首页> 中国专利> 压电振动体、压电振动体的调节方法、压电致动器、钟表、电子设备

压电振动体、压电振动体的调节方法、压电致动器、钟表、电子设备

摘要

本发明的课题是通过简单的方法提供固有频率的调节量的偏差小且可以在基本上不使振动特性劣化的情况下可靠地调节固有频率,由此可消除与固有频率相关的个体差异的压电振动体。作为解决手段,在振动体(70)中,在电极(60)的一部分预先形成调节用电极(72),通过导通部(73)的切断(断开)使初始状态下相互导通的驱动电极(61)和调节用电极(72)互相分离而使其绝缘,或者通过焊锡、导线等的导电性元件使相互绝缘的驱动电极(61)和调节用电极(72)导通(短接),由此调节固有频率,所以可以简单且可靠地进行固有频率的调节。由此,可以消除与谐振频率(固有频率)相关的振动体(70)的个体差异,大幅提高可靠性。

著录项

  • 公开/公告号CN1819294A

    专利类型发明专利

  • 公开/公告日2006-08-16

    原文格式PDF

  • 申请/专利权人 精工爱普生株式会社;

    申请/专利号CN200610007353.X

  • 发明设计人 泽田明宏;关重彰;栢森进;

    申请日2006-02-09

  • 分类号H01L41/08(20060101);H01L41/09(20060101);B06B1/06(20060101);H02N2/00(20060101);G04C3/00(20060101);

  • 代理机构11127 北京三友知识产权代理有限公司;

  • 代理人黄纶伟

  • 地址 日本东京

  • 入库时间 2023-12-17 17:33:59

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-01-18

    未缴年费专利权终止 IPC(主分类):H01L41/08 专利号:ZL200610007353X 申请日:20060209 授权公告日:20100526

    专利权的终止

  • 2010-05-26

    授权

    授权

  • 2006-10-11

    实质审查的生效

    实质审查的生效

  • 2006-08-16

    公开

    公开

说明书

技术领域

本发明涉及通过对压电元件施加电压而振动的压电振动体、该压电振动体的调节方法、具有这些压电振动体的压电致动器、钟表、以及电子设备。

背景技术

以往,使用压电元件的压电振动体被用于电路中的振荡器或致动器等中。在这样的压电振动体中,固有频率由材料特性和尺寸确定,但由于压电材料的特性容易出现偏差,而且压电振动体的加工尺寸也会产生误差,因此各个振动体的固有频率的调节是不可缺少的。

这里,作为调节固有频率的方法,公知的有利用激光,从长度方向上的端部开始,以每次几十微米的形式依次切削长条状的压电元件的方法(专利文献1)。即,通过缩短压电元件的长度来调节固有频率。

此外,还公知有通过在压电振动体上涂布涂料来调节固有频率的方法(专利文献2)。这里,基于检测出的压电振动体的谐振频率计算出涂料的涂布位置以及涂布量,通过喷涂器对振动体反复地涂布涂料,直到成为预定的谐振频率为止。

另一方面,在具有压电振动体的致动器中,在压电振动体的一部分描绘出纵向振动和弯曲振动叠加而成的椭圆轨迹、且使被驱动体与该做椭圆运动的部分抵接而进行驱动的情况下,为了利用纵向振动和弯曲振动各自的谐振而高效地进行驱动,需要进行调节,以使纵向振动和弯曲振动各自的固有频率成为预定的关系。因此,提出了如下的方法:通过切削、研磨、溶解等切除圆筒状的振动体的外周部上设置的频率调节部而减小振动体的直径,由此调节纵向振动和弯曲振动的谐振频率之差(专利文献3)。

[专利文献1]日本特开平6-204778号公报([0018]~[0020],图1)

[专利文献2]日本特开平10-32445号公报([0011],图1)

[专利文献3]日本特开平10-146070号公报([0093],图1、图3)

但是,在如专利文献1这样切削压电元件而改变振动体本身的尺寸的方法中,存在的问题是:所需的能量大,从而由于施加到压电振动体上的力或热而使Q值等的振动特性劣化。并且,由于切削压电元件需要时间,所以时间周期变长。而且,存在如下问题:调节所需的加工程度大,难以从照射了激光束的压电元件的表面起以准确的尺寸切削到背面,因此不一定能以恒定的幅度调节固有频率,从而调节量出现偏差。

关于专利文献3,也与专利文献1的情况相同,存在振动特性的劣化、时间周期的增长、调节量的偏差等问题。特别是,为了得到所希望的椭圆轨迹,必需得到纵向振动和弯曲振动双方的固有频率,而各固有频率只要稍有偏差,振动特性的偏差就会非常大,所以难以稳定地驱动压电致动器。特别是,在低输出用的振动体中,该振动特性的偏差成为致命的问题。

另一方面,在如专利文献2这样的方法中,由于涂料的喷出量控制较困难,因此各个压电振动体上的涂布量出现偏差,其调节结果难以令人满意。而且,如果增加涂布量,则存在振动特性劣化的弊端,因此存在涂布量受到限制而仅能在很小的范围内调节固有频率的问题。

发明内容

鉴于这样的问题点,本发明的目的在于提供可通过简单的结构,在几乎不使振动特性劣化的情况下确保固有频率的调节量,而且可减小固有频率的调节量偏差而可靠地调节固有频率,由此可以消除与固有频率相关的个体差异的压电振动体、压电振动体的调节方法、具有压电振动体的压电致动器、钟表、以及电子设备。

本发明的压电振动体具有设置了电极的压电元件、且通过对所述电极施加电压而振动,其特征在于,所述电极由施加电压的驱动电极和与该驱动电极相邻的调节用电极构成,所述调节用电极在与所述驱动电极相邻的部分具有与该驱动电极导通的导通部,通过该导通部在所述驱动电极侧和所述调节用电极侧之间电气地切断,来调节固有频率。

根据该发明,在初始状态下,调节用电极通过导通部与驱动电极相互导通,但根据振动体的特性检查结果,切断导通部,从而调节用电极与驱动电极断开,利用该驱动电极和调节用电极之间的绝缘,减小在压电元件上施加电压的区域,由此调节固有频率。即,设置在电极的一部分上的调节用电极是压电元件中的固有频率调节用区域,根据调节用电极在压电元件中的位置、大小、范围而确保固有频率的调节量。这里,可通过蚀刻或丝网印刷技术而容易且高精度地对电极进行构图(patterning),通过预先设置这样进行了准确构图的调节用电极,无论怎样地切断在调节用电极的与驱动电极邻接的部分上设置的导通部,都几乎不影响调节量,所以可减小各个压电振动体的固有频率调节量的偏差。从而,由于可以预先掌握调节量,所以能够可靠且简单地调节固有频率,并可以消除与固有频率相关的个体差异而大幅地提高可靠性。

可以根据处于组装在设备中的状态下的压电振动体的振动特性检查结果来进行该固有频率的调节。由此,可以对应于成为使固有频率变化的原因的压电振动体的支撑部件的结构、固定在支撑部件上的固定条件、组装时的热影响等,在接近使用状态的状态下调节固有频率。

并且,仅仅切断(断开)压电元件上设置的电极来进行这样的固有频率调节,所以与对压电元件本身进行加工的情况相比更为简单,并且可以格外地减小对振动体的损坏,几乎不产生Q值降低(振动的衰减)等的振动特性劣化。此外,由于仅仅是电极部分的切断,因此即使在切断中使用端铣刀、超声波切割器等,也可以在很短的时间周期中进行调节,并且还可以减少设备投资。另外,如果在导通部的切断中使用激光,则具有可以通过非接触方式而瞬间切断导通部的优点,这适合于在组装到设备中之后对压电振动体进行调节的情况。

例如可以通过蚀刻等线状地除去通过电镀或溅射等在压电元件上形成的电极而形成驱动电极和调节用电极。在进行该除去时,优选为:在驱动电极和调节用电极相邻的部分留有微小的区间,并将该区间作为导通部。这样,如果将导通部设为微小的区间,则在为了调节而切断导通部时,可以在非常短时间内进行切断加工,所以可以避免振动特性的劣化,并可以进一步降低调节所需的时间周期以及成本。

本发明的压电振动体具有设置了电极的压电元件,通过对所述电极施加电压而振动,其特征在于,所述电极由施加电压的驱动电极和与所述驱动电极隔开间隔而相邻的调节用电极构成,在所述驱动电极以及所述调节用电极之间设置了导电性元件,所述驱动电极和所述调节用电极经由该导电性元件导通,由此调节固有频率。

这里,作为导电性元件,可以采用焊锡或引线、接合线、导电膏等。

根据该发明,在初始状态下,调节用电极与驱动电极绝缘,但根据振动体的特性检查结果来设置导电性元件,从而经由导电性元件,调节用电极与驱动电极导通(short,短接),通过该调节用电极和驱动电极之间的导通,把调节用电极包含到电压施加的范围内,从而与前面所述的发明一样地调节固有频率。这里,通过如上所述准确地形成调节用电极,即使在调节用电极和驱动电极之间设置导电性元件,其配设方式导致的对调节量的影响也非常小,所以可以减小各个压电振动体的固有频率的调节量偏差。从而,可以可靠地调节固有频率,并可以消除与固有频率相关的个体差异而大幅提高可靠性。

此外,由于使压电元件上设置的电极之间导通来进行这样的固有频率调节,所以与对压电元件本身进行加工的情况相比很简单,并且可以格外地减小对振动体的损坏,振动特性几乎不劣化。而且,可以缩短时间周期并减少设备投资费用。

另外,也可以通过一并进行所述导通部的切断(断开)以及这里所述的驱动电极、调节用电极间的导通(短接),来调节固有频率。例如,可以在切断导通部而使驱动电极和调节用电极绝缘之后,使用导电元件使驱动电极和调节用电极再次导通。

在本发明的压电振动体中,优选为设置有多个所述调节用电极。

根据该发明,在多个调节用电极中适当地选择调节用电极,如前面所述地使之断开或短接,从而可以仅对所选择的数目的调节用电极,阶段性地对固有频率进行调节。多个调节用电极例如沿预定的方向排列配置,例如根据纵向振动或弯曲振动等固有振动的方向来确定这些调节用电极的排列方向。

而且,越减小各调节用电极各自的调节量,越可以使固有频率接近规定值,并且,越增加调节用电极的数目,越可以确保大的调节量。通过这样的调节用电极来阶段性地调节固有频率,因此可以提高调节的精度以及成品率。

这里,如前所述,由于断开、短接所导致的对调节量的影响非常小,各个压电振动体的调节量偏差也小,因此即使所选择的调节用电极的调节量累积起来,偏差也小,调节的各阶段中的调节量在各个振动体中为固定范围。由此,仅仅通过选择调节用电极即可容易且可靠地实现固有频率的阶段性调节。

在本发明的压电振动体中,优选为:可切换为振动轨迹互不相同的多个工作模式,所述压电元件具有按照所述工作模式而设置、根据相应的工作模式来切换电压施加、电压不施加的多个调节区域,所述驱动电极以及所述调节用电极分别设置在所述调节区域中,针对所述各工作模式实施所述固有频率的调节。

根据该发明,由于在各工作模式中,固有频率分别被调节为预定的规定值,所以可以针对各工作模式实现所希望的振动特性。

在本发明的压电振动体中,优选为:可切换为振动轨迹互不相同的多个工作模式,所述压电元件具有按照所述工作模式而设置、根据相应的工作模式而切换电压施加、电压不施加的多个调节区域,所述驱动电极以及所述调节用电极分别设置在所述调节区域中,在所述固有频率的调节中,调节所述各工作模式之间的所述固有频率之差。

根据该发明,由于调节各工作模式之间的固有频率之差,因此可以消除各工作模式之间的振动特性的偏差,或在各工作模式之间设定预定的振动特性差异。

在本发明的压电振动体中,优选为:所述振动体为平面大致矩形,进行纵向振动和弯曲振动,与所述工作模式的一个对应的所述调节区域和与所述工作模式的另一个对应的所述调节区域分别配置成相对于通过所述振动体的形心的沿着长度方向的中心线而线对称。

根据该发明,通过纵向振动和弯曲振动的叠加,可以激发压电振动体的一部分的椭圆运动,并且,通过根据模式而区别使用配置成相对于沿着振动体的长度方向的中心线而线对称的调节区域,来切换振动轨迹,可以在一个模式和另一个模式之间,产生轨迹相对于沿着振动体的长度方向的中心线线对称、并且旋转方向为反向的椭圆运动。由此,在构成将该压电振动体的椭圆运动的振动传递给被驱动体的致动器的情况下,通过切换椭圆运动的轨迹以及方向,可以将被驱动体向预定的正向驱动,还可向与该正向相反的方向驱动。这里,可将一个工作模式视为正向驱动模式,而将另一个工作模式视为反向驱动模式。

这里,由于一个工作模式时所使用的调节区域和另一个工作模式时所使用的调节区域配置成相对于沿着振动体的长度方向的中心线而线对称,因此可以使一个工作模式中的椭圆轨迹和另一个工作模式中的椭圆轨迹互相对称,并可以使两个模式中的驱动性能大致相等。

此外,由于这样两个工作模式中的调节区域配置成线对称,因此也可以不分别求出各工作模式中的固有频率的调节量。例如,可以基于压电振动体的样品,求出一个工作模式时所使用的调节区域的固有频率调节量,由此将该调节量视为另一个工作模式时所使用的调节区域的固有频率调节量,因此可以容易地进行固有频率的调节。

在本发明的压电振动体中,优选为:以多个振动模式振动,在所述固有频率的调节中,调节所述多个振动模式中的各谐振频率之差。

根据该发明,可通过调节多个振动模式中的各谐振频率之差以分别确保这些振动模式中的振幅,来实现压电振动体的一部分的椭圆运动。即,在多个振动模式的各谐振频率之差过大时,存在的问题是:纵向振动等的一次振动所引起的弯曲振动等的二次振动的激发效果、或一次振动所引起的其它一次振动的激发效果减弱,从而无法实现椭圆运动;反之,在这些振动的各谐振频率之差过小的情况下,由于驱动频带小,因此难以进行频率的控制,工作容易变得不稳定,但可通过适当地调节各谐振频率之差,来使椭圆运动的轨迹在各个振动体中变得固定。由此,可以稳定地提供满足预定的振动特性的压电振动体。

此外,通过使振动体中描绘出椭圆轨迹的部分与被驱动体抵接,可以高效率地驱动被驱动体,所以这里所述的压电振动体适合于用作致动器。

这里,如前所述,在通过多个调节区域的电压施加、不施加之间的切换,来在多个工作模式下工作的情况下,针对各工作模式调节多个工作模式中的各谐振频率之差。

此外,在作为这样在多个工作模式下工作的情况、而且调节各工作模式之间的固有频率之差的情况下,也可以调节各工作模式之间的多个振动模式的各谐振频率之差。

在本发明的压电振动体中,优选为:形成为板状,纵向振动和弯曲振动叠加而振动,在所述固有频率的调节中,调节所述纵向振动以及所述弯曲振动中的各谐振频率之差。

这里,通过电压施加而使压电元件伸缩,由此板状的振动体激发纵向振动和弯曲振动,这些纵向振动和弯曲振动在各自的固有频率下叠加时,振动体的一部分描绘出椭圆轨迹而运动。

根据该发明,可通过使压电振动体形成为板状,使压电振动体变薄,还可以减薄组装了该压电振动体的设备的厚度。

此外,可通过调节纵向振动中的谐振频率和弯曲振动中的谐振频率之差以确保纵向振动和弯曲振动的振幅,来实现压电振动体的一部分的椭圆运动。即,在纵向振动和弯曲振动中的各谐振频率之差过大的情况下,存在的问题是:作为二次振动的弯曲振动的激发效果减弱,无法实现椭圆运动;而另一方面,在纵向振动和弯曲振动中的各谐振频率之差过小的情况下,由于驱动频带小,因此难以进行频率的控制,工作容易变得不稳定,但可通过适当地调节纵向振动和弯曲振动中的各谐振频率之差,来使椭圆运动的轨迹在各个振动体中变得固定。由此,可以稳定地提供满足预定的振动特性的压电振动体。

这里,只要调节纵向振动和弯曲振动中的至少一方的固有频率,就可调节纵向振动和弯曲振动的各谐振频率之差。在分别调节纵向振动和弯曲振动双方的频率的情况下,很费工夫,并且只要谐振频率稍有偏差,振动特性的偏差就很显著,所以无法迅速地进行调节,相对于此,在调节纵向振动和弯曲振动的一方的固有频率的情况下,结果是,可简单且迅速地实施纵向振动和弯曲振动中的各固有频率的调节。

另外,通过使振动体中描绘出椭圆轨迹的部分与被驱动体抵接,可以高效率地驱动被驱动体,所以可以实现组装了压电振动体的高效率的致动器。

在本发明的压电振动体中,优选为:形成为平面大致矩形,所述调节用电极分别设置在所述平面大致矩形中的对角位置上。

根据该发明,通过在矩形的对角位置上设置调节用电极,来保持压电振动体中的振动的平衡。

在本发明的压电振动体中,优选为通过在该压电振动体中流过电流时产生的焦耳热来进行所述导通部的切断。

这里,通过由导通部的电阻产生的焦耳热来熔断导通部。熔断为瞬间进行,与熔断的同时停止与自身通电。

根据该发明,利用焦耳热,局部地且瞬间地切断导通部,对压电振动体的负荷非常小,所以可以可靠地防止振动特性的劣化。而且,在夹着导通部的驱动电极侧和调节用电极侧抵接电流施加装置的端子等,从而可以在非接触的状态下对导通部稳定地实施切断,因此还可使作业效率良好。并且,由于也不产生在用铣刀、切割机等切除导通部时的切削粉末或在利用激光切除时的热所引起的电子元件的特性劣化等,因此可以提高可靠性。而且,由于可通过简单结构的恒压源进行切断加工,所以与通过激光等切断的情况等相比,可以大幅地减少设备投资。

在本发明的压电振动体的调节方法中,对具有设置了电极的压电元件、且通过对所述电极施加电压而振动的压电振动体的固有频率进行调节,其特征在于,所述电极由施加电压的驱动电极和与该驱动电极相邻的调节用电极构成,通过将所述调节用电极与所述驱动电极电气地切断,或通过使所述调节用电极与所述驱动电极导通,来调节固有频率。

根据该发明,根据振动体的特性检查结果使调节用电极与驱动电极绝缘或导通,从而改变压电元件中施加电压的区域而调节固有频率。这里,如前所述,预先设置调节用电极,并且容易高精度地对该调节用电极进行构图,此外,使调节用电极与驱动电极绝缘或导通也只是振动体的表层部分中的加工,因此对固有频率的调节量几乎没有影响,可以减小各个压电振动体的固有频率调节量的偏差。由此,可以可靠地调节固有频率。

并且,仅进行压电元件上设置的电极的加工,而不对压电元件本身进行加工,所以简单、并且可以格外地减小对振动体的损坏。此外,可以缩短时间周期,病可以减少设备投资。

在本发明的压电振动体的调节方法中,优选为:构成为在所述压电元件上设置多个调节区域,切换对该调节区域的电压施加、电压不施加,由此可以使所述压电振动体在振动轨迹互不相同的多个工作模式下工作,在所述调节区域中分别设置所述驱动电极以及所述调节用电极,针对所述各工作模式实施所述固有频率的调节。

根据该发明,在各工作模式中,固有频率分别被调节为预定的规定值,所以可以针对各工作模式实现所希望的振动特性。

在本发明的压电振动体的调节方法中,优选为:构成为在所述压电元件上设置多个调节区域,切换对该调节区域的电压施加、电压不施加,由此可以使所述压电振动体在振动轨迹互不相同的多个工作模式下工作,在所述调节区域中分别设置所述驱动电极以及所述调节用电极,通过调节所述各工作模式之间的所述固有频率之差来进行所述固有频率的调节。

根据该发明,由于调节各工作模式之间的固有频率之差,因此可以消除各工作模式之间的振动特性的偏差,或可以在各工作模式之间设定预定的振动特性差。

在本发明的压电振动体的调节方法中,优选为:所述压电振动体以多个振动模式振动,通过调节所述多个振动模式中的各谐振频率之差来进行所述固有频率的调节。

根据该发明,可通过调节多个振动模式中的各谐振频率之差以分别确保这些振动模式中的振幅,来实现压电振动体的一部分的椭圆运动。即,在多个振动模式中的各谐振频率之差过大时,存在的问题是:纵向振动等的一次振动所引起的弯曲振动等的二次振动的激发效果、或一次振动所引起的其它一次振动的激发效果减弱,从而无法实现椭圆运动;反之,在这些振动中的各谐振频率之差过小的情况下,由于驱动频带小,因此难以进行频率的控制,工作容易变得不稳定,但可通过适当地调节各谐振频率之差,来使椭圆运动的轨迹在各个振动体中变得固定。由此,可以稳定地提供满足预定的振动特性的压电振动体。

此外,通过使振动体中描绘出椭圆轨迹的部分与被驱动体抵接,可以高效率地驱动被驱动体,所以这里所述的压电振动体适合于用作致动器。

这里,如前所述,在通过多个调节区域的电压施加、不施加之间的切换,来在多个工作模式下工作的情况下,针对各工作模式调节多个工作模式中的各谐振频率之差。

此外,在作为这样在多个工作模式下工作的情况、而且调节各工作模式之间的固有频率之差的情况下,也可以调节各工作模式之间的多个振动模式的各谐振频率之差。

在本发明的压电振动体的调节方法中,优选为通过在所述压电振动体中流过电流而产生焦耳热来进行所述调节用电极和所述驱动电极之间的切断。

根据该发明,通过利用焦耳热,如前所述,尽管对振动体的负荷非常小,也可以可靠地切断导通部,可以提高可靠性。而且,与利用激光的情况等相比,设备投资大幅地降低,所以可以提供对切断电极非常有效的方法。

本发明的压电致动器的特征在于,具有:所述压电振动体、或通过所述调节方法进行了调节的压电振动体、和通过该压电振动体的振动来驱动的被驱动体。

根据该发明,由于具有所述压电振动体,可以实现与前面所述相同的作用以及效果。即,由于可以简单地获得压电振动体的固有频率,因此可以以稳定的质量提供对应于各种驱动条件发挥高效率的驱动性能的致动器。

此外,如前所述,可通过调节多个振动模式中的各固有频率之差,来实现压电振动体的与被驱动体接触的抵接部的所希望的椭圆运动,提高驱动效率。

在本发明的压电致动器中,优选为:通过切换对所述压电元件上设置的多个调节区域的电压施加,来在所述压电振动体的振动轨迹互不相同的正向和反向中的任意一个上驱动所述被驱动体,通过所述固有频率的调节,分别调节向所述正向驱动时的驱动特性和向所述反向驱动时的驱动特性。

根据该发明,关于压电振动体的固有频率的调节,由于针对正向驱动时、反向驱动时分别调节相应的固有频率,所以可以在正向驱动时和向反向驱动时分别实现所希望的驱动特性。

另外,作为表示驱动特性的要素,可以举出压电元件的电流值、被驱动体的移动量等。

在本发明的压电致动器中,优选为:通过切换对所述压电元件上设置的多个调节区域的电压施加,来在所述压电振动体的振动轨迹互不相同的正向和反向中的任意一个上驱动所述被驱动体,通过所述固有频率的调节,调节向所述正向驱动时的驱动特性和向所述反向驱动时的驱动特性之差。

根据该发明,由于在调节压电振动体的固有频率时,调节正向驱动时和向反向驱动时的相应的固有频率之差,因此可以消除正向驱动时和反向驱动时产生的驱动特性的偏差,或在正向驱动和反向驱动之间设定预定的驱动特性差异。

本发明的钟表的特征在于,具有所述压电致动器。

根据该发明,由于具有所述压电致动器,所以可以实现与上述相同的作用及效果。

这里,压电致动器例如可以组装到日历驱动机构等中。在该情况下,可以通过由压电振动体的振动而进给的转子来驱动齿轮,经由该齿轮等使指针移动,从而显示日或月或星期等。由此,可以简单地实现准确的指针运转,而且可以迅速地对压电振动体进行调节,因此生产性优良。而且,可以实现压电致动器的优点、即不受磁的影响、响应性高且可进行微小进给、有利于小型轻薄化、高转矩等。

本发明的电子设备的特征在于,具有所述压电振动体或通过所述调节方法进行了调节的压电振动体。

这里,压电振动体可用作为安装在电子设备的电路基板上的振荡器,或用于照相机的变焦机构以及自动对焦机构等中。

根据该发明,由于具有上述的压电振动体,所以可以实现与上述相同的作用及效果。即,简单且可靠地调节压电振动体的固有频率,所以可以提供可靠性优良的电子设备。

本发明的效果是,可以通过简单的方法来提供如下的压电振动体:在压电元件上设置的电极的一部分上预先设置用于调节施加电压的区域的调节用电极,将该调节用电极与施加电压的驱动电极电气地切断,或使该调节用电极与驱动电极导通,从而调节固有频率,由此几乎不会使振动特性劣化,并且,固有频率的调节量的偏差小,可以可靠地调节固有频率,并可以消除与固有频率相关的个体差异。

附图说明

图1是本发明的第一实施方式中的钟表的外观图。

图2是表示组装到上述实施方式的钟表的表芯中的日期显示装置的平面图。

图3是图2的部分放大图,是表示上述实施方式中的压电致动器的平面图。

图4是上述实施方式中的压电振动体的立体图。

图5(A)是关于上述实施方式中的压电振动体,表示驱动频率和阻抗之间的关系的曲线图,(B)是关于上述实施方式中的压电振动体,表示驱动频率与纵向振动和弯曲振动的振幅之间的关系的曲线图。

图6是用于说明上述实施方式中的导通部的切断的图。

图7是关于上述实施方式中的压电振动体,表示纵向振动和弯曲振动的各谐振频率之差(Δfr)的调节量和阻抗增加量之间的关系的曲线图。

图8是表示上述实施方式中的压电振动体的工作的平面图。

图9是本发明的第二实施方式中的压电振动体的平面图。

图10是表示上述实施方式中的压电振动体的工作的平面图。

图11是关于上述实施方式中的压电振动体的三个样本,表示谐振频率根据调节用电极的选择而变化的情况的图。

图12是关于上述实施方式中的一组(lot)内的压电振动体,表示调节纵向谐振频率和弯曲谐振频率之差(Δfr)的前后的Δfr的分布的图。

图13是表示图12中的Δfr调节的调节量的图。

图14是本发明的第三实施方式中的压电振动体的平面图。

图15是表示在上述实施方式中使调节用电极与驱动电极导通的三种手段的图。

图16是表示上述实施方式中的压电振动体的工作的平面图。

图17是表示本发明的第四实施方式中的压电致动器的平面图。

图18是上述实施方式中的压电振动体的平面图。

图19(A)是表示上述实施方式中的正转模式时的压电振动体的图。另一方面,(B)是表示上述实施方式中的反转模式时的压电振动体的图。

图20是关于上述实施方式中的压电振动体的样本,表示固有频率根据调节用电极的选择而变化的情况的图。

图21(A)是表示对图19(A)的压电振动体实施了固有频率调节后的状态的图。另一方面,(B)表示反转模式时的压电振动体,与图19(B)相同。

图22是表示本发明的第五实施方式中的压电致动器的平面图。

图23是表示上述实施方式的振动体的固有频率的调节例的图。

图24是表示本发明的第六实施方式中的压电致动器的平面图。

图25是表示上述实施方式的振动体的固有频率的调节例的图。

图26是表示本发明的第七实施方式中的压电致动器的平面图。

图27是表示上述实施方式的振动体的固有频率的调节例的图。

图28是表示本发明的第八实施方式中的压电致动器的平面图。

图29是表示在本发明的变形例中切断导通部的三种方法的图。

图30是表示在本发明的变形例中将多个调节用电极与驱动电极并联连接的情况和串联连接的情况的图。

图31是表示本发明的变形例中的压电振动体的支撑结构的图。

图32是本发明的变形例中的钟表的外观图。

图33是表示组装到上述变形例的钟表的表芯中的压电致动器的平面图。

具体实施方式

[第一实施方式]

以下,基于附图说明本发明的第一实施方式。

另外,在第二实施方式以后的说明中,对于与以下说明的第一实施方式相同的结构赋予相同的标号,省略或简化说明。

(1.钟表的概略结构)

图1是本实施方式中的钟表1的外观图。

钟表1是具有作为驱动装置的表芯2和容纳该表芯2的外壳3的手表(watch)。钟表的类型是电子表(quartz),本实施方式的钟表1构成为模拟式石英表(analog quartz),在表芯2中安装有表盘11以及表把12。在表盘11的大致中央分别设有秒针121、分针122、时针123。此外,在表盘11的三点位置设置大致矩形的窗口部34,通过设置在表盘11的背面侧的日期轮33的旋转,从该窗口部34依次显示印在日期轮33上的日期(日历)。

这里,驱动秒针121、分针122、时针123的结构与通常的模拟式石英表相同,构成为具有:组装了石英振荡器的电路基板;具有线圈、定子、转子的步进电机;驱动轮系;以及作为动力源的电池24(图2)。在该结构中,利用由石英振荡器起振并经由电路模块分频后的脉冲信号来驱动步进电机。然后,步进电机的驱动力传递给驱动轮系,由此分别驱动秒针121、分针122、以及时针123。步进电机的数目没有限制,例如,可以为秒针121的驱动设置一个,为分针122以及时针123的驱动设置一个,共设置两个步进电机。

(2.日期显示装置的结构)

图2是从表盘11侧观察表芯2的平面图,这里,示出了组装到表芯2中的日期显示装置30。图3是图2的部分放大图。

日期显示装置30构成为具有:上述的窗口部34(图1)、日期轮33、经由作为减速轮系的日期旋转中间轮31以及日期旋转轮32驱动日期轮33的致动器40,压电致动器40、日期旋转中间轮31、日期旋转轮32、日期轮33分别设置在底盘23上。

另外,图2中,在底盘23的背面侧设有与步进电机连接而驱动指针的驱动轮系(未图示)、电池24等。电池24向步进电机或压电致动器40、施加装置(未图示)的各电路供电。

日期旋转中间轮31由大径部311和小径部312构成。小径部312是直径比大径部311稍小的圆筒形,在其外周面上形成有大致正方形的切口部312A。该小径部312与大径部311同心地进行固定。转子41上部的齿轮411与大径部311啮合,日期旋转中间轮31与转子41的旋转联动而旋转。

在日期旋转中间轮31的侧方的底盘23上设有板簧313,该板簧313的基端部固定在底盘23上,前端部弯曲而形成大致V字状。板簧313的前端部被设置为可出入日期旋转中间轮31的切口部312A。在接近板簧313的位置配置有接触器314,在日期旋转中间轮31旋转、板簧313的前端部进入切口部312A时,该接触器314与板簧313接触。并且,在板簧313上施加有预定的电压,与接触器314接触时,该电压也被施加到接触器314上。从而,可通过检测接触器314的电压,检测日期进给状态,并可以检测日期轮33的一天的旋转量。

另外,在日期轮33的旋转量的检测中,不限于使用板簧313和接触器314的结构,也可以利用检测转子41或日期旋转中间轮31的旋转状态而输出预定的脉冲信号的结构等,具体来说,可以利用公知的光反射器、光遮断器、MR传感器等的各种旋转编码器等。

日期旋转轮32具有五齿的齿轮,与日期轮33的内齿轮331啮合。此外,在日期旋转轮32的中心设有轴321,该轴321与底盘23所形成的孔25间隙配合。孔25形成为沿日期轮33的回转方向较长。而且,日期旋转轮32以及轴321被固定在底盘23上的板簧315推向图2的右上方向。通过该板簧315的推弹作用,还防止了日期轮33的摇动。

日期轮33是配置在表芯2的外周部的环状齿轮,在内周形成有内齿轮331,31天旋转一周。此外,在日期轮33的周围印有‘1’~‘31’的数字。

如图3所示,致动器40构成为具有:向日期旋转中间轮31传递驱动力的转子41和使该转子41做旋转运动的振动体50。

转子41是配置在日期旋转中间轮31和振动体50之间、在日期更替时进给的圆板状的旋转体。振动体50所具有的突起53与转子41的外周抵接,传递振动体50的振动。另外,转子41被板簧412推向致动器40侧,在振动体50的突起53和转子41侧面之间产生适当的摩擦力,从而压电致动器40的驱动力的传递效率变得良好。

(3.振动体的结构)

图4是表示振动体50的图。

振动体50具有:大致矩形的加强板51、设置在该加强板51的表里两面上的矩形平板状的压电元件52,加强板51和压电元件52层叠,作为整体形成为薄板状。

加强板51由不锈钢、其它材料通过压延等来构成,在短边侧,与转子41抵接的大致圆弧凸状的突起53与矩形的部分形成一体。分别在加强板51的对角位置形成该突起53。

此外,在加强板51的长边的大致中央一体地形成有向宽度方向突出的臂部54。臂部54相对于加强板51的长度方向大致直角地延伸,在该臂部54上穿透设置有孔541。

使用环氧树脂等的粘接剂将压电元件52牢固地粘接在加强板51的两面的大致矩形部分上。压电元件52的材料不特别限定,可以使用钛酸锆酸铅(PZT(注册商标))、石英、铌酸锂、钛酸钡、钛酸铅、偏铌酸铅、聚偏二氟乙烯、锌铌酸铅、钪铌酸铅等的各种材料。

而且,在压电元件52的表里两面通过电镀、溅射、蒸镀等方法形成镍和金等的电极。在里面形成的电极(未图示)与加强板51重叠并导通。

在加强板51的相对侧形成的电极60的矩形的角的对角部分被通过蚀刻等形成的槽65分别分割为大致矩形,在分割出的部分上分别配置有调节用电极62。调节用电极62配置在与一对突起53不同的对角位置上。电极60被除去了槽65的部分。电极60中的调节用电极62以外的部分构成为施加电压的驱动电极61,虽然省略了图示,该驱动电极61通过引线与交流电压施加装置导通。

通过蚀刻对这些驱动电极61以及调节用电极62进行高精度的构图。另外,在加强板51两面侧的电极60中相同地形成调节用电极62,在图4中示出的成为调节用电极62的背面侧的位置上设有里面侧的调节用电极62。为了高效率地激发纵向振动,驱动电极61优选为与振动体50的长边的长度大致相同的长度,形成成为包含纵向振动和弯曲振动两者的节部在内的形状的曲折形状。纵向振动和弯曲振动两者的节部存在于振动体50的形心附近。调节用电极62用于激发弯曲振动。此外,驱动电极61的面积形成得比调节用电极62的面积更大。

这里,在驱动电极61和调节用电极62之间,槽65的一部分不形成,该残留少许部分的部分(图4中直线状的槽65A和L字状的槽65B之间的部分)成为在调节用电极62中与驱动电极61导通的导通部63。即,由于驱动电极61和调节用电极62之间相互导通,所以在对驱动电极61施加电压时,同时也对调节用电极62施加电压,从而对电极60全体施加电压。从而,在加强板51的两面侧,在与加强板51重叠的电极(未图示)和驱动电极61之间分别施加了电压时,成为对压电元件52全体施加电压的状态。

适当设定这样的压电元件52的宽度或长度、厚度以及对压电元件52施加的电压的频率(驱动频率),使得在对压电元件52反复施加电压时,同时呈现出压电元件52在长度方向上伸缩的所谓纵向振动(纵向一次振动)和相对于压电元件52的平面中心点对称地在与纵向一次振动垂直的方向上弯曲的所谓弯曲振动(弯曲二次振动)。

在图5(A)中示出了压电振动体50的驱动频率和阻抗之间的关系,在图5(B)中示出了压电振动体50的振动频率和纵向振动的振幅(纵向振幅)以及弯曲振动的振幅(弯曲振幅)之间的关系。

如图5(A)所示,相对于对压电元件52施加的电压的驱动频率,出现两个阻抗极小的点。这里,其中频率低的一方的点为纵向振动的振幅达到最大的谐振点,该谐振点处的驱动频率为纵向谐振频率fr1。频率高的一方的点为弯曲振动的振幅达到最大的谐振点,该谐振点处的驱动频率为弯曲谐振频率fr2。

另外,对压电元件52施加的电压的波形不特别限定,例如可以采用正弦波、矩形波、梯形波等。

参照这些图5(A)以及(B),在纵向谐振频率fr1和弯曲谐振频率fr2之间驱动压电元件52时,确保了纵向振动和弯曲振动两方的振幅。由此,在振动时,突起53描绘出椭圆轨迹。另外,使驱动频率从纵向谐振频率fr1向弯曲谐振频率fr2变化时,与纵向振动的振幅相比,弯曲振动的振幅逐渐增大,突起53描绘出的椭圆轨迹的长轴方向发生变化。

此外,通过将纵向一次振动的谐振频率与弯曲二次振动的谐振频率设定为互相接近,可以设定两种振动的振幅同时增大的振动频率,可以高效率地进行驱动。

另一方面,关于弯曲谐振频率减去纵向谐振频率后的值(fr2-fr1=Δfr),在Δfr过大的情况下,作为纵向振动所致的二次振动的弯曲振动的激发效果减弱,存在不能实现椭圆运动的弊端。另一方面,在Δfr过小的情况下,由于驱动频带小,因此难以进行频率的控制,工作容易不稳定。因此,应该适当地调节Δfr。后面对此进行叙述。

返回图4,振动体50配置在底盘23上形成的丘陵部231和支撑台232之间,在延伸到支撑台232上的臂部54处通过螺钉拧紧固定。在支撑台232上形成有贯穿臂部54的孔541的螺钉542进行螺合的螺纹孔,加强板51和驱动电极61分别与未图示的电压施加装置导通。

而且,振动体50被配置为一个突起53的前端与转子41的外周抵接。

通过贴合压电元件52与加强板51而制造出以上说明的结构的振动体50,通过固定到支撑台232上而组装在表芯2中,不过,由于压电元件52以及加强板51等的形状误差或贴合误差、材料特性(压延时的杨氏模量、泊松比、密度等)、固定在支撑台232上的固定条件(螺钉的紧固扭矩或臂部54的长度)、热影响等,各个振动体50中的纵向振动和弯曲振动的各固有频率产生偏差。只要这些固有频率稍有偏差,振动特性就会有显著的偏差。从而,为了消除偏差,振动体50中的纵向振动和弯曲振动的各固有频率的调节是不可缺少的。

(4.振动体的固有频率的调节方法)

振动体50的固有频率的调节,如下面叙述的那样,通过下述步骤来对于与该固有频率对应的谐振频率进行:测量作为弯曲谐振频率和纵向谐振频率之间的差分的Δfr,并基于该Δfr来切断(断开)上述的导通部63。即,通过切断导通部63而将调节用电极62与驱动电极61分离,使调节用电极62和驱动电极61绝缘,由此实现振动体50的谐振频率的调节。

振动体50的固有频率的调节作业也可以对振动体50单体进行,但在本实施方式中,将振动体50固定在底盘23上,在组装在表芯2中的状态下进行。

首先,在驱动电极61及调节用电极62和与加强板51重叠的电极(未图示)之间施加电压而使振动体50振动,测量Δfr。然后,通过该Δfr的测量值和Δfr的规定值之间的比较,来确定是否切断导通部63。Δfr的规定值根据驱动转子41以及日期轮33所需的转矩来确定。

另外,原则上,对于加强板51的两面侧设置的调节用电极62,并且,对于分别设置在电极60的矩形对角部分的各调节用电极62,均分别实施导通部63的切断。

这里,在切断导通部63时,调节用电极62与驱动电极61绝缘,在调节用电极62的部分,压电元件52不伸缩,振动体50的宽度方向两侧的振动受到约束,因此弯曲振动的固有频率增大。另一方面,纵向振动的固有频率几乎不变化(纵向振动的固有频率由振动体50的长边方向上的压电元件52长度所确定)。从而,通过导通部63的切断,作为纵向振动和弯曲振动的谐振频率差分的Δfr值增大。

即,通过切断调节用电极62的导通部63,来调节Δfr。

此外,关于导通部63的切断所导致的Δfr的调节量,可以通过调节用电极62的大小、形状、位置、范围等来进行增减。换言之,Δfr的调节量被设定为消除Δfr的偏差,调节用电极62的大小、形状、位置、范围等被确定为可以实现所设定的Δfr调节量。

例如,调节用电极62在振动体50的长度方向上越长,则作为电压施加对象的驱动电极61越短,因此与上述一样,电压施加时的振动体50的宽度方向两侧的振动受到约束,弯曲谐振频率以及Δfr增大。由此,切断导通部63时和不切断时的差别增大,因此Δfr的调节量增大。

另一方面,调节用电极62在振动体50的长度方向上越短,则振动体50的宽度方向两侧的振动的约束得到缓解,弯曲谐振频率以及Δfr减小。由此,切断导通部63时和不切断时的差别减小,因此Δfr的调节量减小。

而且,根据Δfr的测量值以及Δfr的调节量来确定是否切断导通部63,使得可以使Δfr接近规定值。

接着,说明切断导通部63的方法。

图6是表示切断该导通部63的状态的图。使恒压源100的端子101、102分别与驱动电极61以及调节用电极62接触,在端子101、102之间施加电压时,由于由导通部63的电阻而局部产生的焦耳热,导通部63被瞬间熔断。

瞬间地进行该导通部63的切断,而且,导通部63只不过是在振动体50的表层设置的微小的一部分,因此导通部63的切断对振动体50整体的损坏几乎是不存在的。此外,导通部63两侧的调节用电极62以及驱动电极61被准确地构图,因此稳定地实施各个振动体50中的切断。

从而,在振动体50的谐振频率的调节步骤中,可以防止预先设定的Δfr的调节量出现偏差。

接着,验证这样的导通部63的切断所致的Δfr调节给振动体50的振动特性带来的影响。作为表示振动体50的振动特性的劣化的指标,这里,使用纵向振动的谐振点上的阻抗。

图7是表示Δfr的调节量和纵向振动的谐振点上的阻抗的增加量之间的关系的曲线图。

首先,作为与本实施方式的比较例,用涂黑的正方形标示为“通过涂料涂布进行的调节”的是,在振动体50的表面涂布涂料,对于通过改变该涂料的涂布量时的重量平衡的变化来改变Δfr调节量的各振动体50的样本,分别测量Δfr调节前后的阻抗,示出该前后的阻抗值增加量。

这里,可知:Δfr的调节量越大,则纵向振动的谐振点上的阻抗增加量增加越多,振动特性显著劣化。因此,不能采用这样的通过涂料涂布进行的Δfr调节方法。此外,在该方法中,还存在振动体50中的涂料涂布位置、涂布量、涂布范围等的控制较困难的问题。

另一方面,在图7中用涂黑的菱形标示为“通过电极图形进行的调节”的是,如本实施方式这样,对于通过改变调节用电极62的振动体50长度方向上的尺寸来改变Δfr调节量的多个振动体50样本,分别测量在Δfr调节前后的阻抗,示出该前后的阻抗值的增加量。

如所标出的那样,即使Δfr的调节量增加,阻抗的增加量也仅有略微变化。从而,关于振动体50的Q值等的振动特性也仅有略微变化。与通过涂料涂布进行的调节的情况相比,其差别是明显的。

以上,关于振动体50的振动特性的劣化,可以确认本实施方式的优良效果。

(5.调节了固有频率后的振动体的工作)

在通过上述的固有频率调节切断了导通部63时,振动体50成为图8(A)所示的状态,调节用电极62和驱动电极61互相绝缘。从而,在对驱动电极61施加电压时,不会对调节用电极62施加电压。即,在导通部63的切断前后,在电极60中施加电压的范围发生变化。

图8(B)表示振动体50的工作。通过未图示的电压施加装置在驱动电极61和与加强板51重叠的电极(未图示)之间施加电压时,设置有驱动电极61的部分的压电元件52在长度方向上伸缩,振动体50激发纵向振动。通过该纵向振动,产生与振动体50的长度方向交叉的方向上的力矩,激发弯曲振动。通过这样的纵向振动和弯曲振动的叠加,如图8(C)所示,振动体50的突起53描绘出椭圆轨迹E。另一方面,调节用电极62未被施加电压,设置有调节用电极62的部分的压电元件52不主动地做伸缩运动,因此,由于该振动体50的宽度方向两侧对弯曲振动的约束力,弯曲振动的固有频率增大。

即,通过导通部63的切断来适当地调节了Δfr的大小的结果是,在各个振动体50中,可以按照预定的椭圆轨迹E实现突起53的椭圆运动。

并且,突起53以预定的驱动频率反复按压转子41(图3),从而转子41向预定方向旋转驱动。

而且,在转子41的旋转运动传递给日期旋转中间轮31、日期旋转轮32的齿与切口部312A卡合时,日期旋转轮32通过日期旋转中间轮31而旋转。然后,通过日期旋转轮32,日期轮33每天进给一个齿,通过从窗口部34依次显示配置在日期轮33的周围的表示日期的数字,从而进行日历的显示。另外,在电路模块中存储有日历信息的情况下,基于所存储的信息,在月末进行日历的自动校正。

根据以上说明的第一实施方式,具有如下的效果。

(1)在构成日期显示装置30的振动体50中,在电极60的一部分预先形成调节用电极62,通过导通部63的切断,使驱动电极61和调节用电极62相互绝缘,由此可以简单且可靠地调节纵向振动和弯曲振动的各固有频率。由此,消除与固有频率相关的振动体50的个体差异,可以大幅提高组装了振动体50的致动器40的可靠性。进而,可以大幅提高表芯2或钟表1中的日历显示的可靠性。

另外,通过振动体50的弯曲振动的固有频率调节来调节Δfr,不必分别调节纵向振动和弯曲振动的各固有频率,因此可以迅速地进行调节。

(2)可以通过形成驱动电极61以及调节用电极62时的掩模形成而容易地形成导通部63。而且,仅仅切断在压电元件52的表层作为电极设置的导通部63就可以调节固有频率,不会对振动体50整体施加力或热,所以可以防止Q值等的振动特性出现劣化。此外,与对压电元件52本身进行加工的情况相比很简单,并可以缩短时间周期。

(3)调节用电极62以及驱动电极61被准确地构图,无论怎样切断导通部63,对Δfr的调节量也几乎没有影响,所以可以减小各个振动体50中的Δfr调节量的偏差。从而,预先设定的Δfr调节量不会在调节Δfr的步骤的前后发生变化,可以通过该Δfr的调节而更简单且可靠地调节固有频率。

(4)由于利用焦耳热来局部地且瞬间地进行导通部63的切断,所以可以使对振动体50施加的负荷非常小。而且,由于不是直接切断导通部63,而是使端子101、102分别与导通部63两侧的驱动电极61及调节用电极62接触而在不接触导通部63的状态下稳定地实施切断,因此也可以使作业效率变得良好。

此外,由于也不产生在用铣刀、切割机等切除导通部63时的切削粉末或用激光进行切除时的热所引起的压电元件的特性劣化等,因此还可以提高可靠性。而且,由于可通过结构简单的恒压源等切断导通部63,所以与用激光切断的情况等相比,可以格外地减少设备投资。

(5)在把振动体50固定到支撑台232上、组装到表芯2中的状态下进行固有频率的调节,所以可以防止固有频率根据振动体50固定在支撑台232上的固定条件等而变化。由此,可以在接近使用状态的状态下校正振动体50的固有频率的偏差。

(6)由于振动体50形成为薄的板状,所以可以实现组装了该振动体50的表芯2的薄型化。此外,由于分别在压电元件52的矩形的对角线上设置有调节用电极62,所以保持了振动体50的振动的平衡。

(7)此外,在振动体50中,可通过把Δfr调节为确保纵向振动和弯曲振动的振幅,使振动体50的突起53实现椭圆运动。并且,如前所述,通过适当地调节Δfr,可以使椭圆运动的轨迹E在各个振动体50中变得固定,可以稳定地提供满足预定的振动特性的振动体50。

(8)如以上所说明的那样,由于可以简单地获得振动体50的谐振频率,因此可以以稳定的质量提供发挥高效率的驱动性能的致动器40。

此外,该致动器40被组装到钟表1的表芯2中,构成了日期显示装置30,所以可以使日期轮33的旋转准确,此外,可以迅速地调节振动体50,因此生产性优良。而且,可以实现具有压电元件52的致动器40的优点、即不受磁的影响、响应性高且可进行微小进给、有利于小型薄型化、高转矩等。

[第二实施方式]

接着,说明本发明的第二实施方式。

本实施方式与第一实施方式的不同之处在于在振动体的矩形对角部分上分别设置有多个调节用电极。

图9是本实施方式的振动体70的平面图。

在振动体70中,设置在压电元件的表面上的电极60在矩形对角部分被线状槽75以及T字状槽76分割,在各对角部分,分别形成三个调节用电极72。

具体来说,线状槽75从振动体70的两个短边沿长度方向分别延伸到振动体70的宽度方向中央。

此外,T字状槽76从振动体70的宽度方向端部沿与长度方向交叉的方向并排三个地延伸到接近线状槽75的位置。通过这样的线状槽75以及T字状槽76,在振动体70中的对角部分,沿着振动体70的长度方向并排地形成三个调节用电极72。

并且,线状槽75以及T字状槽76之间的部分分别成为使调节用电极72与驱动电极61导通的导通部73。

这些导通部73根据需要而象前述实施方式那样地通电熔断。此时,T字状槽76的T字中的横条部分与线状槽75大致平行地延伸,所以导通部73容易被熔断。

在这样的振动体70中,任意地选择设置了多个的调节用电极72,根据所选择的调节用电极72来切断导通部73,由此可以调节纵向振动和弯曲振动的各固有频率。

作为参考,在图10中仅示出了(A)和(B)两个调节用电极72的不同选择的例子。即,在图10(A)中,在振动体70的对角部分配置的三个调节用电极72A~72C中,仅选择配置在振动体70的短边侧的调节用电极72A,通过导通部73A的切断,使调节用电极72A与驱动电极61相互绝缘。另一方面,在图10(B)中,调节用电极72A~72C三个均被选择,通过导通部73C的切断,这些调节用电极72A~72C均与驱动电极61相互绝缘。此时,不必切断导通部73B、73A。

对这些图10(A)以及(B)中分别示出的振动体70施加电压时,如假想线所示,振动体70激发纵向振动和弯曲振动。

此时,调节用电极72A~72C沿振动体70的长度方向排列,图10(B)所示的状态与图10(A)所示的状态相比,调节用电极72的选择数多(72A~72C三个),在振动体70的宽度方向两侧不施加电压,约束振动的区域增多,因此弯曲振动的固有频率更大。

包括图10(A)以及(B)所示的状态在内,在图11的下栏“电极图形”中示意地示出7种所选择的调节用电极72的组合。即,调节用电极72一个也没有被选择的状态为“0000”,在振动体70的对角交替地每次增加一个所选择的调节用电极72的状态为“0010”、“0011”、“0021”、“0022”、“0032”、“0033”。另外,图10(A)所示的状态相当于“0011”,图10(B)所示的状态相当于“0033”。

图11所示的曲线图是对于振动体70的三个样本(样本1~3)分别测量图11下栏的7种选择状态中的纵向谐振频率fr1、弯曲谐振频率fr2、以及作为它们之差(fr2-fr1)的Δfr,并标出的图。

如从该曲线图掌握的那样,在调节用电极72的选择数增加时,纵向谐振频率fr1几乎不变化而大致恒定,相对于此,弯曲谐振频率fr2增大,因此Δfr增大。

这里,确定调节用电极72的数量、大小、排列方向等以适当地调节振动体70的Δfr的偏差。即,如前面所述,由于在电极60中预先设有高精度地进行了构图的调节用电极72,所以各个振动体70中的Δfr调节量的偏差很小。即使一个个调节用电极72的Δfr调节量积累起来,偏差仍较小,可以预料大致可靠的Δfr调节量,因此可以容易地进行实现所希望的Δfr调节量的构图设定。

以上,说明了Δfr根据调节用电极72的选择而如何变化的情况,接下来,说明对组内包含的振动体70分别实施通过这样的调节用电极72的选择实现的Δfr调节、对各个振动体70的谐振频率的偏差进行校正的情况。

图12表示Δfr的调节所引起的Δfr的分布变化,由小的圆点标出的是调节Δfr前的Δfr的分布,由大的圆点标出的是调节Δfr后的Δfr的分布。调节前,Δfr在2.9~4.5kHz的宽范围内出现偏差。

在各个振动体70的调节过程中,与第一实施方式大致相同,测量Δfr而确定应该选择的调节用电极72,仅仅对于所选择的调节用电极72,通过导通部73的熔断来与驱动电极61导通。

这里,在图12所示的Δfr的调节中,鉴于图11中的测量结果,设定振动体70的长度方向上的调节用电极72的尺寸,以便得到所希望的Δfr调节量。调节用电极72A、72B、72C的长度比例如被适当设定为3∶1∶1。

然后,将调节用电极72未被选择的状态设为“0000’”,将在振动体70的对角上各选择一个、两个、三个调节用电极72的状态分别设为“0011’”、“0022’”、“0033’”,进行三阶段的调节。即,作为各个振动体70中的Δfr测量结果,由“0011’”、“0022’”、“0033’”中的任意一方来确定被认为最接近Δfr规定值(这里,为4.1kHz)的选择方式。

在确定要选择的调节用电极72时,如下地进行判断。

图13表示图12中的横轴,说明对于调节前的Δfr的2.9~4.5kHz的范围内的偏差,如何选择调节用电极72以使其收敛于规定值4.1kHz。

这里,考虑到驱动转子41以及日期轮33(图3)时的转速、转矩、消耗功率等而确定规定值4.1kHz,偏差的容许范围是4.1kHz±0.4kHz,即以4.1kHz为规格中心值的0.8kHz的范围为Δfr适当范围。另外,Δfr的适当值根据产品的规格而各异,不限于这里例示的数值。

另外,在振动体70中,如前面所述,关于与调节用电极72的选择对应的Δfr调节量,在调节用电极72的构图设定阶段预先估计。这里,在处于在对角上各选择了一个调节用电极72的“0011’”的状态时,在调节的前后,Δfr增加0.4kHz,在处于在对角上各选择了两个调节用电极72的“0022’”的状态时,Δfr增加0.8kHz,并且,在处于在对角上各选择了三个调节用电极72的“0033’”的状态时,Δfr增加1.2kHz。

然后,在Δfr的调节步骤中,如果测量出的Δfr是3.7~4.5kHz的范围的值,则由于是规定值4.1kHz±0.4kHz的适当范围内,因此不选择调节用电极72(前述的“0000’”状态)而结束调节步骤。

接着,如果测量出的Δfr在3.5~3.9kHz的范围内,则由于接近规定值4.1kHz,因此设为“0011’”的状态。如前面所述,在“0011’”的选择中,由于Δfr调节量为0.4kHz,因此Δfr分布于3.9~4.5kHz的范围内,成为适当范围内的值。同样,如果Δfr在3.1~3.5kHz的范围内,则设为“0022’”的状态,使Δfr增加0.8kHz,从而使Δfr成为适当范围内的值。并且,如果Δfr在2.9~3.1kHz的范围内,则设为“0033’”的状态,使Δfr增加1.2kHz而成为适当范围内的值。

这样调节Δfr的结果是,如图12所示,样本组内的所有的振动体70的Δfr纳入到以规定值4.1kHz为中心±0.4kHz的窄范围(图12中,Δfr适当范围)内。

根据以上说明的第二实施方式,除了第一实施方式中叙述的作用效果之外,还起到如下的效果。

(9)设置多个调节用电极72,可以使这些调节用电极72选择性地与驱动电极61导通,因此可以根据调节用电极72的选择方式,阶段性地调节振动体70的固有频率。另外,由于在振动体70的对角上分别设置了三处调节用电极72,所以可以高效地接近固有频率的规定值。即,提高了固有频率的调节精度,从而可以提高成品率。

[第三实施方式]

接着,说明本发明的第三实施方式。

本实施方式与第一、第二实施方式相反,是通过导电性元件使调节用电极和驱动电极预先绝缘的部分导通。

图14是本实施方式的振动体80的平面图。

在振动体80中,驱动电极61和调节用电极82预先由槽85、86完全分开而相互绝缘,不存在前述实施方式中的导通部73。即,从振动体80的两个短边侧沿长度方向分别延伸出线状的槽85,从振动体80的宽度方向端部向着这些槽85各延伸出三个槽86,在振动体80的对角部分,沿着振动体80的长度方向各并列了三个调节用电极82。

这里,在本实施方式中与前述各实施方式相同之处是,调节用电极82也是用于改变电极60中的电压施加区域的区域,通过这些调节用电极82和驱动电极61之间的导通状况来调节固有频率。

在本实施方式中,由于调节用电极82与驱动电极61预先绝缘,因此作为使它们相互导通的手段,如图15(A)~(C)所示,使用如焊锡111、导线112、导电膏113这样的导电性元件。

即,通过将这些焊锡111、导线112、导电膏113配置在驱动电极61和调节用电极82之间,调节用电极82经由这些焊锡111、导线112、导电膏113与驱动电极61导通(短接,short)。另外,也可以使用引线、溅射等的手段使调节用电极82与驱动电极61导通。

仅对于所选择的调节用电极82,进行这样的调节用电极82与驱动电极61的导通。在调节用电极82的选择时,与第二实施方式相同,基于通过调节用电极82的三阶段的选择而预计的Δfr的各调节量,对Δfr的测量值和Δfr的规定值进行比较,并确定调节用电极82的选择方式,使得可以使测量到的Δfr更接近规定值。

这样,关于所选择的调节用电极82的判断基准,本实施方式与第二实施方式相同,但由于在使所选择的调节用电极72、82与驱动电极61导通还是绝缘方面,结构互不相同,因此,即使是对电极60中的相同范围施加电压的情况下,如下所述,调节用电极72、82的选择方式也互不相同。

图16仅示出了(A)以及(B)两个调节用电极82的不同选择的例子。

在图16(A)中,在振动体80的对角部分上分别排列的调节用电极82中,仅选择配置在与振动体80的短边相反的一侧的调节用电极82C,在该调节用电极82C和驱动电极61C之间的槽85中滴下焊锡111。在该情况下,配置在与振动体80的短边接近的一侧的两个调节用电极82A、82B保持与驱动电极61绝缘的状态,因此不被施加电压。这里,在图16(A)的振动体80中,关于电极60的电压施加范围,与在第二实施方式中调节用电极72B的导通部73B(参照图10)被切断的振动体70相同。与本实施方式的振动体80不同,在该振动体70中选择调节用电极72A、72B两个,导通部73B被切断。

另一方面,在图16(B)中,在振动体80的对角部分上分别排列的调节用电极82中,选择配置在与振动体80的短边相反的一侧的调节用电极82C和配置在正中的调节用电极82B,这两个调节用电极82B、82C经由焊锡111与驱动电极61分别导通。另外,焊锡111被滴到在两个调节用电极82B、82C之间形成的槽86与槽85连接的部分,所以通过这一处的焊锡111滴下,可以使两个调节用电极82B、82C同时与驱动电极61导通。在该图16(B)所示的状态下,仅有配置在振动体80的短边侧的调节用电极82A未被施加电压。在该图16(B)的振动体80中,关于电极60的电压施加范围,与第二实施方式中图10(A)所示的振动体70相同。与本实施方式的振动体80不同,在该振动体70中,仅选择调节用电极72A,导通部73A被切断。

这里,比较图16(A)和(B),(A)所示的状态与(B)所示的状态相比,在振动体80的宽度方向两侧,不被施加电压的调节用电极82的数量更多(82A、82B两个),对弯曲振动的约束力更大,因此弯曲振动的固有频率比(B)的情况更大。

根据这样的第三实施方式,除了前述的(5)~(9)的效果之外,还具有如下的效果。

(10)在振动体80中,预先设置相互绝缘的调节用电极82和驱动电极61,基于振动体80的特性检查结果,通过焊锡111、导线112、导电膏113等使调节用电极82与驱动电极61导通,由此可以简单且可靠地调节固有频率。这里,调节用电极82如前面所述准确地被构图,即使在调节用电极82和驱动电极61之间设置焊锡111,该配设对固有频率的影响也非常小,所以也可以减小各个振动体80中的固有频率的调节量的偏差。从而,可以更简单且可靠地实施固有频率的调节,并可以消除与固有频率相关的个体差异而大幅提高可靠性。

此外,焊锡111、导线112等的配设只是振动体80的表面上的作业,因此与切削压电元件52的情况相比,可以非常容易地调节固有频率,此外,由于对振动体80的损坏很小,因此可以防止振动特性的劣化。而且,可以缩短时间周期并降低设备投资费用。

另外,也可以通过一起进行第二实施方式中叙述的导通部73的切断(断开)以及本实施方式中叙述的驱动电极61、调节用电极82之间的导通(短接),来调节固有频率。例如,切断第二实施方式中的导通部73而使驱动电极61和调节用电极72绝缘之后,可以根据需要,使用焊锡111等使一时绝缘的驱动电极61和调节用电极72再次导通。这可以在错误地对于比预定多的调节用电极72切断了导通部73的情况下等实施。

[第四实施方式]

接着,说明本发明的第四实施方式。在本实施方式的压电致动器中,振动体的电极分割状况与前述各实施方式不同,可在正向、反向的两个方向上对被驱动体进行驱动。本实施方式的压电致动器可以组装在照相机的镜头驱动机构、可动玩具的驱动机构以及姿势校正机构、自动钟表的驱动机构、钟表的日历机构等中。

图17是简略地表示本实施方式中的压电致动器45的平面图。

致动器45具有振动体55、作为被驱动体的转子120。

转子120是圆板状的旋转体,振动体55的突起57被按压在其外周端面上。

振动体55与第一实施方式的振动体50(图4)大致相同,压电元件52以及加强板56层叠而作为整体形成为矩形薄板状。其中,在加强板56的短边的大致中央形成有与转子120抵接的突起57,并且分别在振动体55的宽度方向两侧形成有加强板56的臂部54。

此外,设置在振动体55的压电元件52的表面上的电极160通过槽165、166而分割为5份。具体来说,在电极160上,沿长度方向形成两个槽165,被这些槽165大致三等分的电极中、宽度方向两侧的电极分别被沿压电元件52的宽度方向延伸的槽166二等分。通过这些槽165、166,分别形成了在压电元件52的大致中央沿长度方向设置、主要激发纵向振动的纵向区域90;在该纵向区域90的两侧、在压电元件52的一个对角线上成对、主要激发弯曲运动的一对弯曲区域91、93;以及在压电元件52的另一个对角线上成对、主要激发弯曲振动的一对弯曲区域92、94。

图18更详细地示出了振动体55的结构。在纵向区域90的整体上设有驱动电极901。

弯曲区域91通过在压电元件52的宽度方向上延伸的四个T字状槽76被分割为五个。该分割中,靠近振动体55的形心处形成一个连接引线L的驱动电极911,在其余的四个分割部分中,分别形成有四个调节用电极912A~912D。T字状槽76从振动体55的宽度方向端部延伸到接近槽165的位置,槽165和T字状槽76之间的部分分别成为使各调节用电极912A~912D与驱动电极911导通的导通部73。各导通部73根据需要与第二实施方式相同地被通电熔断。即,弯曲区域91成为振动体55的固有振动的调节区域。

其它的弯曲区域92、93、94也与该弯曲区域91一样,是振动体55的固有振动的调节区域,在各弯曲区域92、93、94中靠近振动体55的形心处各形成有一个驱动电极921、931、941,并且各形成有四个调节用电极922A~922D、932A~932D、942A~942D。

驱动电极911和驱动电极931之间通过引线L互相连接,并且驱动电极921和驱动电极941之间通过引线L互相连接。通过这些引线L,各弯曲区域91~94中所设置的各驱动电极以及各调节用电极与未图示的电压施加装置连接。另外,驱动电极901也通过未图示的引线与电压施加装置连接。此外,加强板51接地。

在这样的压电致动器45中,通过分开使用弯曲区域91、93和弯曲区域92、94,可以在正向R1以及反向R2两个方向上对图17所示的转子120进行旋转驱动。即,压电致动器45具有正转模式以及反转模式作为工作模式,在这些正转模式以及反转模式中的任意一种模式下进行工作。

这里,在图19(A)中示出了正向R1的驱动状态,在图19(B)中示出了反向R2的驱动状态。即,以纵向区域90和弯曲区域91、93作为对象对压电元件52施加电压时,如图19(A)所示,纵向区域90主要激发纵向振动,并且弯曲区域91、93主要激发弯曲振动。即,通过对弯曲区域91、93的电压施加,压电元件52的宽度方向两侧的压电元件52的伸缩在振动体55整体的动作中达不到平衡,因此在与压电元件52的长度方向正交的方向上产生力矩而激发弯曲振动,振动体55在这些纵向振动和弯曲振动的混合模式下振动。由此,振动体55的突起57描绘出相对于通过振动体55的形心的长度方向上的中心线C倾斜的椭圆轨迹E1。并且,通过突起57的按压,转子120向正向R1旋转。

另一方面,在代替弯曲区域91、93而以弯曲区域92、94为电压施加的对象的情况下,弯曲区域91、93和弯曲区域92、94配置成相对于中心线C而线对称,因此如图19(B)所示,突起57描绘出的椭圆轨迹E2与刚才的椭圆轨迹E1相对于中心线C而线对称,并且为反转。此时,通过突起57的按压,在反向R2上对转子120进行旋转驱动。

这里,确定弯曲区域91~94中的各调节用电极的数量、大小、排列方向等,以适当调节振动体55的Δfr的偏差,弯曲区域91~94中的各驱动电极以及各调节用电极被高精度地构图而实现预定的Δfr调节量。在本实施方式的各弯曲区域91~94中,以大致相同的大小形成驱动电极和各调节用电极,但也可以使四个调节用电极912A~912D等具有一定的长度比等。

为了得到该Δfr调节量,在如图20所示的调节用电极的选择方式下,进行固有频率的测量。即,图20示出了在振动体55的样本中,固有频率根据导通部73(图18)的熔断所致的调节用电极的选择方式而变化的情况。

在图20的下栏示意地示出了所选择的调节用电极912A~912D以及932A~932D的6种组合。即,调节用电极912A~912D以及932A~932D一个也没有被选择的状态为“选择例0”,在弯曲区域91中选择离驱动电极911最远的调节用电极912D与驱动电极911绝缘,弯曲区域91中的电压施加区域和电压不施加区域之间的比被设为4∶1的状态为“选择例1”,此后,在振动体55的对角上交替地每次增加一个选择的调节用电极的状态为“选择例2”、“选择例3”、“选择例4”、“选择例5”。

图20所示的曲线图是分别测量图20下栏的6个选择例0~5中的振动体55的样本的纵向谐振频率fr1、弯曲谐振频率fr2、以及作为它们的差(fr2-fr1)的Δfr并标出。根据该曲线图,随着选择例0、选择例1、选择例2、…选择例5的转移,调节前(选择例0)是5.2kHz的Δfr倾向于逐渐减少。

另外,调节用电极912A~912D以及932A~932D的选择方式不限于选择例0~5,但基于这些选择例0~5可以估计Δfr的调节量。另外,不限于图20,也可以基于多个振动体55样本的测量数据设定Δfr的调节量。

此外,在图20中仅示出了从作为正转用调节区域的弯曲区域91、93中的调节用电极912A~912D以及932A~932D中进行选择的情况,但关于该情况下的各调节用电极的选择方式和固有频率之间的对应关系,在从作为反转用调节区域的弯曲区域92、94中的调节用电极922A~922D以及942A~942D中进行选择的情况下也是通用的。即,弯曲区域91、93和弯曲区域92、94配置成相对于振动体55的中心线C(图19)线对称,所以关于对弯曲区域91、93进行电压施加时的振动体55的振动轨迹和对弯曲区域92、94进行电压施加时的振动体55的振动轨迹,也相对于振动体55的中心线C为大致线对称,如果从弯曲区域92、94中的调节用电极922A~922D以及942A~942D中与图20所示的选择例0~5同样地进行选择,则可以推断出振动体55的固有频率也与图20的曲线图大致相同地发生变化。

并且,在这样的振动体55中,也与第二实施方式相同,对振动体55的纵向谐振频率fr1和弯曲谐振频率fr2之差Δfr进行调节,但本实施方式的压电致动器45可以进行正向R1的驱动(正转模式)、反向R2的驱动(反转模式)两者,因此调节这些正转模式、反转模式各自的Δfr。这里,在本实施方式中,不是针对正转、反转的各工作模式调节Δfr,而是实施固有频率的调节,以消除正转模式、反转模式之间的Δfr之差。

这里,示出了对振动体55实施的固有频率调节的一例。图19表示调节前的振动体55,在图19(A)所示的正转模式中,Δfr为5.2kHz,相对于此,在图19(B)所示的反转模式中,Δfr为4.8kHz,正转、反转时的驱动特性存在偏差。这里,如前面的图20所示,由于掌握了通过弯曲区域91、93中的各调节用电极的选择而减小电压施加区域时Δfr减少的倾向,所以将反转模式中的Δfr作为规定值,使正转模式中的Δfr减少。

对此,使用针对各弯曲区域91、93中的各调节用电极912A~912D以及932A~932D的每一种选择方式设定的Δfr调节量。即,也如图20所示,通过设为与选择例1~5相同的选择方式,从约5.1kHz到约4.55kHz对Δfr进行阶段的调节,在各阶段中,可以求出与调节前相比Δfr发生变化的量、即Δfr的调节量。

在图19所示的例子中,确定弯曲区域91、93中的各调节用电极912A~912D以及932A~932D的选择,并进行调节以使正转模式中的Δfr减少,从而使正转模式中的Δfr(5.2kHz)与反转模式中的Δfr(4.8kHz)一致。这里,可以应用Δfr的调节量为约0.4kHz的选择例4,基于该选择例4熔断导通部73。

在图21中示出了通过这样的过程调节了固有频率的振动体55。通过固有频率的调节,正转模式中的Δfr成为与反转模式中的Δfr相同的4.8kHz,消除了正转、反转的各模式之间的压电致动器45的驱动特性的偏差。

另外,参照图19以及图21说明的振动体55的固有频率的调节过程仅为一例,可以对应于各个振动体55得到所需的调节量,进行适当的调节。此外,也可以与前述相反,将反转模式中的Δfr调节为与正转模式中的Δfr一致,在该情况下,通过与反转模式对应的弯曲区域92、94中的各调节用电极的选择,来调节反转时的固有频率。即,将正转时、反转时的Δfr中的任意一方作为规定值,对另一方Δfr实施调节即可。

这里,正转模式中的Δfr和反转模式中的Δfr可以不完全一致,正转模式、反转模式的两模式之间的Δfr之差纳入预定的适当范围内即可。

根据本实施方式,除了第二实施方式中叙述的效果之外,还产生如下的效果。

(11)在具有使转子120向正向R1旋转的正转模式、使转子120向反向R2旋转的反转模式的压电致动器45中,通过振动体55中设置的弯曲区域91中的各调节用电极912A~912D与驱动电极911的导通,或弯曲区域93中的各调节用电极932A~932D与驱动电极931的导通,来调节正转模式中的Δfr。此外,通过弯曲区域92中的各调节用电极922A~922D与驱动电极921的导通,或弯曲区域94中的各调节用电极942A~942D与驱动电极941的导通,来调节反转模式中的Δfr。这样的Δfr调节被调节为消除正转模式、反转模式两个模式之间的Δfr之差,因此可以消除正转模式、反转模式之间的驱动特性的偏差。由此,可以按照预定的速度在正向R1和反向R2两个方向上准确地对转子120进行旋转驱动。

(12)此外,由于弯曲区域91、93和弯曲区域92、94配置成相对于振动体55的中心线C线对称,所以可以基于振动体55的样本,求出与正转模式对应的弯曲区域91、93或与反转模式对应的弯曲区域92、94中的任意一方的Δfr调节量,由此将另一方的工作模式时所使用的Δfr视为大致相同。即,也可以不分别求出正转、反转的各模式中的Δfr的调节量,从而使固有频率的调节变得容易。

[第五实施方式]

接着,说明本发明的第五实施方式。本实施方式与第四实施方式相同,在正转模式以及反转模式下工作,但电极的分割形式与第四实施方式的振动体部分不同。

图22表示本实施方式中的振动体455。在振动体455中与第四实施方式的振动体55(图18)相同,分别配置有弯曲区域91、93以及弯曲区域92、94,但各弯曲区域91~94被沿长度方向形成的线状槽75大致二等分,在各弯曲区域91~94中,在驱动电极901侧的区域中分别形成有沿振动体455的长度方向延伸的驱动电极911A、921A、931A、941A。

另一方面,在各弯曲区域91~94中,驱动电极911A、921A、931A、941A的外侧的区域中,与第四实施方式相同,各形成一个驱动电极911等和四个调节用电极912A~912D等。

另外,在驱动电极911A、921A、931A、941A上设有引线L,通过该引线L,弯曲区域91~94中的各电极与未图示的电压施加装置连接。

在图23中示出了振动体455的固有频率的调节例。图23(A)表示调节前的振动体455,图23(B)表示基于预先设定的Δfr的调节量,分别切断弯曲区域91、93中的各调节用电极912A~912D以及932A~932D中、配置在振动体455的角部的调节用电极912D以及932D的导通部73(图22)的状态。

此外,在图23(C)中,弯曲区域91中的调节用电极912C的导通部73被切断,调节用电极912C、912D与驱动电极911绝缘,并且,弯曲区域93中的调节用电极932C的导通部73被切断,由此调节用电极932C、932D与驱动电极931绝缘。

另外,在图23中示出了与正转模式对应的弯曲区域91、93中的调节用电极的选择例,但对于弯曲区域92、94也是一样的。

这里,如图23(B)以及(C)这样,如果使弯曲区域91、93中的各调节用电极与驱动电极911电气地分离,则电压施加区域的振动体455长度方向上的尺寸变小。因此,不能充分地得到激发弯曲振动所需的、振动体455的宽度方向两侧的压电元件52的伸缩,振动体455的整体动作中的压电元件52的伸缩不平衡程度减小,在本实施方式中,驱动电极911A、931A等中的压电元件52的伸缩起作用,可以确保该不平衡性。

另外,在本实施方式中,也可以将线状槽75和槽166之间切断,从而使驱动电极911A等和驱动电极911等绝缘,由此,在各弯曲区域91~94中,可进行与一个驱动电极和四个调节用电极对应的五阶段的调节。

根据本实施方式,除了第四实施方式中叙述的效果之外,还起到如下的效果。(13)通过在振动体455的弯曲区域91~94中分别设置沿长度方向延伸的驱动电极911A~941A,来确保激发弯曲振动所需的、振动体455的宽度方向两侧的压电元件52的伸缩不平衡性,由于振动体455在纵向振动和弯曲振动的混合模式下起振,因此可以实现突起57的椭圆轨迹E1、E2。

[第六实施方式]

接着,说明本发明的第六实施方式。本实施方式的电极分割形式与第四、第五实施方式的振动体不同。

图24表示本实施方式中的振动体555。在振动体555的各弯曲区域91~94中,形成了从振动体555的端部向长度方向延伸并接近槽166的两个T字状槽76A、76B,T字状槽76A和纵向的槽165之间分别为驱动电极911A、921A、931A、941A。此外,与这些驱动电极911A等邻接而各配置有两个调节用电极912A、912B等。另外,驱动电极911A等的宽度尺寸为弯曲区域91的宽度的大致一半。

在图25中示出了振动体555的固有频率的调节例。图25(A)表示调节前的振动体555,图25(B)表示基于预先设定的Δfr调节量,分别切断配置在振动体555的端部的调节用电极912B以及调节用电极932B的导通部73(图24)的状态。

此外,在图25(C)中,弯曲区域91中的调节用电极912A的导通部73被切断,调节用电极912A、912B与驱动电极911A绝缘,并且弯曲区域93中的调节用电极932A的导通部73被切断,由此调节用电极932A、932B与驱动电极931A绝缘。另外,在图25中仅示出了与正转模式对应的弯曲区域91、93中的调节用电极的选择例,但对于弯曲区域92、94也一样。

这里,本实施方式中也与第五实施方式相同,由于设有驱动电极911A、921A、931A、941A,因此确保了振动体555的宽度方向两侧的压电元件52的伸缩不平衡性,可以可靠地激发弯曲振动而实现突起75的椭圆轨迹E1、E2。

根据本实施方式,起到与第五实施方式中叙述的效果大致相同的效果。

[第七实施方式]

接着,说明本发明的第七实施方式。第四~第六实施方式中的振动体的电极大致被分割为五份,但本实施方式中的振动体的电极大致被分割为四份。

图26是本实施方式中的振动体655的平面图。振动体655的电极被纵横延伸的槽165、166大致四等分,形成各弯曲区域91~94。

在各弯曲区域91~94中与第四实施方式一样,形成有驱动电极以及调节用电极,以弯曲区域91为例,形成有一个驱动电极911和四个调节用电极922A~922D。

在这样的振动体655中,也与前述大致相同,通过对弯曲区域91、93施加电压,可以在正向上驱动转子等的被驱动体,此外,通过对弯曲区域92、94施加电压,可以在反向上驱动转子等的被驱动体。

在图27中示出了振动体655的固有频率的调节例。这里,也与前述大致一样,基于Δfr的调节量,仅使必要数量的各调节用电极912A~912D等与驱动电极911等绝缘,使正转模式中的Δfr和反转模式中的Δfr大致一致。由此,可以校正正转模式、反转模式之间的驱动特性的偏差。

根据本实施方式,起到与第四实施方式中叙述的效果大致相同的效果。

[第八实施方式]

接着,说明本发明的第八实施方式。本实施方式与第七方式一样,在电极被分割为大致四个区域的振动体中,应用了第六实施方式所示的调节用电极的分割方式。

图28是振动体755的平面图。在振动体755中的各弯曲区域91~94中,并排形成三个从振动体755的端部沿着长度方向延伸而接近槽166的T字状槽76A、76B、76C,T字状槽76A和槽165之间分别成为驱动电极911A、921A、931A、941A。此外,与这些驱动电极911A等邻接而各配置有三个调节用电极912A、912B、912C等。

这样的振动体755中的固有频率的调节与第六实施方式大致相同,省略说明。在本实施方式的振动体755中设有宽度比第四~第六实施方式中的振动体宽的驱动电极911A、921A、931A、941A,因此可以增大振动体755的宽度方向两侧的压电元件52的伸缩不平衡程度,可以可靠地激发弯曲振动。

[变形例]

本发明不限于前述的各实施方式。即,主要关于特定的实施方式特别地对本发明进行图示并进行了说明,但对于以上叙述的实施方式,在不脱离本发明的技术思想以及目的的范围的情况下,本领域技术人员可以对形状、材质、数量和其它详细结构加以各种变形。

例如,在第一、第二实施方式中,导通部63、73的切断利用对导通部63、73的通电所引起的焦耳热进行,但导通部的切断方法不限于此。

在图29中例示出三种切断导通部73的方法(A)~(C)。在(A)中,利用小直径的端铣刀C11、在(B)中利用超声波切割器C12、在(C)中利用激光C13,来分别切断导通部73。此外,也可以通过喷砂、砂轮、刨刀进行的切削等来切断导通部73。不论使用哪种方法,只要仅切断振动体70表层的电极60部分即可,所以可以缩短时间周期,还可以减少设备投资。在使用激光C13的情况下,具有可以非接触地切断导通部73的优点。

另外,关于激光C13的类型,可以例示出YAG激光、准分子激光、飞秒激光等。在使用准分子激光的情况下,可以使对振动体70的热损害极小。

此外,在预定方向上并列设置多个调节用电极,通过导通部的切断来使调节用电极和驱动电极绝缘的情况下,调节用电极和驱动电极之间的导通方式不限于第二、第三实施方式这样的方式。

图30示出了多个调节用电极与驱动电极之间的导通方式,在图30(A)中,在两个调节用电极132A、132B与驱动电极61邻接的位置分别具有导通部133A、133B。这样,也可以并联连接调节用电极132A、132B和驱动电极61。在该结构中,由于调节用电极132A、132B与驱动电极61分别连接,因此在使调节用电极132A、132B两者与驱动电极61绝缘时,导通部133A、133B都需要切断。

相对于此,图30(B)示出了将两个调节用电极77A、77B与驱动电极61串联连接的例子。在该例中,仅一个调节用电极77B在与驱动电极61邻接的位置具有导通部78B,另一个调节用电极77A在与调节用电极77B邻接的位置具有导通部78A。该结构与第二实施方式中的导通部73A~73C的结构相同。根据这样的串联连接,具有即使在将调节用电极77A、77B两者与驱动电极61绝缘时,通过导通部78B一处的切断就可以解决的优点。

此外,对于压电振动体的支撑结构也不限于前述各实施方式。

图31所示的振动体70与第一实施方式相同,由压电元件和加强板层叠而构成(参考;图4),在该加强板的臂部154上分别形成有与从底盘23突出的三个销PN对应的三个长孔1541。这些长孔1541沿振动体70的长度方向排列,各长孔1541的长轴方向均沿着振动体70的宽度方向。在长孔1541中的一个中插入螺钉SC,该螺钉SC与销PN上所形成的螺纹孔螺合。

由于振动体70在长孔1541的部分处被支撑固定,因此可以使振动体70的固定位置相对于销PN在长孔1541的长轴方向上移动。在图31中示出了销PN和振动体70之间的距离最小的状态,在图31中,可以将振动体70向左方移动而与销PN分开后固定。这里,销PN和振动体70之间的距离越小,则弯曲振动越被约束、弯曲振动的固有频率越大。即,可通过改变固定位置来使振动体70的固有频率变化而进行调节,所以除了前述各实施方式中叙述的固有频率的调节之外,还可以考虑辅助地进行这里叙述的固有频率调节。

接着,作为本发明的其它的变形例,在图32所示的钟表9中,在表盘11上设置了圆形的显示部144,通过该显示部144中的日期针145的旋转,来显示日历。该日历显示在形式上与第一实施方式的钟表1中的环状的日期轮33的显示不同,但如图33所示,在钟表9的表芯2A中组装有具有与第一实施方式中的致动器40大致相同的致动器170的日期显示装置140。另外,在图33中,21表示时轮。

日期显示装置140构成为具有:显示部144(图32)以及日期针145、安装有日期针145的日期轮143、驱动该日期轮143的致动器170。

日期轮143是31天旋转一周的齿轮(齿数为31),在其轴上安装有日期针145。

致动器170构成为具有:驱动日期轮143的转子171、与第一实施方式相同的振动体50。

转子171是配置在日期轮143和振动体50之间、在日期的更替时进给的圆板状的旋转体,具有使日期轮143一天进给一个齿的进给爪1711。振动体50的突起53与该转子171的外周抵接,传递振动体50的振动。

在这样的日期显示装置140中,也与前述相同,振动体50在纵向振动和弯曲振动的多个模式下起振,突起53形成的椭圆轨迹的一部分反复按压转子171,由此转子171向预定方向旋转。并且,通过转子171的旋转,日期轮143一天进给一个齿,日期针145依次指示显示部144(图32)的刻度1441,由此进行日期的显示。

另外,在前述各实施方式中,压电振动体为矩形板状,但不限于矩形,也可以为梯形或平行四边形等,且不限于板状,也可以为棒状、圆柱状等。

而且,在前述各实施方式中,在加强板51的两面分别设有压电元件52,但也可以仅在加强板51的单面设置压电元件52。并且,即使是在加强板51的两面设有压电元件52的情况下,也可以仅在单面侧设有调节用电极62等。而且,也可以不将压电元件52与加强板51贴合,由压电元件52单独构成振动体。

此外,在设置多个调节用电极的情况下,各调节用电极的大小或形状可以相同也可以不同。

而且,在第二、第三实施方式中,多个调节用电极72、82沿振动体70、80的长度方向排列,但也可考虑在与振动体70、80的长度方向交叉的方向上并列配置多个调节用电极。其中,沿振动体70、80的长度方向排列调节用电极的做法可以确保较大的调节量。

此外,多个调节用电极的配置也可以不像前述实施方式那样沿预定方向排列,例如,还可考虑在矩形板状的压电元件上设置的电极的四角配置调节用电极。

如前面所述,关于调节用电极的数量、大小、配置等,根据固有频率的调节量来适当确定。

在前述的第四~第八实施方式中所示的振动体中,在固有频率的调节前,各调节用电极处于与驱动电极导通的状态,通过导通部的切断来将调节用电极与驱动电极电气地分开,从而调节固有频率,但在这些第四~第八实施方式中,也可以应用第三实施方式所示的调节方法。在该情况下,在固有频率的调节前,各调节用电极处于与驱动电极绝缘的状态,通过使用导线或导电膏等使鉴于Δfr的调节量而适当选择的调节用电极与驱动电极导通,可以与前述一样地调节Δfr。

如以上的详细叙述,根据是否将调节用电极与驱动电极导通来调节固有频率,但关于该固有频率的调节,不限于前述各实施方式中例示的调节例,而有各种方法。在前述各实施方式中,示出了将作为纵向振动谐振频率和弯曲振动谐振频率之差的Δfr调节为预定的规定值的例子,但不限于此,也可以确定关于纵向振动固有频率的规定值和关于弯曲振动固有频率的规定值,分别调节纵向振动固有频率和弯曲振动固有频率。

此外,在振动轨迹互不相同的多个工作模式下工作的压电振动体的情况下,在第四~第八实施方式中,将正转模式、反转模式中的任意一个模式中的固有频率(具体为作为fr1和fr2之间的差分的Δfr)作为规定值,仅调节另一个模式中的固有频率(同为Δfr),使两个模式中的固有频率一致,但调节方法不限于此。即,也可以确定正转模式中的固有频率的规定值和反转模式中的固有频率的规定值,以这些规定值为目标,分别调节两个模式各自的固有频率。

而且,在第四~第八实施方式中,调节为消除正转模式和反转模式两个模式之间的Δfr之差,但不限于这样使两个模式中的Δfr一致的情况,将Δfr之差设为预定的值,即调节为使正转模式中的Δfr和反转模式中的Δfr之间具有预定的差的做法也是有用的。

而且,也可以确定正转、反转模式各自的预定的Δfr规定值,并调节为针对各工作模式使Δfr成为预定的规定值。即,可以分别调节各工作模式中的振动特性。

另外,前述各实施方式中的钟表是具有电池的电子表,但不限于此,也可以构成为具有可充电电源和发电机的发电型的电子表。此外,也可以是光发电(太阳能发电)或热发电的类型的钟表。

另外,在将所发出的电力蓄积在可充电电池中的钟表中,存在不能流过过大的电流以避免电容器内部电阻所引起的压降的限制,本发明的压电致动器可以以低输出达成所希望的驱动性能,所以适合构成具有这样的可充电电池的钟表。

本发明的压电振动体可以广泛应用于压电致动器、或具有压电致动器的钟表、照相机等的电子设备中。此外,还可以由压电振动体单独构成驱动机构,此外也可以用作电子电路中的振荡器等。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号