首页> 中国专利> 投影机设备、投影方法、以及存储投影方法的记录媒介

投影机设备、投影方法、以及存储投影方法的记录媒介

摘要

本发明公开一种投影机设备,其具有:投影单元(12、35、36、37、38),用于投影与输入图像信号相应的图像;指令单元(45),用于发出执行梯形失真校正的指令;测距单元(43),用于根据来自指令单元的指令,测量投影机设备与由投影单元投影的图像上的多个位置之间的距离;聚焦控制单元(395),用于基于由测距单元获得的距离,按照将图像变为具有合适纵横比的矩形的方式,执行由投影单元投影的图像的梯形失真校正,同时将由投影单元投影的图像聚焦在被梯形失真校正之后的图像的中心位置处。

著录项

  • 公开/公告号CN1768527A

    专利类型发明专利

  • 公开/公告日2006-05-03

    原文格式PDF

  • 申请/专利权人 卡西欧计算机株式会社;

    申请/专利号CN200480009003.6

  • 发明设计人 阿久津隆;

    申请日2004-08-24

  • 分类号H04N5/74;

  • 代理机构永新专利商标代理有限公司;

  • 代理人王英

  • 地址 日本东京都

  • 入库时间 2023-12-17 17:16:35

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-07

    未缴年费专利权终止 IPC(主分类):H04N5/74 授权公告日:20080220 终止日期:20190824 申请日:20040824

    专利权的终止

  • 2008-02-20

    授权

    授权

  • 2006-06-28

    实质审查的生效

    实质审查的生效

  • 2006-05-03

    公开

    公开

说明书

技术领域

本发明涉及具有自动聚焦投影图像功能的自动投影机设备、投影方法、以及存储投影方法的媒介。

背景技术

按照常规,已经提议一种其中设置有监控照相机的可携带的(便携式)投影机。该监控照相机用于监控投影屏幕,以自动执行用于显示图像所需要的各种调节(例如,专利文献1)。

[专利文献1]未审日本专利申请KOKAI公开No.2000-241874

然而,通过处理由监控照相机拍摄获得的图像数据,专利文献1中公开的便携式投影机单独执行聚焦操作和梯形失真校正操作。因此,完成所有这些调节占用很长时间。

这些调节尤其用于改变投影镜头的光学系统的方向、仰角、以及俯角。这些调节要求镜头系统的结构具有光学“倾斜”机制,这引起使设备变为尺寸大并且复杂的问题。

发明内容

根据本发明的投影机设备包括:投影单元,用于投影与输入图像信号相应的图像;指令单元,用于发出执行梯形失真校正的指令,测距单元,用于根据来自指令单元的指令,测量投影机设备与由投影单元投影的图像上的多个位置之间的距离;梯形失真校正单元,用于基于由测距单元获得的距离,以将图像变为具有合适纵横比的矩形的方式,对由投影单元投影的图像执行梯形失真校正;以及聚焦控制单元,用于在由梯形失真校正单元进行梯形失真校正之后的图像的中心位置处,对由投影单元投影的图像进行聚焦。

附图说明

本发明的这些目的和其它目的以及优势将通过阅读以下详细的描述和附图而体现出来,其中:

图1A和1B是显示根据本发明一个实施例的投影机设备的外观示意图;

图2是显示图1中所示的主体主键/指示器的设置的斜示图;

图3是显示根据本发明实施例的投影机设备内部功能电路结构的方框图;

图4是显示关于根据本发明实施例的AFK键操作的处理内容的流程图;

图5A和5B是显示图4中所示的AFK处理子程序的处理内容的流程图,以及该流程图的辅助图;

图6是显示根据本发明实施例的自动梯形失真校正的概念示意图;

图7是显示图4中所示的AFK处理子程序的另一个处理内容的流程图;

图8A和8B是显示图4中所示的AFK处理子程序的另一个处理内容的流程图,以及这个流程图的辅助图。

具体实施方式

参考附图,将描述本发明用于投影机设备的一个实施例。

图1显示了根据本实施例的投影机设备10的外观。如图1A所示,矩形长方体状的主体外壳11的正面设置有投影镜头12、两对测距透镜13a和13b、13c和13d以及Ir(红外线)接收单元14。

投影镜头12对由稍后描述的诸如微镜等的空间光学调制元件形成的光学图像进行投影。投影镜头12可以任意地改变其对焦位置和缩放位置(投影视图的角度)。

测距透镜13a、13b、13c和13d分别组成了稍后要描述的相差传感器131和132的一部分。根据基于这些对测距透镜之间相对于照片对象的视差的三角测量原理,测距透镜13a、13b、13c和13d测量投影机设备10和照片对象之间的距离,尤其,投影机设备10与投影图像的表面之间的距离。

特别地,通过把未图示的测距激光输出的用于测距的光通量聚焦在照片对象上,垂直设置的一对测距透镜13a和13b测量投影机设备10与照片对象之间的垂直方向的距离,以及另一对水平设置的测距透镜13c和13d测量投影机设备10与照片对象之间的水平方向的距离。

投影机设备10具有未图示的远程控制器。Ir接收单元14接收红外光,来自该远程控制器的键操作信号叠加在该红外光上。

主体主键/指示器15、扬声器16、盖子17设置在主体外壳11的上表面。

稍后将详细描述主体主键/指示器15。

当例如播放动画时,扬声器16放大并输出声音。

当操作主体子键(未图示)时,盖子17被打开或关闭。该主体子键用于,在不使用投影机设备10的未图示的远程控制器的情况下,控制不能通过主体主键/指示器15的键设置的各种特定操作。

正如图1B所示,主体外壳11的背面上设置有输入/输出连接器单元18、Ir接收单元19、以及AC适配器连接单元20。

输入/输出连接器单元18包括:USB端子,用于连接诸如个人计算机的外部设备,以允许在其间输入以及输出图像;微型D-SUB端子、S端子、以及用于图像输入的RCA端子、用于音频输入的立体声微型端子,等等。

Ir输入单元19接收红外光,来自未图示的远程控制器的键操作信号叠加在该红外光上,类似于以上描述的Ir接收单元14。

AC适配器连接单元20具有从电源AC适配器(未图示)连接到其上的电缆。

一对固定支脚21和24设置在主体外壳11的底面的背面侧,以及可以调节高度的调节支脚22设置在相同底面的正面侧。

通过手动调节它的位置(可以通过螺杆旋转调节),调节支脚22调整垂直方向分量,即,投影镜头12在投影方向上的仰角。

图2显示了主体主键/指示器15的详细设置。主体主键/指示器15包括电源键15a、缩放键15b、聚焦键15c、“AFK”键15d、“输入”键15e、“自动”键15f、“菜单”键15g、“梯形失真”键15h、“帮助”键15i、“取消”键15j、“向上(↑)”键15k、“向下(↓)”键15l、“向左(←)”键15m、“向右(→)”键15n、“输入”键15o、电源/待机指示器15p、以及温度(TEMP)指示器15q。

电源键15a用于发出将电源切换为接通或者断开的指令。

缩放键15b(“△”和“”)用于发出放大(远距镜头)或缩小(宽广)的指令。

聚焦键(“△”和“”)用于发出向前或向后移动对焦位置的指令。

“AFK”键15d(指令单元)用于发出立即执行自动聚焦以及自动梯形失真校正的指令。

“输入”键15e用于发出手工切换待输入到任何输入/输出连接器单元18的图像信号的指令。“自动”键15f用于发出自动切换待输入到任何输入/输出连接器单元18的图像信号的指令。

“菜单”键15g用于发出显示关于投影操作的菜单条目的指令。“梯形失真”键15h用于发出手工执行梯形失真校正的指令。

“帮助”键15i用于发出在用户对操作不确定的情况下显示帮助信息的指令。“取消”键15j用于发出退出当前操作的指令。

“向上”键15k、“向下”键15l、“向左”键15m、“向右”键15n用于发出选择菜单条目或者指定手工梯形失真校正的方向或指针、光标等移动的方向的指令。

通过例如接通/断开或使绿色和红色LED(发光二极管)闪光,电源/待机指示器15p指示电源的开/关状态以及没有图像信号输入的状态。

通过例如接通/断开或使绿色和红色LED闪光,温度指示器15p指示作为图象投影光源的灯的温度是否处在投影的正确状态下。

接着,参考图3,将描述投影机设备10的电路的功能结构。在图3中,从输入/输出连接器单元18输入的不同标准的图像信号经由输入/输出接口(I/F)31和系统总线SB在图像转换单元32中被标准化为预定格式的图像信号,然后传送到显示解码器33。

显示解码器33在视频RAM 34中展开并且存储所传送的图像信号,基于视频RAM 34中存储的内容产生视频信号,以及将该视频信号输出到显示驱动单元35。

显示驱动单元35以与所传送的视频信号相应的合适帧频(例如30[帧/秒])驱动空间光学调制器(SOM)36,以执行显示操作。当显示驱动单元35把从(例如)超高压水银灯等组成的光源灯37发出的高亮度白光照射在空间光调制器36上时,由来自空间光调制器36的反射光形成光学图像,并且经由投影镜头12投影到未图示的屏幕上。

投影镜头12通过被镜头引擎(M)38驱动而任意移动缩放位置和对焦位置。显示驱动单元35、空间光学调制器(SOM)36、光源灯37、投影镜头12、以及镜头引擎(M)38组成了投影部件。

上述电路中的每一个的操作都由控制单元39控制。控制单元39包括:CPU 391;ROM 392,用于固化存储由CPU 391执行的操作程序;RAM 393,用作操作存储器;梯形失真校正单元394,用于执行待投影的图像的梯形失真校正;以及聚焦控制单元395,用于聚焦到梯形失真校正后的图像的中心位置上。

图像存储单元40、音频处理单元41、加速传感器42、以及测距处理单元43经由系统总线SB连接到控制单元39。

图像存储单元40由例如闪存储器等组成,并且存储稍后描述的图形图像(水平图形图像和垂直图形图像)等的图像数据。图像存储单元40读出由控制单元39指定的图像数据并且将该图像数据传送到显示解码器33,从而经由投影镜头12投影由该图像数据所表示的图像。

音频处理单元41包括诸如PCM声源等的声源电路,对投影操作期间产生的音频数据进行模拟转换,以及驱动扬声器16音量高地输出该音频。

加速传感器42在投影机设备10从持续状态转移时检测投影机设备10的波动,以及将检测信号输出到控制单元39。

测距处理单元43(测距单元)驱动具有测距透镜13a和13b的相差传感器131以及具有测距透镜13c和13d的相差传感器132,由此测量投影机设备10与稍后描述的投影的图形图像中的任意点之间的距离。

主体主键/指示器部件15以及盖子17中设置的主体子键组成了键/指示器部件45。来自键/指示器部件45的键操作信号直接输入到控制单元39。控制单元39直接驱动电源/待机指示器15p以及温度指示器15q,使其开启或闪烁。由Ir接收单元14或Ir接收单元19接收的红外光信号被直接输入到控制单元39。

现在将描述根据本实施例的操作。

图4显示了当电源接通时根据主体主键/指示器15的“AFK”键15d的操作,强制执行中断处理时的自动聚焦以及自动梯形失真校正处理的内容。控制单元39基于其ROM中存储的操作程序执行这个处理的控制。

用户通过操作主体主键/指示器15中的“菜单”键15g、“向上”键15k、“向下”键15l、“输入”键15o等,任意设定单触发模式和连续模式的其中一个。该单触发模式根据“AFK”键15d的操作,仅执行一次自动聚焦处理和自动梯形失真校正处理。该连续模式从“AFK”键15d第一次操作直至“AFK”键15d再次操作,重复地连续执行自动聚焦处理以及自动梯形失真校正处理。

该操作开始时,“AFK”键15d等待(步骤M01)。当确定“AFK”键15d被操作时,暂停该持续进行的操作,以及作为中断处理的开始自动聚焦处理和自动梯形失真校正处理的状态被设定(步骤M02)。然后,执行第一次自动聚焦和自动梯形失真校正(M03)。

图5A显示了表示自动聚焦处理以及自动梯形失真校正处理之内容的子程序。在所述处理开始时,由包括投影镜头12的投影系统基于图像存储单元40中存储的图像数据,投影图5B中显示的水平图形图像HC(步骤S01)。

水平图形图像HC由水平方向上等间距设置的三个点图像组成。

当水平图形图像HC被投影时,由相差传感器132和测距处理单元43测量投影机设备10与设置在中心的点的投影图像的位置之间的距离LC(步骤S02)。

此后,投影机设备10与从投影机设备10向右看设置的点的投影图像的位置之间的距离LR以及投影机设备10与从投影机设备10向左看设置的点的投影图像的位置之间的距离LL同样被依次测量(步骤S03和S04)。

基于获得的该三个点的距离值,计算投影图像的屏幕投影面的向左和向右方向上关于投影光轴的角θh(步骤S05)。

接着,代替水平图形图像HC,基于图像存储单元40中存储的图像数据投影图5B中显示的垂直图形图像VC(步骤S06)。

垂直图形图像VC由垂直方向上等间距设置的三个点图像组成,其中心点与水平图形图像HC的中心点重合。

当垂直图形图像VC被投影时,相差传感器131和测距处理单元43测量投影机设备10与设置在上侧的点的投影图像的位置之间的距离LU(步骤S07)。

此后,同样测量投影机设备10与设置在下侧的点的投影图像的位置之间的距离LD(步骤S08)。投影机设备10与设置在中心的点的投影图像的位置之间的距离LC与水平图形图像HC的相同。因此,由于已经在步骤S02测量了距离LC,所以使用在步骤S02中获得的测量值,以及省略距离LC的测量处理。

基于组成垂直图形图像VC的三个点的距离值,计算投影图像的屏幕投影面的向上和向下方向关于投影光轴的角θv(步骤S09)。

接着,获得在步骤S02中测量的投影机设备10与设置在中心的点的投影图像的位置之间的距离LC,作为表示投影图像的距离值。然后,投影镜头12被镜头引擎38移动,使得投影镜头12设定在与该距离值相应的对焦位置上(步骤S10)。

此后,通过计算梯形失真校正所需要的角度,执行在视频RAM 34中扩展并存储的图像数据的梯形失真校正,以测量屏幕投影面大体上向哪个方向倾斜多少,以及基于投影图像的屏幕投影面的向左和向右方向的角θh与向上和向下方向的角θv(这些角度在步骤S05和步骤S09中获得),确定待投影的图像是否应该为具有与输入图像信号相等的合适纵横比的矩形形状(步骤S11)。

图6以稍微夸张的方式描述了在自动梯形失真校正前后投影图像的改变。由虚线表示的校正之前的投影图形I很大程度地被垂直以及水平扭曲,以及尤其是形成该矩形左上角的两条边被很大程度的扭曲。因此,显然,屏幕的投影面相对于投影光轴在向左和向右方向上向左侧倾斜,在向上和向下方向上向上侧倾斜。

通过对投影图像I进行自动梯形失真校正,能够获得在投影图像I中可能的最合适的纵横比的矩形投影图像II。

与梯形失真校正一起,计算被投影为具有最合适纵横比的矩形的该图像的中心位置的坐标值x和y(步骤S12)。然后,步骤S01中使用的水平图形图像HC被移动,使得其中心点位于所计算出的中心位置的x和y坐标,并投影到这个位置(步骤S13)。

在这种状态下,相差传感器132和测距处理单元43在梯形失真校正之后再次测量投影机设备10与中心点的投影图像的位置之间的距离LC,作为校正距离LK(步骤S14)。

结合横向图形图像HC在其如上述一样移动之后的投影,需要一种用于改变投射光轴的机制,使得适当地改变相差传感器132的测距透镜13c和13d所面对的方向,因此透镜13c和13d可以相应地将光通量集中在水平图形图像HC移动后的点的位置上。

然后,基于获得的距离LK,投影镜头12被镜头引擎38移动到与距离LK相应的新的对焦位置上(步骤S15)。从而,图5A中显示的子程序完成一次,并且该流程返回到图4的处理。

在图4中,在步骤M03中执行自动聚焦处理和自动梯形失真校正处理之后,确定是否设定了上述的连续模式(步骤M04)。

在确定设定了连续模式的情况下,确定“AFK”键15d是否被第二次操作(步骤M05)。如果确定“AFK”键15d没有被第二次操作,该流程返回到步骤M03,以再次执行自动聚焦处理和自动梯形失真校正处理。

在设定为连续模式的状态下,步骤M03到M05的处理被重复执行,以连续执行自动聚焦处理和自动梯形失真校正处理,直至“AFK”键15d被第二次操作。

在步骤M05中确定“AFK”键15d被第二次操作的情况下,以及在步骤M04中确定设定的不是连续模式而是单触发模式的情况下,设定用于中止该自动聚焦处理和自动梯形失真校正处理的中断操作的状态(步骤M06)。然后,恢复在“AFK”键15d被操作之前执行的操作,并且该流程返回到步骤M01,以待命“AFK”键15d的下一次操作。

通过根据“AFK”15d的操作以这样的方式执行自动梯形失真校正,通过将自动梯形失真校正之后获得的投影图像的中心位置(x,y)置于焦点上,中心位置偏离的投影图像被重新投影。

因此,通过操作“AFK”键15d,在响应用户执行这些操作的意图时,能够容易并快速地执行自动聚焦处理和自动梯形失真校正处理,以及在消除投影环境影响的情况下随时适当地投影图像。

此外,由于在图5A中投影机设备10与自动梯形失真校正后获得的投影图像的中心位置(x,y)之间的距离LK被重新测量,以自动聚焦,所以可以更可靠地投影聚焦后的图像。

在图5A中,已经描述了通过执行步骤S12到S15的处理重新测量获得投影机设备10与自动梯形失真校正后获得的投影图像的中心位置(x,y)之间的距离LK。然而,不通过执行这种距离重新测量处理,而是通过计算投影机设备10与该中心位置(x,y)之间的距离值,在梯形失真校正之后可以执行自动聚焦。

现在将描述关于这种自动梯形失真校正处理的子程序的另一个实例1。

图7显示了表示在图4的步骤M03中执行的自动聚焦处理和自动梯形失真校正处理的另一个内容的子程序。在处理开始时,基于图像存储单元40中存储的图像数据,图5B中显示的水平图形图像HC被具有投影镜头12的投影系统投影(步骤S21)。

这个水平图形图像HC由水平方向上等间距设置的三个点图像组成。

在水平图形图像HC被投影时,相差传感器132和测距处理单元43测量投影机设备10与设置在中心的点的投影图像的位置之间的距离LC(步骤S22)。

此后,同样地依次测量投影机设备10与从投影机设备10看设置在右侧的点的投影图像的位置之间的距离LR以及投影机设备10与从投影机设备10看设置在左侧的点的投影图像的位置之间的距离LL(步骤S23和步骤S24)。

基于获得的三个点的距离值,计算投影图像的屏幕投影面的向左和向右方向上关于投影光轴的角θh(步骤S25)。

接着,代替水平图形图像HC,基于图像存储单元40中存储的图像数据,投影图5B中显示的垂直图形图像VC(步骤S26)。

垂直图形图像VC由垂直方向上等间距设置的三个点图像组成,其中心点与上述水平图形图像HC的中心点重合。

当垂直图形图像VC被投影时,相差传感器131和测距处理单元43测量投影机设备10与设置在上侧的点的投影图像的位置之间的距离LU(步骤S27)。

此后,同样测量投影机设备10与设置在下侧的点的投影图像的位置之间的距离LD(步骤S28)。投影机设备10与设置在中心的点的投影图像的位置之间的距离LC与水平图形图像HC的相同。因此,由于已经在步骤S22测量了距离LC,所以使用在步骤S22中获得的测量值,以及省略距离LC的测量处理。

基于组成垂直图形图像VC的三个点的距离值,计算投影图像的屏幕投影面的向上和向下方向上关于投影光轴的角θv(步骤S29)。

然后,获得在步骤S22中测量的投影机设备10与设置在中心的点的投影图像的位置之间的距离LC,作为表示投影图像的距离值。然后,投影镜头12被镜头引擎38移动到与该距离值相应的新的对焦位置(步骤S30)。

此后,通过计算梯形失真校正所需要的角度,执行在视频RAM 34中扩展并存储的图像数据的梯形失真校正,以测量屏幕投影面大体上向哪个方向倾斜多少,以及基于投影图像的屏幕投影面的向左和向右方向的角θh与向上和向下方向的角θv(这些角度在步骤S25和步骤S29中获得),确定待投影的图像是否应该为具有与输入图像信号相等的合适纵横比的矩形形状(步骤S31)。

当已经执行梯形失真校正时,计算出被投影为具有合适纵横比的矩形的该图像的中心位置的坐标值x和y(步骤S32)。然后,计算出投影机设备10与计算出的中心位置(x,y)之间的距离和在步骤S22中测量的投影机设备10与设置在中心的点之间的距离LC之间的差ΔL(步骤S33)。

然后,通过将所计算的距离差ΔL和投影机设备10与设置在中心的点之间的距离LC相加,计算出梯形失真校正之后的校正距离LK(步骤S34)。

基于所计算的距离LK,投影镜头12被镜头引擎38移动到与距离LK相应的新的对焦位置(步骤S35)。从而,完成一次图7中显示的子程序,并且该流程返回到图4中的处理。

通过使用由测量投影机设备10与该多个点位置之间的距离而获得的距离值,计算投影机设备10与自动梯形失真校正之后获得的图像的中心位置(x,y)之间的距离,则不需要图5A中所示的距离重测处理。此外,也不需要上述用于改变相差传感器132的测距透镜13c和13d的投射光轴的机制。这使得设备的结构不至于变复杂,同时代替重新测量而进行的计算使得能够快速切换到投影操作。

用于对梯形失真校正之后获得的投影图像的中心位置的偏离进行校正的自动聚焦控制的计算可以比图7中所示的处理更简化。

现在将描述关于这种自动梯形失真校正处理的子程序的另一个实例2。

在这个实例2中,相差传感器132的测距透镜13c和13d具有一种结构,用于以预定角度向上或向下移动它们聚焦的光通量的光轴。

图8A显示了描述图4的步骤M03中执行的自动聚焦处理和自动梯形失真校正处理的另一个内容的子程序,替代图5A中显示的处理。在该处理开始时,包括投影镜头12的投影系统基于图像存储单元40中存储的图像数据投影图8B中显示的水平图形上部的图像UH(步骤S41)。

这个水平图形上部的图像UH由在水平方向上等间距设置的三个点图像组成。结合水平图形上部的图像UH的投影,相差传感器132的测距透镜13c和13d以预定角度向上移动聚焦的光通量的光轴。

在水平图形上部的图像UH被投影时,相差传感器132和测距处理单元43依次测量投影机设备10与设置在中心的点的投影图像的位置之间的距离UC、投影机设备10与设置在左边的点的投影图像的位置之间的距离UL、投影机设备10与设置在右边的点的投影图像的位置之间的距离UR(步骤S42)。

接着,包括投影镜头12的投影系统基于图像存储单元40中存储的图像数据投影水平图形中部的图像MH(步骤S43)。

类似于水平图形上部的图像UH,水平图形中部的图像MH由在水平方向上等间距设置的三个点图像组成。当水平图形中部的图像MH被投影时,相差传感器132的测距透镜13c和13d不向上或向下移动它们聚焦的光通量的光轴。

在水平图形中部的图像MH被投影时,相差传感器132和测距处理单元43依次测量投影机设备10与设置在中心的点的投影图像的位置之间的距离MC、投影机设备10与设置在左边的点的投影图像的位置之间的距离ML、投影机设备10与设置在右边的点的投影图像的位置之间的距离MR(步骤S44)。

然后,包括投影镜头12的投影系统基于图像存储单元40中存储的图像数据,投影图8B中显示的水平图形下部的图像LH(步骤S45)。

类似于水平图形上部的图像UH和水平图形中部的图像MH,水平图形下部的图像LH由在水平方向上等间距设置的三个点图像组成。当水平图形下部的图像LH被投影时,相差传感器132的测距透镜13c和13d以预定角度向下移动它们聚焦的光通量的光轴。

在水平图形下部的图像LH被投影时,相差传感器132和测距处理单元43依次测量投影机设备10与设置在中心的点的投影图像的位置之间的距离LC、投影机设备10与设置在左边的点的投影图像的位置之间的距离LL、投影机设备10与设置在右边的点的投影图像的位置之间的距离LR(步骤S46)。

结果,获得了总共9个点(垂直3个点×水平3个点)的距离值。通过从投影机设备10与设置在水平图形中部的图像MH左边的点的投影图像的位置之间的距离ML减去投影机设备10与设置在水平图形中部的图像MH右边的点的投影图像的位置之间的距离MR,计算投影图像的屏幕投影面在向左和向右方向上相对于投影光轴的角θh(步骤S47)。

接着,通过从投影机设备10与设置在水平图形上部的图像UH的中心的点的投影图像的位置之间的距离UC减去投影机设备10与设置在水平图形下部的图像LH的中心的点的投影图像的位置之间的距离LC,计算投影图像的屏幕投影面在向上和向下方向上相对于投影光轴的角θv(步骤S48)。

通过计算梯形失真校正所需要的角度,执行在视频RAM 34中扩展并存储的图像数据的梯形失真校正,以测量屏幕投影面大体上向哪个方向倾斜多少,以及基于投影图像的屏幕投影面的向左和向右方向上的角θh与向上和向下方向上的角θv(这些角度在步骤S47和步骤S48中获得),确定待投影的图像是否应该为具有与输入图像信号相等的合适纵横比的矩形形状(步骤S49)。

当梯形失真校正被执行时,计算出被投影为具有合适纵横比的矩形的该图像的中心位置的坐标值x和y(步骤S50)。然后,从图8B中显示的九个测距点中选择最接近于所计算的中心位置的x和y坐标的测距点(步骤S51)。

然后,投影机设备10与所选择的测距点之间的距离作为梯形失真校正之后的的校正距离LK(步骤S52)。然后,投影镜头12被镜头引擎38移动到与该距离LK相应的新的对焦位置(步骤S53)。然后,完成一次图8中所示的子程序,并且该流程返回到图4中所示的处理。

通过使用最接近于在自动梯形失真校正之后获得的图像的中心位置(x,y)的测距点的距离值,该测量点是从最初用于测距的多个(例如9个)点中选择的,不需要重新测量距离或者计算差ΔL,该差ΔL为投影机设备10与梯形失真校正之前设置在中心的点之间的距离LC和投影机设备10与梯形失真校正之后获得的投影图像的中心位置(x,y)之间的距离的差。因此,能够更快速地切换所述投影操作。

在以上描述的实施例中,已经描述了由相差传感器131和132测量投影机设备10与图5B或图8B中所示的投影图像上的每一点之间的距离。然而,用于测量距离的装置并不局限于相差传感器131和132。例如,可以设置与多个点相应的多个主动型传感器等,其通过红外线、超声波、激光等的振荡以及接收反射波来测量距离,或者可以构造这样的传感器,使得能够改变震荡角度。

此外,用于测量距离的装置可以不是传感器。例如,可以使用诸如CCD的成像元件,以及具有自动聚焦功能的对比型成像单元等,因此可以计算当多个测距点中的每一个被自动聚焦时的聚焦镜头的位置与该多个测量点的每一个之间的距离。

本发明并不局限于上述实施例,而是可以在本发明的范围之内进行各种变形。

上述实施例包括各种级别的发明,并且通过适当地组合此处公开的多个组件可以形成各种发明。例如,即使从此处公开的组件中去掉一些组件,也可以解决发明背景部分中描述的至少一个问题,以及可以达到本发明的多个目标中的至少一个,在这种情况下,去掉这些组件的结构就可以形成发明。

可以在不偏离本发明宽广的精神和范围的情况下,获得各种实施例以及变形。上述实施例旨在描述本发明,并不限制本发明的范围。本发明的范围显示在附加的权利要求中,而不是实施例中。与本发明的权利要求等价的含义范围内以及所述权利要求范围内的各种变形都被认为是在本发明的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号