首页> 中国专利> 无线电发送设备、无线电接收设备和选择发送对消副载波的方法

无线电发送设备、无线电接收设备和选择发送对消副载波的方法

摘要

编码要发送的位(编码率R=1/3)以产生系统位(S)和奇偶校验位(P1、P2),并将奇偶校验位所映射到的副载波指定为潜在(potential)发送对消,从中选择将不发送的副载波。该选择利用这样的选择图案,使得考虑到奇偶校验位的值和副载波之间的相位关系,OFDM码元的峰值功率为最小。

著录项

  • 公开/公告号CN1659817A

    专利类型发明专利

  • 公开/公告日2005-08-24

    原文格式PDF

  • 申请/专利权人 松下电器产业株式会社;

    申请/专利号CN03813644.9

  • 发明设计人 三好宪一;上杉充;

    申请日2003-09-09

  • 分类号H04J11/00;

  • 代理机构11105 北京市柳沈律师事务所;

  • 代理人邸万奎;黄小临

  • 地址 日本大阪府

  • 入库时间 2023-12-17 16:29:32

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-19

    未缴年费专利权终止 IPC(主分类):H04J11/00 专利号:ZL038136449 申请日:20030909 授权公告日:20100609

    专利权的终止

  • 2019-05-07

    专利权的转移 IPC(主分类):H04J11/00 登记生效日:20190418 变更前: 变更后: 申请日:20030909

    专利申请权、专利权的转移

  • 2014-08-13

    专利权的转移 IPC(主分类):H04J11/00 变更前: 变更后: 登记生效日:20140722 申请日:20030909

    专利申请权、专利权的转移

  • 2010-06-09

    授权

    授权

  • 2005-10-19

    实质审查的生效

    实质审查的生效

  • 2005-08-24

    公开

    公开

查看全部

说明书

技术领域

本发明涉及一种无线电发送设备、无线电接收设备及用于选择发送对消副载波的方法,并具体涉及在执行纠错编码的无线电通信系统中的一种无线电发送设备、无线电接收设备及用于选择发送对消副载波的方法。

背景技术

近几年来,在无线电通信领域,尤其在移动通信领域,除语音之外的例如图像和数据的各种信息正成为传输目标。既然预期到将来对各种内容传输的需求将加速增加,更可靠和更快速传输的必要性也将增加。然而,当在移动通信中执行高速传输时,不能忽视多径延迟信号的影响,并且由于频率选择性衰落使得传输特性恶化。

作为一种控制频率选择性衰落的技术,例如OFDM(正交频分复用)方案的多载波(MC)调制方案正成为关注焦点。多载波调制方案是由于利用其传输率被抑制到不产生频率选择性衰落的程度的多个载波(副载波)来传输数据而实现高速传输的技术。特别是,因为其上安排数据的多个副载波彼此正交,所以OFDM方案是多载波调制方案中具有最高频率利用效率的方案,而且它可以通过相对简单的硬件配置来实现,并因此OFDM方案获得了特别关注并现正在各方面的研究中。

作为这些研究的一个例子,存在这样的OFDM方案,其进行控制,从而在期望降低发送功率的峰值(峰值功率)的情况下,避免发送低接收质量的副载波。此外,在进行该控制时,尝试通过使分配到将不被发送的副载波的位与将被删余的位一致而使BER(误码率)的恶化最小化。(例如,见“Performance of the Delay Profile Information Channel based SubcarrierTransmit Power Control Technique for OFDM/FDD Systems”(NoriyukiMAEDA,Seiichi SAMPEI,and Norihiko MORINAGA,transactions of Instituteof Electronics,Information and Communication Engineers,B,Vol.J84-B,No.2.pp.205-213(February 2001))。

但是,在上述方法中还存在一种可能性,当存在将不被发送的副载波时,可发送的位数可减少,并且误码率特性可严重恶化。此外,有必要从基站向移动台单独发送将不被发送的副载波的位置信息,这降低了发送效率。而且,根据QPSK调制的副载波之间的相位关系等,仅进行控制以避免发送低接收质量的副载波反而会增加峰值功率。

发明内容

本发明旨在提供一种无线电发送设备、无线电接收设备以及能降低峰值功率并同时抑制误码率特性恶化的发送对消副载波的选择方法。

本发明人已实现了本发明,其中注意到奇偶校验位是具有比系统位低的重要度(degree of importance)的位,并且当需要去除一个比特时,去除奇偶校验位比去除系统位对误码率特性恶化具有较小影响。

为了解决上述问题并达到上述目的,本发明的特征在于,在仅由系统位或仅由奇偶校验位组成的码元或由两者的混合组成的码元所映射到的副载波中,其中通过编码发送位而产生系统位和奇偶校验位,从仅由奇偶校验位组成的码元所映射到的副载波中选择将不被发送的副载波(也就是,其发送被对消的副载波)。此外,当从仅由奇偶校验位组成的码元所映射到的副载波中选择出其发送被对消的副载波时,本发明的特征在于,选择导致最低峰值功率的副载波的合并。本发明的特征还在于,不单独发送关于其发送被对消的副载波的位置信息。利用这些特性,本发明允许执行纠错编码的无线电通信系统降低峰值功率,同时抑制误码率特性的恶化。本发明也可通过发送位置信息而防止发送效率的恶化。

附图说明

图1是示出了根据本发明实施例1的无线电发送设备的配置的方框图;

图2是示出了根据本发明实施例1的无线电发送设备的对消部件的配置的方框图;

图3是示出了根据本发明实施例1的无线电接收设备的配置的方框图;

图4是示出了根据本发明实施例1的无线电接收设备的对消部件的配置的方框图;

图5图示了根据本发明实施例1的OFDM码元的副载波的配置;

图6图示了根据本发明实施例1的对消表的内容;

图7图示了根据本发明实施例1的其发送被对消的副载波;

图8图示了根据本发明实施例1的副载波的接收功率;

图9图示了根据本发明实施例1的将不排除其解调的副载波;

图10是示出了根据本发明实施例2的无线电发送设备的配置的方框图;

图11图示了根据本发明实施例2的峰值功率;

图12是示出了根据本发明实施例3的无线电发送设备的配置的方框图;

图13是示出了根据本发明实施例4的无线电发送设备的配置的方框图;

图14A图示了根据本发明实施例4的由系统位与奇偶校验位组成的位串;

图14B图示了根据本发明实施例4的由系统位与奇偶校验位组成的位串;

图14C图示了根据本发明实施例4的由系统位与奇偶校验位组成的位串;

图15图示了根据本发明实施例4的其发送被对消的副载波;

图16是示出了根据本发明实施例5的无线电发送设备的配置的方框图;

图17是示出了根据本发明实施例5的无线电接收设备的配置的方框图;

图18图示了根据本发明实施例5的其发送被对消的副载波;

图19是示出了根据本发明实施例6的无线电接收设备的配置的方框图;

图20是示出了根据本发明实施例6的无线电发送设备的配置的方框图;

图21图示了根据本发明实施例6的其发送被对消的副载波(在初始发送时);

图22图示了根据本发明实施例6的其发送被对消的副载波(在第一次重发时);和

图23图示了根据本发明实施例6的其发送被对消的副载波(在第二次重发时)。

具体实施方式

现在参考附图,将在下面详细解释本发明的实施例。

(实施例1)

图1是示出了根据本发明实施例1的无线电发送设备的配置的方框图。图1所示的无线电发送设备包括编码部件12、并/串(P/S)转换部件14、调制部件16、串/并(S/P)转换部件18、选择部件20、对消表22、对消部件24、快速逆傅立叶变换(IFFT)部件26、并/串(P/S)转换部件28、保护间隔(GI)部件30以及发送RF部件32,这些部件被设计以发送其中去除了组成OFDM码元的多个副载波中的一些的多载波信号的OFDM码元。图1所示无线电发送设备被安装在例如用于无线电通信系统的基站设备上。

在图1所示无线电发送设备中,编码部件12利用例如turbo码的系统码对发送数据(位串)进行纠错编码。编码部件12用系统码对发送位串进行编码,并从而产生作为发送位本身的系统位S以及作为冗余位的奇偶校验位P。这里,为了实现编码率R=1/3,为一个发送位产生一个系统位S与两个奇偶校验位P1与P2。系统位S与奇偶校验位P1与P2这三位被并行输入到P/S部件14。

P/S部件14将并行输入的位串转换为串行位串,并接顺序将S、P1、和P2输入到调制部件16。

调制部件16对系统位S与奇偶校验位P1和P2进行BPSK调制,以产生码元。如果输入的位为“0”,调制部件16就将其调制为码元“1”;如果输入的位为“1”,调制部件16就将其调制为码元“-1”。由于使用BPSK调制,所以一个码元由一位组成。该调制后的码元被输入到S/P部件18与选择部件20。

每次串行输入与组成1个OFDM码元的多个副载波对应的多个码元时,S/P部件18将这些码元转换为并行的,并将它们输入到对消部件24。这里,假设构成1个OFDM码元的副载波数量为K=15。

在从调制部件16输入的这些码元中,选择部件20判决仅由奇偶校验位组成的码元被映射到哪些副载波。由于本实施例中的调制部件16执行BPSK调制并且1个码元由1位组成,所以选择部件20判决奇偶校验位所映射到的副载波。对于每个OFDM码元,1个OFDM码元内的每个副载波的映射位置是事先知道的,因此选择部件20可容易地判决奇偶校验位所映射到的副载波。例如,当组成1个OFDM码元的副载波的数量为K=15,且编码率R=1/3时,预先知道位S被映射到副载波f1,位P1被映射到副载波f2,位P2被映射到副载波f3;位S被映射到副载波f4,位P1被映射到副载波f5,位P2被映射到副载波f6;......位S被映射到副载波f13,位P1被映射到副载波f14,而位P2被映射到副载波f15。当K=15且R=1/3时,对于所有OFDM码元,S、P1、和P2之间的映射位置关系是相同的。当K不能为R所整除时,例如,当K=15和R=1/4时,映射位置从一个OFDM码元变成另一个OFDM码元,但是存在特定规律性,并因此选择部件20也可容易地判决该情况下奇偶校验位所映射到的副载波。此外,即使当所编码的位被删余或被交织时,删余图案或交织图案是事先知道的,因此选择部件20可以基于这些图案容易地判决奇偶校验位所映射到的副载波。

此外,在奇偶校验位被判决所映射到的L个副载波中,选择部件20选择N个副载波(L>N)作为将被排除在发送之外的副载波(它们的发送将被对消)并将这些选出的副载波指示给对消部件24。在该情况下,为了降低OFDM码元的峰值功率,选择部件20基于从调制部件16输入的码元值而参照对消表22并选择其发送将被对消的副载波。稍后将描述对消表22中的具体内容以及选择其发送将被对消的副载波的具体方法。

这里,其发送被对消的副载波不是系统位所映射到的副载波而是奇偶校验位所映射到的副载波的原因如下。也就是说,当利用系统码执行纠错编码时,可以说奇偶校验位具有比系统位更低的重要度。也就是说,在接收OFDM码元的无线电接收设备中,当丢失系统位时,其误码率特性会显著恶化,然而即使丢失了一些奇偶校验位,仍然可保持期望的误码率特性。这得归功于这样的事实,即系统位构成发送位本身,而奇偶校验位却是冗余位。

对消部件24由对消部件24-1到24-K组成。K对应于1个OFDM码元中所包含的多个副载波的数目(这里K=15),且对消部件24-1到24-K分别处理副载波f1到fk。对消部件24-1到24-K的每一个都具有图2所示的配置,并且与选择部件20指示的副载波对应的对消部件将开关接通至B侧。例如,当选择部件20选择副载波f2作为其发送将被对消的副载波时,对消部件24-2就将开关由A侧改变至B侧。当开关连接到B侧时,对于副载波f2,将具有振幅值“0”的信号输入到IFFT部件26,并因此IFFT部件26获得不包含副载波f2的采样值。也就是说,副载波f2的发送被对消了。

IFFT部件26对从对消部件24-1到24-K输入的振幅值为“0”的码元或信号施加快速逆傅立叶变换,以将它们由频域变换至时域,并然后将时域的采样值输入到P/S部件28。如上所述,从对消部件输入与选择部件20选中的副载波对应的振幅值为“0”的信号,而具有码元值“1”或“-1”的信号则从其它对消部件输入,并因此IFFT部件26利用除了选择部件20选中的副载波之外的K-N个副载波而执行IFFT。IFFT部件26获得的采样值被并行输入到P/S部件28。P/S部件28将这些经IFFT处理后的并行采样值变换为串行值。这样,产生了不包含选择部件20所选中的副载波的OFDM码元。

利用在GI部件30添加的保护间隔,OFDM码元在发送RF部件32经过例如上变频的预定无线电处理,并用无线电从天线34发送出去。

然后,将解释用于接收从图1所示的无线电发送设备发送的OFDM码元的无线电接收设备的配置。图3是示出了根据本发明实施例1的无线电接收设备的配置的方框图。图3所示的无线电接收设备包括天线62、接收RF部件64、GI部件66、S/P部件68、快速傅立叶变换(FFT)部件70、对消部件72、功率测量部件74、选择部件76、P/S部件78、解调部件80、S/P部件82、和解码部件84。图3所示的无线电接收设备安装在例如用于移动通信系统的移动台设备上。

在图3所示的无线电接收设备中,从图1所示的无线电发送设备发送的OFDM码元由天线62接收,在接收RF部件64经过例如下变频的预定无线电处理,在GI部件66被剥离保护间隔并输入到S/P部件68。

S/P部件68将从GI部件66串行输入的信号串/并转换位与副载波数目等量的并行信号,并将这些信号输入到FFT部件70中。

FFT部件70对来自S/P部件68的输出信号应用快速傅立叶变换(FFT),将它们从时域变换到频域(即,将这些信号转换为相应副载波的码元),并然后将这些码元输入到对消部件72与功率测量部件74。

功率测量部件74测量每一副载波的接收功率(各副载波f1至fk的接收功率),并将测量结果输入到选择部件76。

在副载波f1至fk中,选择部件76基于来自功率测量部件74的测量结果,而选择将被排除在解调之外的副载波,并将这些选中的副载波指示给对消部件72。更具体地,在副载波f1至fk中,选择部件76选择具有相对小接收功率的N个副载波。这里的数量N就是作为其发送被对消的副载波而由无线电发送设备选择的副载波的数目N,这个值N是预置值。也就是说,无线电发送设备预置其发送将被对消的副载波的数目N,并且选择部件76从最低接收功率中选择N个副载波,作为将被排除在解调之外的副载波。这允许无线电接收设备选择发送对消的副载波,而无需从无线电发送设备向无线电接收设备单独发送其发送将被对消的副载波的位置信息,并由此防止由发送位置信息引起的发送效率恶化。

该对消部件72由对消部件72-2至72-K组成。K对应于1个OFDM码元中包括的多个副载波的数量(这里K=15),且对消部件72-1到72-K分别对应于副载波f1到fk。每个对消部件72-1到72-K均具有图4所示的配置,并且与选择部件76所指示的副载波相对应的对消部件将开关接通至B侧。例如,当选择部件76选择了副载波f2作为将被排除在解调之外的副载波时,对消部件72-2就将开关从A侧改变到B侧。随着开关从A侧改变到B侧,对于副载波f2,振幅值为“0”的信号经由P/S部件78被输入到解调部件80。通过这种方式,副载波f2的解调在解调部件80处被对消。

P/S部件78将从对消部件72-1到72-K并行输入的振幅值为“0”的码元或信号转换为串行信号,并将其输入至解调部件80。

解调部件80对输入的码元进行BPSK解调,并将它们输入到S/P部件82。如果输入码元为“1”,解调部件80就将其解调为位“0”,并且如果输入码元为“-1”,解调部件80就将其解调为位“1”。此外,对于振幅值为“0”的信号,解调部件80就将其视作位“0”并将其输入到S/P部件82。这使获得系统位S以及奇偶校验位P1和P2成为可能。被无线电发送设备对消其发送的奇偶校验位就变成了位“0”。

S/P部件82将按顺序输入的位S、P1、与P2转换为并行位,并将这些位输入到解码部件84。

解码部件84利用该输入位执行例如turbo解码的纠错解码。这样,获得了接收数据(位串)。

然后,将利用图5到图9来解释图1中的无线电发送设备与图3中的无线电接收设备。

如图5所示,举例说明,1个OFDM码元由K=15个副载波f1至f15组成。在如上所述R=1/3的情况下,预先知道位S被映射到副载波f1,位P1被映射到f2,位P2被映射到f3;位S被映射到f4,位P1被映射到f5,位P2被映射到f6,……,位S被映射到f13,位P1被映射到f14,位P2被映射到f15。在副载波f1到f15中,无线电发送设备将奇偶校验位所映射到的副载波f2、f3、f5、f6、f8、f9、f11、f12、f14和f15用作发送对消的候选者。当丢失所有奇偶校验位时,纠错编码就变得毫无意义了,并因此仅对消多个奇偶校验位中的一些的发送。这里,在奇偶校验位所映射到的L=10个副载波中,对消了N=5个副载波的发送。该数字N是预置值。通过该发送对消,编码率成为R=1/2。

将如下选择其发送将被对消的五个副载波。图6是示出了映射到副载波f1到f15的位值的图案(即,调制码元可能采用的值的图案)和作为其发送将被对消的副载波而选择的副载波的选择图案之间的对应关系的对消表。由于1个OFDM码元由15个副载波组成,因此共有215=32768种位值图案。该表为图案1到32768预置了其发送将被对消的副载波。这种设置是基于从奇偶校验位的值以及各副载波之间的相位关系而预知的峰值功率的振幅而作出的。也就是说,对于图案1到32768,从其发送将被对消的10C5种组合的副载波中,预置其峰值功率成为最小的选择图案。然后,无线电发送设备基于映射到副载波f1到f15的位值而参照图6所示的对消表,并判决其发送将被对消的副载波。举例说明,当位值为图案5时,如果对消了奇偶校验位所映射到的副载波f2、f3、f5、f6、f8、f9、f11、f12、f14和f15之中的副载波f2、f6、f8、f12及f14的发送,该图案的峰值功率就成为10C5种选择图案中的最小一个。当位值为图案5时,发送对消后的副载波如图7如示。因此,无线电发送设备将由K-N=10个副载波f1、f3、f4、f5、f7、f9、f10、f11、f13和f15组成的一个OFDM码元发送到无线电接收设备。

由无线电接收设备接收的OFDM码元的各个副载波的接收功率如图8如示。由于在无线电发送设备对消了副载波f2、f6、f8、f12与f14的发送,因此它们的接收功率就小于其它副载波的接收功率。为了按照接收功率的升序将N=5个副载波设置为排除在解调之外的副载波,无线电接收设备将它们的振幅值设为“0”。结果,出现如图9如示的副载波。因此,无线电接收设备获得作为位“0”的P1、P2、P1、P2和P1,它们应该最初被映射到副载波f2、f6、f8、f12和f14并发送。

由此,本实施例从仅由奇偶校验位组成的码元所映射到的副载波中选择其发送将被对消的副载波。此外,将其峰值功率成为最小的副载波的组合判决为其发送将被对消的副载波的组合。因此,根据该实施例,可能降低峰值功率,同时抑制误码率特性的恶化。此外,不单独发送其发送被对消的副载波的位置信息,并因此可能防止因发送位置信息而引起的发送效率降低。

(实施例2)

根据本实施例的无线电发送设备仅当OFDM码元的峰值功率达到或超过阈值时,才执行发送对消。换句话说,当峰值功率低于该阈值时,所有K=15个副载波用于产生一个OFDM码元,而无需发送对消。此外,尝试其发送将被对消的副载波的所有组合图案,并选择与最小峰值功率对应的图案。

图10是示出了根据本发明实施例2的无线电发送设备的配置的方框图。在图10中,与实施例1(图1)相同的部件被分配相同的附图标记,并将省略对其的解释。

在图10所示的无线电发送设备中,缓冲器36以OFDM码元为单位而存储从调制部件16输入的码元。如果组成1个OFDM码元的副载波数量为K=15,则缓冲器36以15个副载波为一组来存储码元。峰值功率检测部件40对从P/S部件28输入的OFDM码元的峰值功率进行检测。所检测的峰值功率值被输入到选择部件20。此外,缓冲器38存储从P/S部件28输入的OFDM码元。与实施例1的情况一样,当对消了奇偶校验位所映射到的L=10个副载波中的L=5个副载波的发送时,选择部件20存储其发送将被对消的副载波的10C5种选择图案。

然后,将解释图10所示的无线电发送设备的操作。首先,图2所示对消部件24-1至24-K的所有开关都连接到A侧。因此,峰值功率检测部件40检测利用所有K=15个副载波而产生的OFDM码元的峰值功率。当检测的峰值功率比阈值低时,选择部件20命令缓冲器38输出该OFDM码元。因此,当OFDM码元的峰值功率低于该阈值时,将不包含其发送被对消的副载波的OFDM码元发送到无线电接收设备。

另一方面,当如图11所示该检测的峰值功率达到或超出阈值时,选择部件20指示缓冲器36输出码元串。缓冲器36每1个OFDM码元将相同码元串输入到S/P部件1810C5次。此外,仅当检测的峰值功率达到或超出阈值时,选择部件20才从判决的奇偶校验位所映射到的L=10个副载波中选出N=5个副载波作为其发送将被对消的副载波,并将该选择的副载波指示给对消部件24。对所有10C5个选择图案执行该选择。然后,每当选择部件20执行选择处理时,以不同选择图案对消其发送的OFDM码元被存储在缓冲器38中,并由峰值功率检测部件40检测该峰值功率。因此,缓冲器38存储10C5个OFDM码元,并且峰值功率检测部件40检测10C5个OFDM码元的峰值功率。于是,选择部件20从10C5个OFDM码元中选出峰值功率最小的OFDM码元,并命令缓冲器38将选中的OFDM码元输出。这样,峰值功率低于阈值并且峰值功率最小的OFDM码元就被发送到无线电接收设备。

在该实施例中,取代从上述10C5个选择图案中选择具有最小功率的图案,也可能改编该实施例,使得逐个检测10C5个选择图案的峰值功率,并当峰值功率低于阈值时,发送OFDM码元。通过这样做,峰值功率没有必要成为最小的,只要使峰值功率明确地小于阈值即可。因此,当仅要求峰值功率比阈值低时,这样的改编使得可能降低进行发送对消与峰值功率降低所需的处理量。

如上所述,除了要完成与实施例1相同的操作及达到相同的效果外,本实施例仅当OFDM码元的峰值功率达到或超出阈值时,才对消发送,并从而可以省略不必要的发送对消,并因此当降低峰值功率时,进一步抑制误码率特性的恶化。

(实施例3)

根据本实施例的无线电发送设备保持要发送的副载波的总发送功率为恒定。

图12是示出了根据本发明具体实施例3的无线电发送设备的配置的方框图。应注意在图12中,与实施例1(图1)相同的部件被分配相同的附图标记,并省略对其的解释。

选择部件20将作为其发送将被对消的副载波而选择的N个副载波指示给对消部件24与功率控制部件42。

功率控制部件42由功率控制部件42-1到42-K组成。这里的K等于1个OFDM码元所包含的多个副载波的数目,且功率控制部件42-1到42-K分别对应于副载波f1到fk。功率控制部件42将与其发送被对消的发送功率分配到其发送没有被对消的副载波。也就是说,因选择部件20选中的副载波的发送被对消而降低的发送功率被分配到,除了其发送将被对消的副载波之外的副载波。如下更具体地执行这种分配。

当选择部件20从1个OFDM码元中包括的K个副载波中选出N个副载波作为其发送将被对消的副载波时,功率控制部件42-1至42-K中的与选择部件20指示的N个副载波对应的功率控制部件分别将不是其发送将被对消的副载波的K-N个副载波(即,被发送的副载波)的发送功率乘以K/(K-N)。举例说明,当K=15且N=5时,与没有执行发送对消的情况相比,N=5个副载波的发送功率被乘以1.5。通过这种方法,有可能将与由于副载波的发送对消引起的发送功率减小对应的发送功率平均分配到不是其发送将被对消的副载波的副载波。

因此,该实施例将与由于副载波的发送对消引起的发送功率减小对应的发送功率分配到不是其发送将被对消的副载波的副载波,并从而可以降低峰值功率,同时保持OFDM码元的发送功率恒定。

(实施例4)

该实施例将描述调制部件16将两个或更多的位调制到1个码元中的情况。

图13是示出了根据本发明实施例4的无线电发送设备的配置的方框图。应注意在图13中,与实施例1(图1)相同的部件被分配相同的附图标记,并省略对其的解释。

调制部件16对从输入次序控制部件46输入的位执行QPSK调制。也就是说,调制部件16对依次输入的每2位生成1个码元。

P/S部件14按图14A所示次序输出位S、P1、P2。因此,这一时间点的编码率为R=1/3。

现在举例说明,假设删余部件44执行删余处理以将编码率改变为R=1/2。该情况下,删余部件44删余了奇偶校验位。为了将编码率设置为R=1/2,有必要使删余部件44每1个系统位就输出1个奇偶校验位。因此,删余部件44就对P1和P2交替进行删余。结果,从删余部件44输出的位串如图14B所示。这一位串被输入到输入次序控制部件46。

这里,调制部件16对依次输入的每2位生成1个码元(执行QPSK调制),并因此如果图14B所示的位串按其原始次序输入到调制部件16,就不产生仅包含奇偶校验位的码元,这使得不可能选择其发送将被对消的副载波。

因此,输入次序控制部件46将图14B所示的位串重新安排为图14C所示的位串。也就是说,输入次序控制部件46控制从删余部件44输入的系统位与奇偶校验位输入到调制部件16的次序。更具体地,该输入次序控制部件46以这种方式进行控制,使得两个奇偶校验位被依次输入到调制部件16。这样,在调制部件16中,就产生仅由奇偶校验位组成的码元。

当如图14C所示重新排列时,产生由S与S组成的码元以及由P2与P1组成的码元,并且相应码元被映射到副载波f1到f15。在这些码元所映射到的副载波中,选择部件20选择由P2与P1组成的码元,即仅由奇偶校验位组成的码元所映射到的副载波,作为发送对消的候选者(图15)。然后,选择部件20仅对消这些候选者中的一些副载波的发送。在图15中,在由P2与P1组成的码元所映射到的副载波f2、f4、f6、f8、f10、f12及f14中,副载波f4、f10和f12的发送被对消。这使得编码率为R=2/3。

该实施例已解释了QPSK调制作为示例,但是该实施例也可应用到将三个或更多的位调制到一个码元中的调制方案(8PSK、16QAM、64QAM等)。例如,在调制方案是16QAM的情况下,输入次序控制部件46以这种方式进行控制,使得四个奇偶校验位被依次输入到调制部件16。

如上所述,即使当调制部件将两个或更多的位调制到1个码元中时,该具体实施例也能明确地产生仅承载奇偶校验位的副载波,并能选择其发送将被对消的副载波。

(实施例5)

根据该实施例的无线电发送设备从仅由奇偶校验位组成的码元所映射到的副载波中选择无线电接收设备的接收功率降到或低于阈值的副载波,作为发送将被对消的副载波。

图16是示出了根据本发明实施例5的无线电发送设备的配置的方框图。应注意在图16中,与实施例1(图1)相同的部件被分配相同的附图标记,并省略对其的解释。此外,图17是示出了根据本发明实施例5的无线电接收设备的配置的方框图。应注意在图17中,与实施例1(图3)相同的部件被分配相同的附图标记,并省略对其的解释。。

在图16所示的无线电发送设备中,导频信号由调制部件16进行调制,经过S/P部件18和对消部件24,并映射到构成1个OFDM码元的副载波f1到f15。然后,由导频信号组成的OFDM码元被发送到图17所示的无线电接收设备。

在图17所示的无线电接收设备中,功率测量部件74对由导频信号组成的OFDM码元的副载波f1到f15的接收功率进行测量。然后,功率测量部件74将用于将每一副载波的接收功率值通知给无线电发送设备的通知信息输入到调制部件86。这一通知信息由调制部件86进行调制,由发送RF部件88进行上变频,并从天线62发送给无线电发送设备。

在图16所示的无线电发送设备中,通过天线34接收的通知信息由接收RF部件48进行下变频,并由解调部件50进行解调。该解调的通知信息被输入到选择部件20。选择部件20将副载波f1到f15的接收功率值与阈值作比较,并从仅由奇偶校验位组成的码元所映射到的副载波中选择其接收功率值等于或低于阈值的副载波,作为发送将被对消的副载波。

例如,如图18如示,当奇偶校验位P1与P2所映射到的副载波f2、f3、f5、f6、f8、f9、f11、f12、f14和f15中的副载波f5、f9、f11与f12的接收功率降低到或低于阈值时,选择部件20选中这四个副载波,作为发送将被对消的副载波。

这样,该实施例不发送仅由奇偶校验位组成的码元所映射到的副载波中的无线电接收设备的接收功率降到或低于阈值的副载波,并由此可以防止不期望在无线电接收设备被正确接收的奇偶校验位的不必要发送。

(实施例6)

ARQ,尤其是H-ARQ,是一项用于通过在每次执行重发时合并接收信号(码元),来改善误码率的方案。为了改善误码率,H-ARQ需要无线电接收设备来合并已接收的信号。但是,当存在其发送将被对消的副载波时,不发送映射到这些副载波的码元,并且如果在重发时也对消了与初始发送时相同的副载波的发送,那么在重发时也不发送映射到这些副载波的码元。这意味着存在不能在无线电接收设备中合并的码元,而且无论执行多少次重发,误码率也一点不会得到改善。因此,根据该实施例的无线电发送设备从仅由奇偶校验位组成的码元映射到的副载波中选择初始发送时和重发时不同的副载波,作为在执行H-ARQ(混合自动重发请求)的通信系统中的其发送将被对消的副载波。

图19是示出了根据本发明实施例6的无线电接收设备的配置的方框图。在图19中,与实施例1(图3)相同的部件被分配相同的附图标记,并省略对其的解释。此外,图20是示出了根据本发明实施例6的无线电发送设备的配置的方框图。在图20中,与实施例1(图1)相同的部件被分配相同的附图标记,并省略对其的解释。

在图19所示的无线电接收设备中,由解码部件84获得的解码结果(位串)被输入到误差检测部件90。误差检测部件90对输入的解码结果执行例如CRC(循环冗余校验)的误差检测。然后,误差检测部件90根据该误差检测结果生成ACK(肯定确认:肯定响应)或NACK(否定确认:否定响应),并将其输入到发送RF部件92。当解码结果是完全没有误差的OK时,误差检测部件90就生成ACK作为误差检测的响应信号;或者当解码结果是有一些误差的NG时,就生成NACK作为误差检测的响应信号,并将其输入到发送部件92。发送部件92通过天线62将ACK/NACK发送到图20所示的无线电发送设备。

在图20所示的无线电发送设备中,从图19所示的无线电接收设备发送的包含有ACK或NACK的信号由天线34接收,在接收RF部件52经过例如下变频的预定无线电处理,并输入到ACK/NACK检测部件54。ACK/NACK检测部件54检测来自输入信号的ACK或NACK,并将其输入到重发控制部件56。由调制部件16生成的码元被输入到重发控制部件56。重发控制部件56存储从调制部件16输入的码元,并同时将这些码元输入到S/P部件18与选择部件20。然后,当从ACK/NACK检测部件54输入NACK时,重发控制部件56重发对应于该NACK的码元。该重发的码元也输入到S/P部件18和选择部件20。

在初始发送时,选择部件20执行与实施例1中相同的操作,并将选择结果存储在选择结果存储部件58中。然后,在第一次重发时,选择部件20参照在选择结果存储部件58中存储的初始发送时的选择结果,并选择与初始发送时的副载波不同的副载波,作为将被排除在发送之外的副载波。这一选择结果也被存储在选择结果存储部件58中。此外,在第二次重发时,选择部件20参照在选择结果存储部件58中存储的初始发送时的选择结果和第一次重发时的选择结果,并选择与初始发送时和第一次重发时的副载波不同的副载波,作为将被排除在发送之外的副载波。也就是说,在重发时被选择部件20作为其发送将被对消的副载波而选择的副载波,是从不是已被选择的副载波的副载波中选出的。换句话说,重发时作为其发送将被对消的副载波而选择的副载波,是仅从重发之前已经被发送的副载波中选出的。下面利用图21到图23更具体地进行解释。图21示出了初始发送的情况,图22示出了第一次重发的情况,而图23示出了第二次重发的情况。

在图21到图23中,在副载波f1到f15中,奇偶校验位所映射到的副载波f2、f3、f5、f6、f8、f9、f11、f12、f14和f15被指定为发送对消的候选者,并在这N=10个发送对消的候选者中,N=3个副载波的发送被对消。如下选择这三个发送将被对消的副载波。那就是,当在初始发送时选择f2、f6与f8作为发送将被对消的副载波(图21)时,如果在第一次重发时又选择f2、f6与f8,这意味着相同的副载波将再次不被发送。因此,在第一次重发时,与初始发送时的副载波不同的副载波f3、f11与f14的发送被对消了(图22)。所有这些副载波f3、f11与f14是在初始发送时已被发送过的副载波。此外,在第二次重发时,与初始发送时和第一次重发时的副载波不同的副载波f5、f9与f12的发送被对消了(图23)。因此,选择部件20在初始发送时和重发时选择其发送将被对消的不同副载波,并且在重发时,仅从初始发送时已被发送的副载波中选择其发送将被对消的副载波。此外,当执行多次重发时,只要保持其发送仍未被对消的发送对消的候选者,就从其发送仍未被对消的副载波中选择其发送将被对消的副载波。

因此,该实施例在初始发送时以及重发时选择不同的副载波作为其发送将被对消的副载波,并且在重发时,仅从初始发送时已被发送的副载波中选择其发送将被对消的副载波,并从而防止重发时出现未发送过的副载波,并可靠改善每次重发的误码率特性。

如上如述,本发明允许执行纠错编码的无线电通信系统抑制其误码率特性的恶化,并同时降低峰值功率。

本申请基于2002年9月12日提交的日本专利申请第2002-266396号,其全部内容通过引用而特别合并在其中。

产业上的可利用性

本发明最好可应用到用于移动通信系统的无线电通信终端设备和无线电通信基站设备等。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号