机芯的上端被插进双套筒接头46的圆柱形套筒120中。机芯44通过适当的粘合剂被牢固地固定在套筒120中。机芯44的相对下端被插进延伸管中,在该实施例中,延伸管可以是铝质套管122(但是套管122也可以包括刚性合金或复合材料)。机芯44再次采用适当的粘合剂固定在套管122内。套管122的下端包括较大的外直径部分124,该部分上具有内螺纹126。该螺纹向外呈锥形并且设置成可以与位于磁性固定件壳体130上的向内呈锥形的螺纹128(清楚表示在图4中)进行螺纹配合。如上所述,CMM10的所有关节都采用这种锥形螺纹相互连接。优选地,该锥形螺纹为能够自我紧固的美国标准锥管螺纹(NPT)型螺纹,因此不需要锁定螺母或其它紧固装置。该螺纹还容许并应包括螺纹锁定剂。

参见图26,与第一长关节16一样,长机芯44’采用粘合剂固定在双套筒接头46’的圆柱形开口120’中。机芯44’的外壳体64’包括由凸缘72’的下表面形成的台肩132。台肩132支承圆柱形延伸管134,该延伸管设置并套在外壳体64’的外表面上。延伸管用于这些关节中以便形成长度可变的、安装到带螺纹的部件上的管。延伸管134因此从外壳体64’的底部向外延伸且其中已插入螺纹套管136。采用适当的粘合剂将外壳体64’粘接到延伸管134上以及将套管136和延伸管132粘接在一起。套管136的末端为锥形部分,该锥形部分上具有外螺纹138。该外螺纹以螺纹连接方式与位于连接件142上的内螺纹140相配合,该连接件在这之前已经采用粘接方式固定在双套筒接头48的开口144中。优选地,延伸管134采用复合材料构成,例如一种合适的碳纤维复合材料,而螺纹套管136由铝构成,以便与双套筒关节48的热学特性相匹配。应意识到的是,PC板114紧固在支承件146上,该支承件又固定在双套筒关节支承件142上。

除了上述螺纹连接外,一个、多个或者所有关节都可以采用如图25A-B中所示的螺纹紧固件进行相互连接。不是图26中的螺纹套管136而是图25B中的套管136’具有光滑的锥形端部137,该锥形端部容纳在具有互补锥形套筒的支承件142’中。凸缘139沿着周边从套筒136’向外延伸,该凸缘上具有一批螺栓孔(在该实例中为6个螺栓孔),穿过这些螺栓孔安装有螺栓141。螺栓141沿着套筒支承件142’的上表面以螺纹连接方式安装在相应的螺栓孔中。延伸管134’套装在图26中所示的实施例中的套管136’上。这些关节这种互补的锥形凸凹互连相对于现有技术来说改善了连接界面。

还是参见图26,第三长关节34的长机芯44″采用与长关节30的机芯44’相似的方式固定到铰接臂14上。也就是说,机芯44″的上部采用粘合方式固定到双套筒关节46″的开口120″中。延伸管148(优选采用在针对管134进行说明时所描述的复合材料构成)套装在外壳体64″上并且从其向外延伸,以便容纳配合套管150,该配合套管以粘合方式固定在延伸管148的内径上。配合套管150的末端形成锥形部分,该锥形部分上具有外螺纹152并且与双套筒关节支承件154上的互补内螺纹153相配合,支承件154之前已经粘接在双套筒关节148’内的圆柱形套筒156上。印刷电路板116同样采用PCB支承件146’连接到双套筒关节上,PCB支承件146’固定在双套筒关节支承件154上。

如针对图7和8所述,图13和14中的短关节机芯44’以及图15中的机芯108简单地布置在两个双套筒关节46、48之间并且采用合适的粘合剂固定在双套筒关节内。因此,长短机芯都能较容易地彼此成直角(如果需要的话可以成直角之外的任何角度)连接起来。

如上所述的模制轴承编码器机芯构成了如前述Raab的专利’356以及Eaton的专利’148中所示的便携式CMM的重要技术进步。这是因为,该机芯(或该机芯的外壳)实际上形成每个关节的结构元件,每个关节组成铰接臂。在此使用的术语“结构元件”的意思是机芯的表面(例如机芯壳体)刚性地连接在铰接臂的其它结构部件上,以便在不使铰接臂变形的情况下(或最多只能最小变形)传递旋转运动。这和普通便携式CMM(例如在Raab的专利’356以及Eaton的专利’148中所公开的那种)形成对比,其中,需要有单独和截然不同的关节元件和传递元件,因为旋转编码器是关节元件的一部分(但是不是传递元件的一部分)。实质上,本发明不需要单独的传递元件(例如传递部件),因为关节元件和传递元件的功能被整合到一个单一模制部件(即机芯)中。因此,与由独立和截然不同的关节和传递元件构成的铰接臂不同,本发明采用一种由长短关节元件的组合体(即机芯)构成的铰接臂,这些长短关节都是铰接臂的结构元件。这相对现有技术来说可获得更好的效率。例如,在专利’148以及专利’582中,关节/传递部件组合体中所使用的轴承的数量为四个(关节中有两个轴承而传递部件中有两个轴承),而本发明中的模制轴承/转换器机芯可以使用最少一个轴承(尽管使用两个轴承为优选)并且依然能够实现相同的功能(尽管可以采用一种不同且改进的方式)。

图24A以及26A-B是与图24-26相似的剖视图,但是表示的是图10、12、14以及16-22中所示的双读出磁头实施例,并且还是图3A中所示的CMM10’的剖视图。

铰接臂14的全长和/或各个臂段可以根据其所要使用的场合而变化。在一实施例中,铰接臂的全长大约为24英寸并提供大约0.0002到0.0005英寸数量级的测量值。铰接臂的尺寸和测量精度提供一种能够较好地适应采用典型的手动工具例如千分尺、高度计、卡尺等就能立即实现测量的便携式CMM。当然,铰接臂14可以具有较小或较大的尺寸和精度等级。例如,较大的铰接臂的全长为8英尺或12英尺,并且相应的测量精度为0.001英寸,因此能够用于最实时的检查用途或用于逆向工程。

CMM10还可以与安装在其上的控制器一起使用,该控制器用于执行如前述专利US5,978,748以及美国专利申请09/775,226中所公开的相对简单化的可执行程序;或者CMM10可以与相对复杂的程序或主机172一起使用。

参见图1-6以及24-26,在一优选实施例中,长关节和短关节中的每一个都受到弹性体缓冲器或罩的保护,该缓冲器或罩所起的作用是限制较高冲击力并提供具有人机工程学的舒适抓握部位(以及从美观上来说令人感觉舒服的外观)。长关节16、30以及34都受到可更换的硬质塑料(例如ABS)罩的保护,该硬质塑料罩起到一种防冲击和磨损的保护装置的作用。对于第一长关节16,该可更换的硬质塑料罩可形成两件式基座壳体26A以及26B,如图4中所示。长关节30以及34均受到一对罩壳件40和41(如图5和6所示)保护,该对罩壳件可以采用适当的螺钉以蛤壳形式紧固在一起以便形成保护套。应意识到的是,在一优选实施例中,用于每个长关节30和34的可更换硬质塑料罩均分别包围优选为复合材料(碳纤维)的延伸管134和138。

优选地,其中一个罩,例如罩部分41,包括一体模制在其中的倾斜的支承柱166,该支承柱限制铰接臂的肘部处的旋转,从而防止在静止状态下探针28碰撞到基座12。这在图3、24以及26中显示的最为清楚。应意识到支承柱166因此可限制不必要的冲击和磨损。

如将要针对图29和31所描述的那样,探针28还可以包括可更换的塑料保护罩,该保护罩采用硬质塑料材料制成。

图3A、24A以及26A-B所示的是可替换的保护套40’、41’,这些保护套也具有蛤壳式构造,不同的是它们采用夹板或弹簧夹167而不是螺纹紧固件来固定就位。

每个短关节18、32以及36都包括一对弹性体(例如热塑性橡胶,例如Santoprene)缓冲器38,和前面所述并在图1-3以及5-6中清楚表示的一样。缓冲器38可以采用螺纹紧固件、适当的粘合剂或采用任何其它适当的方式安装。弹性体或橡胶缓冲器38将限制较高的冲击力并提供具有美感、令人愉快并且具有人机工程学的舒适的握持部位。

前述保护罩40、41、40’、41’以及缓冲器38都可以方便地进行更换(基座壳体26A、26B也一样)并且使得铰接臂14能够在不影响CMM10的机械性能的情况下快速而廉价地进行整修。

还是参见图1-3,基座壳体26A、26B包括至少两个圆柱形轴毂(boss),用来安装如图3中168处所示的球体。该球体可以用来安装夹子型的计算机夹持器170,夹持器继而支承便携式或其他计算机装置172(例如所述的“主机”)。优选地,圆柱形轴毂设置在基座壳体26A、B的任意一侧,使得该球体和计算机夹持器可以安装在CMM的任意一侧。

现在参见图15、16、27A、B以及28来描述用于CMM10的优选平衡部件。通常,此处所描述的便携式CMM都已经采用了一种从外部安装的螺旋弹簧,该螺旋弹簧以悬臂支架的形式独立地安装在铰接臂的外侧以用作平衡部件。相反,本发明采用完全构成一体的内部平衡部件,该平衡部件使得铰接臂的整个外部轮廓减小。通常,现有平衡部件都是在平衡机构中采用卷绕螺旋弹簧。但是,根据本发明的一个重要的特征,平衡部件采用的却是一种采用机器加工出来的螺旋弹簧(与卷绕螺旋弹簧相对)。图16和27A-B中所示的是这种采用机器加工的弹簧110,并且该弹簧110采用单个金属(钢质)圆柱形成,该金属圆柱通过机器加工形成一对位于螺旋的相对端的相对较宽的环174、176以及构成端环174、176之间的中间簧圈的相对较窄的环。应意识到的是,较宽的端环174、176分别与轴62’的侧表面180以及壳体64″的侧表面182相啮合,由此防止弹簧110横向运动。较宽的坚固的端环174、176起到一个抗扭曲装置的作用并且提供优于现有卷绕弹簧的功能。端环174优选包括一对锁定柱184、186(尽管可以只用一个锁定柱)而端环176包括一个锁定柱188。

参见图27B,每个双套筒关节46、48都包括如标记190和191处所示的凹槽,用于容纳相应的锁定柱184、186或188。参见图28,尽管锁定柱184、186会以固定状态保持在双套筒关节48的适当凹槽内,但是锁定柱188的位置是可以改变的以使得弹簧110上的整个卷紧度最佳化并提供最有效的平衡力。这可以采用螺纹孔192来实现,该螺纹孔内安装有螺钉194。如图28所示,可以对螺钉194进行操作使其与锁定柱188接触并在圆周方向上沿着内部导槽196逆时针方向推动该锁定柱188,如图27B所示,该内部导槽与锁定柱的进入凹槽190垂直。优选的是在工厂中就将螺钉194布置在使弹簧110最佳化的位置。

应意识到的是,在使用铰接臂14的过程中,编码器/轴承机芯108将会起到铰接关节的作用,并且一旦被插入并采用粘接方式固定在双套筒关节46、48的套筒中时,锁定柱184、186以及188将会被锁定在其相应的凹槽内。当套筒关节48(经过机芯108的铰接关节)相对套筒关节46旋转时,弹簧110就会卷紧。当需要套筒关节48旋转回到其原始位置时,弹簧110的卷绕力就会放松而提供所需的平衡力。

在需要颠倒安装铰接臂14时,例如安装在磨床、横梁或天花板上时,弹簧110的方位同样可以倒过来(或反过来)以便获得必要的平衡所需的适当方位。

下面参见图29和30A-C来描述测量探针28的一优选实施例。探针28包括壳体196,该壳体内有内部空间198,用于容纳印刷电路板118。应意识到的是,壳体196构成上述类型的双套筒关节并且包括套筒197,在该套筒中粘接支承部件199,该支承部件用于支承电路板118。优选地,手柄28包括两个开关,即执行(take)开关200以及确认(confirm)开关202。这些开关由操作者用来在操作过程中(通过执行开关200)进行测量并(通过确认开关202)确认该测量。根据本发明的一个重要特征,开关被彼此区别开来以在使用过程中使混淆的可能最小。该区别可以采用多种方式进行,这些方式包括例如使开关200、202具有不同的高度和/或具有不同的纹路(需要注意的是,开关202上有压痕,而与此相反开关200的上表面是平滑的)和/或具有不同的颜色(例如开关200为绿色而开关202为红色)。还是根据本发明的一重要特征,指示灯204也与开关200、202相连以指示适当的探测行为。优选地,指示灯204为一种两色灯,例如指示灯204在进行测量时(以及在按下绿色执行按钮200时)显示绿色以及在确认测量时(以及在按下红色确认按钮202时)显示红色。利用现有的LED就可很容易地实现使用多色灯。为了有助于握持,为了产生改进的美感以及为了耐冲击,在探针28的一部分上提供标记为206的上述类型的外保护罩。开关电路板208用于安装按钮200、202以及指示灯204,并且该电路板由支承部件199支承。开关电路板208与电路板118进行电连接,电路板118上安装有用来处理该开关和指示灯以及处理短铰接关节36的元件。

根据本发明的另一重要特征并参见图29和图30A-C,探针28包括永久安装的接触触发探针以及可拆除的盖体,该盖体与固定探针相配合并保护接触触发器探针。图29中标记210处所示的是该接触触发探针机构,并且该探针机构以一种简化的三点运动学探针座为基座。该普通的结构包括探针鼻端212,该前鼻端与受到接触弹簧216偏压的球体214接触。三个接触销212(在218处只有一个表示出来)都与隐藏的电路接触。向探针鼻端施加的任何力都会导致三个接触销218中的任何一个上升,而接触销的上升会导致隐藏的电路打开因此驱动开关。优选地,接触触发探针210还可以与前面所述的“执行”开关200一起协同工作。

如图30B所示,当使用接触触发探针210时,保护性螺纹罩220可以螺纹方式安装到触发探针210周围的螺纹222上。不过,当需要采用一种固定探针而不是采用接触触发探针时,可以拆除该可拆除的盖体220,如图29和30A-C中标记224处所示,所需的固定探针以螺纹连接方式安装到螺纹222上。应意识到的是,尽管固定探针224具有安装在其上的圆球,但是可将任何不同构造的所需固定探针方便地以螺纹连接方式通过螺纹安装到探针28上。接触触发探针组件210安装在壳体228中,壳体228可螺纹连接地安装在螺纹接头230中,该螺纹接头形成探针壳体196的一部分。这种相互螺纹连接使得接触触发探针210完全集成在探针28中。一种完全集成的探针的提出表现了本发明一个重要特征并且显著区别于安装在现有CMM上的现有可拆除的接触探针。此外,该永久安装的接触触发探针也可方便地转换成如上所述的硬探针。

图29A-C公开的也是本发明的测量探针的另一优选实施例。在图29A-C中,在28’处所示的测量探针基本上类似于图29中所示的测量探针28,其主要区别在于“执行”和“确认”开关的构造。与图29中所示的分散式按钮型开关不同,测量探针28’采用两对弧形椭圆开关200a-b以及202a-b。每对相应的椭圆开关200a-b以及202a-b都相应地对应于图29中所述的执行开关和确认开关。测量探针28’的这种实施方式相对于测量探针28的优点在于每对椭圆开关202和200实际上都包围测量探针的整个圆周(或者包围圆周的至少大部分)并因此更容易由便携式CMM的操作者驱动。和图29中所示的实施例一样,指示灯204与每个开关相连,指示灯204以及开关200、202安装在相应的电路板208’上。还是和图29中所示的实施例一样,开关200、202可以采用例如不同的高度、不同的纹路和/或不同的颜色进行区分。优选地,开关200、202略微浮起以便该按钮可以在被沿着该按钮的任何位置被按下时受到驱动。和图29中所示的实施例一样,在206处使用了上述类型的外保护罩,并且该保护罩安装在一部分探针28’上。

参见图31,用于CMM10的一种可替代的测量探针如标记232所示。测量探针232与图29中的测量探针28相似,其中的主要区别在于探针232包括旋转手柄罩234。旋转手柄罩234安装在一对间隔开的轴承236、238上,该轴承又安装在内芯或支承件240上,从而旋转罩234可以自由地绕着内芯240旋转。轴承236、238优选为径向轴承并且使得由于探针手柄在铰接臂上产生的附加力矩最小。值得注意的是,开关电路板208’以及相应的开关200’、202’和LED204’都安装在旋转手柄罩234上以便与其一起旋转。在旋转期间,采用普通的滑环机构242为处理电路板118’提供电连接,该滑环机构包括一些现有的间隔开的弹簧爪式定位装置(spring finger)242,该弹簧爪与固定环形凹槽244接触。这些接触凹槽244采用滑环导体242又与电路板118’进行电连接。旋转手柄罩234以及开关组件因此采用滑环导体242与内芯或探针轴240电连接。探针手柄罩234的旋转使得开关200’、202’能够定向成方便于使用者的方向。这使得铰接臂14’可以在操作过程中通过使得无事实证明的力最小化而进行精确的测量。该旋转手柄罩优选由刚性聚合物制成并且其上设有一些适当的凹部246和248,以方便探针的操作者容易握持和操控。

应意识到的是,探针232的剩余部分与探针28十分相似,包括在盖体220中设置永久且一体安装的接触探针210。需要指出的是,开关200’、202’都具有不同的高度和表面纹路以方便辨识。

在CMM领域,旋转手柄罩234的一个显著优点在于它可以弱化如前述美国专利US5,611,147中所公开的对第七旋转轴的需要。应意识到的是,增加第七轴会使得CMM更为复杂和昂贵并且增加系统导致误差的可能。使用可旋转的探针232弱化了对一种“真正的”第七轴的需要,因为在没有第七转换器和相应的轴承、编码器以及电子器件的复杂情况下它使得探针能够提供在探针末端的手柄位置所需的旋转。

在需要使用具有“真正”第七轴的测量探针的情况下,也就是说,在测量探针具有用于测量旋转运动的第七旋转编码器的情况下,图37-40示出了这种测量探针。参见这些图,所示的测量探针500具有这样的测量探针,该探针基本上与图29中的测量探针相似,其主要区别在于插入了如上所述类型的模制轴承/转换器机芯502,执行和确认开关540、506位于该测量探针的侧面并且包括可拆除的手柄508。

应意识到的是,模制轴承/转换器机芯502基本上与上面详细描述的机芯相似并且包括:可旋转的轴、一对位于该轴上的轴承、光学编码器盘、彼此间隔开并且与该编码器盘光学连通的至少一个(优选为两个)光学读出磁头以及包围轴承、光学编码器盘、读出磁头以及至少一部分轴的壳体,以构成分散的模制轴承/转换器机芯。编码器电子器件的电路板503位于探针500的开口504中。成对的执行和确认按钮504、506布置在探针500的向下凸出的壳体部分510的任意一侧,其中,这些按钮与适当的PC板512连接,和图29中的实施例中的测量探针一样。同样,和在前面所述的实施例一样,指示灯513位于按钮504、506之间。在壳体510中的一对螺纹孔514接收紧固件以便可拆除地安装手柄508,该手柄用于在测量探针使用过程中方便进行旋转操控。

在所有其它实质方面,测量探针500都与图29中的测量探针28相似,包括优选使用永久安装的接触触发探针516以及可拆除的盖体,该盖体与固定探针518相配合同时保护接触触发探针。应意识到的是,包含在测量探针500内的第七旋转编码器502使得CMM10能很容易地与现有的激光行扫描仪和其他外围设备连接起来使用。

参见图2-4以及25,根据本发明的一个重要特征,便携式电源用来为CMM10供电,因此提供一种完全便携式的CMM。与现有CMM进行对比不同在于该电源仅仅基于AC电缆。此外,CMM10还可经普通插座通过AC/DC适配器直接由AC电缆供电。如图2、3以及25所示,标记22所示为一种普通充电电池(例如锂离子电池)。电池22采用机械方式电连接在普通电池支承件252中,该电池支承件252又与普通电源以及位于电路板20中的电池充电电路部件254进行电连接。开/关258(见图3)以及快速连通接口(优选为USB接口)也与电路板20连通。铰接臂14的关节的电子器件采用RS-485总线与电路板20相连。电池22可以在独立的充电器上进行充电,或者就象在普通的录像机上所见到的那样在支承件252上就地充电。应意识到便携式计算机172(见图2)可以依靠其内置电池工作几个小时和/或可以电连接到CMM10的电源单元上。

根据本发明的板载电源/充电器单元优选设置成为CMM10的一个一体化部分,例如通过将该部件作为基座12的一个一体化部分以及更具体来说作为塑料基座壳体26A、26B的一部分。需要指出的是,基座壳体26A、26B包括一个较小的储存区域259,该区域具有可枢轴转动的盖子262,以便存储备用电池、探针等。

下面参考图4、25以及32-34对用于CMM10的新颖磁性安装装置进行描述。该磁性安装装置在图4、25、32以及33中采用标记24来进行总体表示。磁性固定件24包括圆柱形非磁性壳体266,该壳体的上端的末端形成螺纹部分268。和在CMM10中所使用的所有优选的螺纹一样,螺纹268是锥形螺纹,该锥形螺纹用来与第一长关节16上的螺纹126进行螺纹连接,如图25所示。非磁性壳体266有一基本上圆柱形结构,不同之处在于两个纵向延伸部分270、272,这两个延伸部分彼此相对成180°并且从壳体266向外和向下延伸。一对半圆柱形壳体274、276安装在纵向延伸部分270、272的任意一侧上,其中每一个都由一种“磁性”材料构成,也就是说,采用一种能够被磁化的材料构成,例如铁或磁性不锈钢。“磁性”壳体的两半274、276以及纵向延伸部分270、272一起形成端部开口的圆柱形封闭件,以便接受和容纳磁芯278。磁芯278为椭圆形,其中非磁性中心部件280夹在一对稀土金属磁体(例如钕铁硼)282、284之间。轴向孔286穿过该非磁性的中心部件280。圆形盖板288位于磁芯278的下面并且位于由壳体部件274、276已经纵向延伸部分270、272形成的下部壳体内。轴290穿过壳体266中的圆形孔292并向下延伸穿过磁芯278的轴向孔286。轴290由上部轴承292以及下部轴承294支承以便旋转。上部轴承292安装在壳体266内的内圆柱形凹部中而下部轴承294安装在盖板288中的相似圆柱形凹部内。控制杆垂直于轴290向外延伸,并且如之后将要描述的那样提供了一个用于磁性固定件264的开/关机构。控制杆296经穿过壳体266的槽297延伸到壳体266之外(见图25)。

控制杆296、轴290以及轴承292、294构成的组件采用上部螺纹紧固件298以及下部固定环300固定在一起。应意识到的是,磁性固定件264的各种部件还通过例如螺纹紧固件302和304进行固定,螺纹紧固件302将壳体266连接到“磁性”材料壳体部分274、276上,而螺纹紧固件304将壳体部分274、276与盖板288相互连接起来。此外,螺纹紧固件306将壳体266的纵向延伸部分270、272固定到盖板288上。销子308安装在磁芯278中的横向孔以及轴290中的横向孔中从而将轴290锁定到磁芯278上。这样,当控制杆296旋转时,轴290将借助于轴连接件208而使磁芯278旋转。

如图1、3以及25所示,控制杆296与手柄310相连,该手柄位于基座12的外部而很容易接近并且用来驱动磁性固定件264。为了实现这种驱动,只需要使手柄310移动(在图1中而从右向左)。手柄310的运动又使得控制杆296旋转,而控制杆296的转动又使得轴290旋转,随后轴290的旋转使得稀土金属磁体282、284从其非操作位置(在该位置,磁体282、284与非磁性延伸部分270、272对齐)转动到驱动位置,在该驱动位置,磁体282、284与磁性材料274、276对齐。当该磁体如上所述与该磁性材料对齐时,就形成磁场(磁通量)。同样,当磁体282、284与该磁性材料274、276不对齐时,该磁通路径被中断。在该状态下,磁性基座与其所位于的桌面分离。不过,需要注意的是,在非对齐状态下,将会存在一些剩余磁通。在“关闭”状态下的这些较小的剩余磁通是本发明的正面特征,因为在磁性基座从桌面上被替换时少量的磁通反作用于磁体并使得控制杆296自动地旋转返回到“开启”状态。应意识到的是,当磁体与磁性材料对齐时,将会形成强磁场并且半圆形部件274、276将磁性地连接在形成于其底部处的环形表面上,如图25和33中的标记312处所示。

本发明的磁性固定件264提供了一种完全集成在一起而又可以拆卸安装的装置,因为其(通过螺纹268)可拆卸地安装在一起并且可以由其他连接件例如螺钉固定件或真空固定件来替代。当然,为了适当地使用,磁性固定件264必须布置在可磁化的表面上并且(通过控制杆296)受到驱动而进行工作。在需要安装到非磁性表面(例如花岗岩)上的情况下,就必须在该磁芯基座和非磁性表面之间使用转换面板和其它适当的机构。

尽管所示的和所描述的是优选实施例,但是在不脱离本发明精神和范围的情况下依然可进行各种改变和替换。因此,应理解本发明仅仅是进行了一些阐述性的说明而非限制性的说明。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号