首页> 中国专利> 光学拾取致动器、光学拾取器、光学记录和/或再现装置

光学拾取致动器、光学拾取器、光学记录和/或再现装置

摘要

一种光学拾取致动器,包括:位于基座一侧的支承件;透镜支承件,其上安装有物镜;具有聚焦线圈、跟踪线圈和倾斜线圈的磁性驱动部分,以及用于在聚集方向、跟踪方向和倾斜方向上驱动透镜支承件的磁体;至少一个用于保持透镜支承件的支持部件,该支持部件的一端与所述支承件相结合,另一端与所述透镜支承件相结合;和与支持部件分开安装的导线,提供电流给聚焦线圈、跟踪线圈和倾斜线圈。

著录项

  • 公开/公告号CN1577533A

    专利类型发明专利

  • 公开/公告日2005-02-09

    原文格式PDF

  • 申请/专利权人 三星电子株式会社;

    申请/专利号CN200410068437.5

  • 发明设计人 宋秉崙;姜亨宙;

    申请日2004-07-28

  • 分类号G11B7/09;

  • 代理机构11105 北京市柳沈律师事务所;

  • 代理人李瑞海;王景刚

  • 地址 韩国京畿道

  • 入库时间 2023-12-17 15:51:36

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-08

    未缴年费专利权终止 IPC(主分类):G11B7/09 授权公告日:20080604 终止日期:20160728 申请日:20040728

    专利权的终止

  • 2014-08-13

    专利权的转移 IPC(主分类):G11B7/09 变更前: 变更后: 登记生效日:20140723 申请日:20040728

    专利申请权、专利权的转移

  • 2008-06-04

    授权

    授权

  • 2006-09-06

    实质审查的生效

    实质审查的生效

  • 2005-02-09

    公开

    公开

说明书

本申请要求在韩国知识产权局提交的申请日为2003年7月28日,专利申请号为2003-52133的在先申请的优先权,该申请所公开的内容在此合并作为参考。

技术领域

本发明涉及一种光学拾取致动器,该致动器能以与物镜的光轴相同的驱动轴线为中心地被驱动,并且通过防止由泄漏磁通量引起的附属振动(subsidiary resonance)提高了敏感度,以及一种光学拾取器,和使用此光学拾取器的光学记录和/或再现装置。

背景技术

通常,光学拾取器是使用于光学记录和/或再现装置中的设备,它沿着作为光记录介质的光盘径向运动,并且以非接触的方式执行对光盘上信息的记录和/或再现。

光学拾取器需要一个光学拾取致动器,其中此致动器在光盘的跟踪和聚焦方向上驱动物镜,使得从光源中发射的光在光盘上适当的位置处形成一个光点。但是,为了实现使诸如笔记本的便携式个人电脑(PC)薄而轻的期望,使得在这样的电脑中有效空间受到限制。因而,在便携式PC中应用的致动器必须做得小巧。

在光学拾取器中使用反射镜,以便使光线指向物镜。由于致动器必须做的小巧,因此一种具有不同于物镜光轴的驱动轴线的非对称致动器已经被提出,用来减小光学拾取器中物镜和反射镜的距离。其中的一个例子在美国专利US5,684,645中揭示。

参考图1和2,支承件14位于传统光学拾取致动器10的一侧,聚焦线圈18沿着透镜支承件12的外围缠绕,第一调节凹槽16a位于透镜支承件12的中央,一对跟踪线圈15缠绕在透镜支承件12的一侧。此外,第二调节凹槽16b位于移动部17内,其中在该移动部17上安装一物镜11,并且透镜支承件12设置于第二调节凹槽16b内。在此,一个U形磁轭31插入到第一和第二调节凹槽16a和16b中,并且磁铁32面向所述成对的跟踪线圈15固定在U形磁轭31的一侧。

一对悬挂线(suspensions)13a和13b中每个的一端固定在支承件14上,其中每个悬挂线的另一端固定在移动部17上。移动部17被这对悬挂线13a和13b支持,并且移动部17和透镜支承件12互相结合以便一起移动。

如果电流提供给聚焦线圈18和跟踪线圈15,那么通过磁铁32与聚焦线圈18或跟踪线圈15之间的电磁相互作用而产生的力作用在线圈18和15上,使移动部17移动。其中提供给聚焦线圈18和跟踪线圈15力的方向遵循弗莱明左手法则。

因此,如果电磁力通过磁铁32与聚焦线圈18或跟踪线圈15之间的电磁作用而作用于线圈18和15,那么透镜支承件12沿着聚焦方向F或跟踪方向T移动。像这样,移动部17和透镜支承件12一起移动,同时,物镜11移动,并且形成在光盘(未示出)上的光点的位置被调节。

图3A和3B示意性示出聚焦线圈18和磁铁32之间的电磁作用。在此,聚焦线圈18包括放置在U形磁轭31内部的部分18a和放置在U形磁轭31外部的部分18b。然而,电磁力通过聚焦线圈18的部分18a和磁铁32之间的相互作用提供给放置在磁轭31内部的聚焦线圈18的部分18a。另一方面,放置在磁轭31外部的聚焦线圈18的部分18b被磁轭31挡住,因此不受磁铁32的影响。但事实上,如图3A的虚线所示,在磁铁32中所产生的磁通偏离磁铁32的中心并且广泛地在磁铁32的边缘处扩展。于是,磁通偏离磁轭31并泄漏到外面。

放置在磁轭31外部的聚焦线圈18的部分18b受泄漏的磁通量的影响。图3A中聚焦线圈18上的箭头表示,依照弗莱明左手法则,通过磁通量的分布施加到聚焦线圈18上的力的大小和方向。这样,力通过磁通量泄漏施加给放置在磁轭31外部的聚焦线圈18的部分18b,这导致施加到聚焦线圈18上的力的不均匀分布。换句话说,如图3B所示,施加到放置在磁轭31内部的聚焦线圈18的部分18a上的力Fu和施加到放置在磁轭31外部的聚焦线圈18的部分18b上的力Fd是不均匀的,导致形成一种纵摇模式(pitching mode),其中透镜支承件12和移动部17前后振动。即,透镜支承件12和移动部17沿着图3B中箭头P的方向振动。

此外,放置在磁轭31外部的聚焦线圈18的部分18b是不用于聚焦操作的线圈,并且由于质量上的增加和缠绕线圈的电阻,致动器的敏感度降低。因此,在由盘的高速度引起的高速跟随能力中出现问题。

由于在由一对跟踪线圈15引起的沿跟踪方向T的移动中,跟踪线圈15的移动重心H不同于跟踪线圈15的质量重心G,所以横摇模式(rollingmode)形成。如图4A所示,当透镜支承件12停止时,致动器10的质量重心G和透镜支承件12的移动重心H相同。图4A中的箭头表示通过磁体32应用于跟踪线圈15的力的大小和方向。应用于跟踪线圈15的力的大小取决于电流的大小和通过跟踪线圈15的磁通量。当电流恒定时,应用于跟踪线圈15的力的大小仅仅取决于磁通量的大小。磁铁32中心的磁通量最大,并且随着接近磁铁32的边缘而逐渐减小。

如图4A所示,当跟踪线圈15在中央位置时,磁通量关于跟踪线圈15成对称分布。这样,跟踪线圈15的质量重心G和跟踪线圈15的移动重心H相同。

但是,如图4B所示,如果透镜支承件12通过聚焦线圈18向上聚焦,通过磁铁32应用于跟踪线圈15的力偏转至跟踪线圈15的下部。因此,由于透镜支承件12向下方向的跟踪力大于透镜支承件12向上方向的跟踪力,所以在箭头R1方向上产生旋转力矩。

另一方面,如图4C所示,如果透镜支承件12通过聚焦线圈18向下聚焦,那么通过磁铁32应用于跟踪线圈15的力就会偏转至跟踪线圈15的上部。因此,由于透镜支承件12向上方向的跟踪力大于透镜支承件12向下方向的跟踪力,所以在箭头R2的方向上产生旋转力矩。

结果,如图4D所示,由于根据透镜支承件12的聚焦方向跟踪线圈15的移动中心H和质量重心G各不相同,所以在箭头R1和R2的方向上形成横摇模式(rolling mode)。

旋转振动模式,例如纵摇和横摇模式,在聚焦和跟踪操作期间,影响基本频率特性的相位和移位,因此,光信号减小。因此当通过磁铁32的尺寸的加大而增加磁通量密度来提高AC敏感度时,会增加泄漏磁通量,产生附属振动(subsidiary resonance),并且限制磁通密度的增加。进而,在高速度和高密度的光记录和/或再现装置中,经常产生纵摇模式和横摇模式。因此,需要一种用于光学记录和/或再现装置的高速光学拾取致动器。

在倾斜驱动的情况下,除了聚焦驱动和跟踪驱动,悬挂线(suspensions)的数目最少为6。在一个狭窄的空间内执行对上述悬挂线的焊接是非常困难的,而且错误率很高。而且,如果电流应用于悬挂线,那么就会在焊接的部分产生热量,导致故障。

发明内容

本发明的实施例提供了一种光学拾取致动器,其中物镜的光轴和磁性驱动部分的驱动轴线相同,并且聚焦线圈、跟踪线圈和倾斜线圈被对称地排列,因此减小了附属振动(subsidiary resonance)。本发明的实施例还提供了一种光学拾取器,和使用此光学拾取器的光学记录和/或再现装置。

本发明的实施例还提供了一种光学拾取致动器,它具有小尺寸以便不需要改变外围系统结构就能与之结合并且具有高灵敏度。本发明的实施例还提供了一种光学拾取器,和使用此光学拾取器的光学记录和/或再现装置。

根据本发明的一方面,提供了一种光学拾取致动器。该光学拾取致动器包括:位于基座一侧的支承件;安装有物镜的透镜支承件;具有聚焦线圈、跟踪线圈和倾斜线圈,以及用于在聚焦、跟踪和倾斜方向上驱动透镜支承件的磁铁的磁性驱动部分;至少一个用于支持透镜支承件的支持部件,其中支持部件的一端和支承件结合,其另一端与透镜支承件结合;与支持部件分开安装的导线,以便提供电流给聚焦线圈、跟踪线圈和倾斜线圈。

根据本发明的一方面,透镜支承件的形状近似为菱形。

根据本发明的一方面,聚焦线圈位于透镜支承件周围,跟踪线圈倾斜于磁铁放置,并且倾斜线圈关于跟踪方向对称地放置在透镜支承件的第一表面处。

根据本发明的一方面,导线从聚焦线圈、跟踪线圈和倾斜线圈中引出,并且与驱动集成电路连接。

根据本发明的一方面,磁铁安装在基座上,该基座位于从把光传送到物镜的光学系统发射的光前进的路径的第一方向上。

根据本发明的一方面,传送光到物镜上的光学系统关于透镜支承件倾斜放置,透镜支承件具有倾斜部,以防止从光学系统发射出的光的光路被阻断。

根据本发明的另一方面,提供了一种光学拾取器,该光学拾取器以在盘片的径向上可移动的方式被安装,并且包括具有用来记录和/或再现光盘上信息的物镜的光学系统和控制物镜的聚焦、跟踪、倾斜伺服的光学拾取致动器。该光学拾取致动器包括:位于基座一侧的支承件;安装有物镜的透镜支承件;具有聚焦线圈、跟踪线圈和倾斜线圈,以及用于在聚焦、跟踪和倾斜方向上驱动透镜支承件的磁铁的磁性驱动部分;至少一个用于支持透镜支承件的支持部件,其中支持部件的一端和支承件结合,其另一端和透镜支承件结合;与支持部件分开安装的导线,以便提供电流给聚焦线圈、跟踪线圈和倾斜线圈。

根据本发明的另一方面,提供了一种光学记录和/或再现装置,用来记录和/或再现光盘上信息,该光学记录和/或再现装置包括:物镜;安装有物镜的透镜支承件;和用来移动透镜支承件的光学拾取致动器。光学拾取致动器包括位于基座一侧的支承件;具有聚焦线圈、跟踪线圈和倾斜线圈,以及用与在聚焦、跟踪和倾斜方向上驱动透镜支承件的磁铁的磁性驱动部分;至少一个用来支持透镜支承件的支持部件,其中支持部件的一端和支承件结合,其另一端和透镜支承件结合;与支持部件分开安装的导线,以便提供电流给聚焦线圈、跟踪线圈和倾斜线圈。

本发明另外的方面和/或优点将会在下面的描述中提到,并且部分地,将会在描述中显而易见,或者可以通过本发明的实践获得。

附图说明

结合附图理解,本发明和/或其它方面以及优点将会从下面的具体实施方式的描述中变得显而易见和更加容易理解,其中:

图1是传统的光学拾取致动器的透视图;

图2是示意性表示图1中传统光学拾取致动器的剖面图;

图3A和3B以示意性示出在传统光学拾取致动器中磁通量的分布和该致动器的旋转力矩;

图4A至4D示出在传统光学拾取致动器中由跟踪线圈产生的横摇模式(rolling mode);

图5A是根据本发明的具体实施方式的光学拾取致动器的分解透视图;

图5B是图5A中的光学拾取致动器的底侧示图;

图5C示出了图5A中的光学拾取致动器的改进实例;

图6是图5A中光学拾取致动器的剖面图;

图7示出了图5A中的光学拾取致动器和光学系统之间的配置关系;

图8示出了图5A中的光学拾取致动器的另外的改进实例;和

图9以示意性示出应用了图5A中的光学拾取致动器的光学记录/再现装置。

具体实施方式

下面将详细地参考本发明的具体实施方式,其中的实施例将在附图中加以说明,其中相同附图标记始终代表相同的元件。下面通过相关附图来描述该发明的具体实施方式。

参考图5A和5B,根据本发明的一具体实施方式的光学拾取致动器包括其中安装物镜110的透镜支承件120,用来在聚焦、跟踪和倾斜方向上驱动透镜支承件120的磁性驱动部分,和支持透镜支承件的支持部件140。

根据一方面,在该光学拾取致动器中,物镜110的光轴和透镜支承件120的驱动轴相同。

磁性驱动部分包括聚焦线圈FC,跟踪线圈TC,和倾斜线圈TiC,这些线圈关于物镜110以及第一、第二磁铁136、137对称排列。透镜支承件120位于第一、第二磁铁136、137之间。

聚焦线圈FC缠绕在透镜支承件120的周围,跟踪线圈TC位于第一、第二磁铁136、137以及透镜支承件120之间。

根据一个实施方式,跟踪线圈TC是一个缠绕成矩形的线圈。一对跟踪线圈TC位于第一磁铁136和透镜支承件120之间,一对跟踪线圈TC位于第二磁铁137和透镜支承件120之间。只有矩形形状的每一个跟踪线圈TC的一侧处的线圈作为有效线圈部分TC-A。有效线圈部分TC-A代表了对通过与一个磁铁的交互作用而产生电磁力有贡献的线圈。与有效线圈部分TC-A相对的线圈部分TC-B是无效线圈部分,并且对产生磁力没有贡献。无效线圈部分TC-B没有面向第一和第二磁铁136和137,因此,不产生与第一和第二磁铁136和137的相互作用。

根据一个实施方式,在跟踪线圈TC中,其中一个磁铁中和无效线圈部分TC-B之间的距离大于该磁铁和有效线圈部分TC-A之间的距离。为了用这种方式定位跟踪线圈TC,根据一个实施方式,每一个跟踪线圈TC是关于相对的磁铁被倾斜放置。这样,由无效线圈部分TC-B引起的影响可以最小化。

倾斜线圈TiC位于透镜支承件120上的相对侧,关于跟踪方向对称安装。根据一个实施方式,图5B示出了其中倾斜线圈TiC缠绕成三角形的一个实例。然而根据另外一个实施方式,如图5C所示,倾斜线圈TiC缠绕成矩形形状。对于倾斜线圈TiC,与第一、第二磁铁136、137相对的线圈部分是有效线圈部分。

透镜支承件120通过聚焦线圈FC、跟踪线圈TC和倾斜线圈TiC与第一、第二磁铁136、137之间各自的相互作用,在聚焦方向F、跟踪方向T和倾斜方向t被驱动。电流应用于聚焦线圈FC、倾斜线圈TiC和跟踪线圈TC中的每一个。

支持透镜支承件120移动的支持部件140的一端连接到透镜支承件120上,并且支持部件140的另一端连接到位于基座100一侧的支承件103上。支持部件140仅仅用来支持透镜支承件120,而不提供电流给透镜支承件120。因此,支持部件140不需要焊接,并且根据一个实施方式,使用粘合剂方便地将该支持部件140连接到透镜支承件120和支承件103上。

用来提供电流给聚焦线圈FC、跟踪线圈TC和倾斜线圈TiC的导线W是直接从线圈中引出来的,并且通过接线连接到驱动IC(集成电路)。导线W用来提供电流给聚焦线圈FC、跟踪线圈TC和倾斜线圈TiC,并且不需要用来支持透镜支承件120。因此,安装导线W变得容易。换句话说,导线W不需要焊接到透镜支承件120上。由此,在安装空间上没有限制,也不会由过载电流产生热量。此外,由于仅仅支持部件140固定在透镜支承件120上,因此致动器变得小巧。即使致动器是超小的,在透镜支承件120上安装支持部件140也不存在空间上的问题。

根据一个实施方式,导线W中的两根用来作为支持部件。换句话说,两根导线W用来给线圈提供电流并支持透镜支承件120。当导线W用作支持部时,在透镜支承件120上必须进行焊接,并且必须安装PCB(印刷电路板)。

第一磁铁136位于基座100上使得入射到物镜110上的光的前进不被干扰。此外,第二磁铁137配置在磁轭138中。特别的,图6示出了根据本发明的致动器和外围光学系统结合的关系。从光源(未示出)发射出的光被反射镜125反射并且入射到物镜110。第一磁铁136没有置于入射到反射镜125上的光的前进路径上,而是第一磁铁置于基座100上,以便防止光路被阻断。

本发明的实施例提供一个对称致动器,使其不必改变该致动器附近的传统光学系统的结构,就能够适合于本发明的对称致动器。一个非对称致动器表示具有与致动器的驱动轴线不同的光学系统光轴的致动器,而一个对称致动器表示与致动器驱动轴线相同的光学系统光轴的致动器。

根据本发明的一个实施例的光学拾取致动器的结构与现有的非对称致动器的结构相似,即将透镜支承件120配置在致动器的前部。由于磁性驱动部分被对称地排列在透镜支承件120的周围,所以光学拾取致动器具有一个对称致动器的结构。

进一步,根据一个实施方式,考虑到与外围的光学系统的结合结构,透镜支承件120还具有倾斜部120a(如图7所示)。例如,透镜支承件120包括位于透镜支承件120四个侧面的倾斜部120a。该倾斜部120a以使透镜支承件120近似为菱形形状的方式形成。当跟踪线圈TC以斜线方向配置在倾斜部120a中时,如图7所示,透镜支承件120能适当地与光学系统150相结合,以使光关于该致动器倾斜地进行传播。使在光记录和/或再现装置中的光学系统具有使光垂直于该致动器入射的结构和使光倾斜于该致动器入射的结构。图7中表示了一种结构,其中光学系统与该致动器倾斜地配置,光线的轮廓如S所示。

如图7所示,具有一个使光倾斜于该致动器入射的结构的光学系统适当地与该致动器相结合,其中在该致动器中,透镜支承件120的前部具有一近似三角形的结构。

因此,透镜支承件120近似于菱形,以致透镜支承件120的前部具有近似三角形的结构。因此,根据本发明的光学拾取致动器具有一个对称的结构,并且与光学系统结合,而不改变现有光学系统的结构。

此外,磁性驱动部分倾斜于光学拾取致动器的前部配置,以致在磁性驱动部分和支承件103之间形成一个空闲空间148,并且驱动IC或者其他元件可以安装在该空闲空间148中。

其次,在图8中表示根据本发明的一实施方式的光学拾取致动器的另一个改进实施例。使用与图5A和图5B相同的附图标记的图8的元件具有相同的功能,因此就不再赘述。

在如图5A、5B和5C中描述的光学拾取致动器中,电流独立应用于聚焦线圈FC和倾斜线圈TiC。当该电流独立应用于每一个线圈时,用于聚焦驱动的电流和用于倾斜驱动的电流分别应用于聚焦线圈FC和倾斜线圈TiC。聚焦线圈FC和倾斜线圈TiC可以一起使用。当倾斜聚焦线圈以图8所示的方式使用时,跟踪线圈TC倾斜于透镜支承件120的四个侧面配置,并且倾斜聚焦线圈FTiC配置在透镜支承件120的下部,并且一个接一个居于透镜支承件120对称轴线中心的左右两侧上。根据一个实施方式,倾斜聚焦线圈FTiC缠绕成三角形。在另一实施方式中,倾斜聚焦线圈FTiC缠绕成矩形。与第一、第二磁铁136、137相对的线圈部分成为有效线圈。

当使用普通的线圈进行聚焦驱动和倾斜驱动时,用于聚焦驱动的电流和用于倾斜驱动的电流叠加成的一个电流应用于倾斜聚焦线圈FTiC。将具有第一相位的倾斜信号与聚焦信号叠加成的第一信号,和具有不同于第一相位的相位的倾斜信号与聚焦信号叠加成的第二信号被输入到倾斜聚焦线圈FTiC。根据一个实施例,第一与第二信号的相位差为180度。

参照图9所示,在使用根据本发明的一个实施方式的光学拾取致动器的光学记录和/或再现装置中,一用来旋转盘D的芯轴马达180安装在转台203的下面,盘D放置在转台203上,该夹持部位于转台203对面,并通过与转台203相互作用产生的电磁力来夹持盘D。当盘D被芯轴马达180旋转时,光学拾取器200以可沿盘D的径向方向移动的方式安装,并在和/或从盘D上记录和/或再现信息。

芯轴马达180和光学拾取器200被驱动部分210驱动,并且光学拾取器200的聚焦、跟踪和倾斜伺服被控制部分220控制,以对盘D上的信息进行记录和/或再现的操作。光学拾取器200包括一具有物镜110的光学系统和用于在聚焦、跟踪和倾斜方向上驱动该物镜110的光学拾取致动器。

一被光学拾取器200检测的、经光电转换的信号通过驱动部分210输入到控制部分220。驱动部分210控制芯轴马达112的旋转速度,放大输入信号,并且驱动光学拾取器200。控制部分220发出聚焦伺服、跟踪伺服和倾斜伺服的指令,这些指令基于从驱动部分210输入的信号进行调整,以执行光学拾取器200的聚焦伺服、跟踪伺服和倾斜伺服操作。

如上所述,在根据本发明一个实施方式的光学拾取致动器,独立于用于供给线圈电流的导线来提供用于支持透镜支承件的支持部件,这样就不需要进行焊接。即使导线的数量增加,导线也可以被安装而不需要较大的安装空间。因此,该致动器可以制造的小巧,克服了当大量的导线被焊接时所引起的不足。

另外,该光学拾取致动器被对称地配置,以防止由非对称结构引起的附属振动(subsidiary resonance),并获得了该系统的稳定性和高精度控制。磁性驱动部分倾斜于该光学拾取致动器的前部配置,并且透镜支承件的形状近似为菱形,这样就可以使用现有的光学系统而无需改变其结构。

光学拾取器和光记录和/或再现装置使用没有进行结构改变的光学拾取致动器,使得可以使用具有高性能的光学拾取致动器,而不增加由于结构改变而导致的制造成本。尤其是,在笔记本电脑的驱动器中,致动器需要小型化,并且用于执行聚焦控制、跟踪控制和倾斜控制的导线的数量应该至少为6。用于支持透镜支承件的支持部件被独立提供,以使该致动器变得小巧,导线容易安装。

尽管对本发明的几个实施方式进行了描述,但是只要不脱离本发明的实质和精神以及权利要求及其等价物所定义的范围,本领域的技术人员可以在此实施方式中进行修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号