首页> 中国专利> 放射性核素自动化分离系统和方法

放射性核素自动化分离系统和方法

摘要

一种用于从伴生母液中分离出一种基本上不含杂质的子产品溶液的无气体系统,此系统包括泵(16)、数个多通阀(18、20、22)、分离介质(24)和处理器。一根直导管(38)延伸在第二多通阀(20)的第三个端口与第一多通阀(18)之间。处理器被可操作地连接在泵(16)和数个多通阀(18、20、22)上。本发明还描述了一种从伴生母液中分离出一种基本上不含杂质的子产品溶液的方法。

著录项

  • 公开/公告号CN1555285A

    专利类型发明专利

  • 公开/公告日2004-12-15

    原文格式PDF

  • 申请/专利权人 PG研究基金会公司;

    申请/专利号CN02816275.7

  • 申请日2002-06-21

  • 分类号B01D15/08;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人刘元金

  • 地址 美国伊利诺伊州

  • 入库时间 2023-12-17 15:39:00

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-07-08

    专利权有效期届满 IPC(主分类):B01D15/08 专利号:ZL028162757 申请日:20020621 授权公告日:20060607

    专利权的终止

  • 2006-06-07

    授权

    授权

  • 2005-02-16

    实质审查的生效

    实质审查的生效

  • 2004-12-15

    公开

    公开

说明书

发明领域

本发明涉及一种用于分离基本上不含杂质的放射性核素的系统和方法。更具体地,本发明涉及一种用于从含有子放射性核素和母放射性核素的溶液中分离含有子放射性核素的基本上不含杂质的溶液的系统和方法。

发明背景

放射性材料具有多种用途,例如,在放射性诊断和放射性治疗方面的医疗应用。例如,人们已经发现,α和β辐射放射性核素在治疗和根除微观疾病方面有一定的有效性。这样的放射性核素的例子包括,如钇-90、铋-212和铋-213以及铼-188。这种治疗的有效性据信是源于这些元素在衰变时所放射出来的强烈离子辐射所致。

研究已经表明,铅-212、砹-211、铋-212、铋-213以及钇-90在治疗和根除微观癌方面是有效果的。在某些情况下,现有的用以制备这类能够辐射核素的α或β粒子的方法受到了一定的限制,因为,通常情况下,在制备这些粒子时,需要使用粒子加速器或核反应器。此外,放射性核素经常被各种化学物质或放射性化学物质杂质污染,而这些杂质又很难被过滤或从所需核素中分离出去。

研究同时也发现,这些被杂质污染的核素在施药以后不具有所需能够均匀地分布在受影响区域的特性。另外,所需放射性核素原料和母原料释放出有害的辐射,将使用者置于非常危险的环境下。已经有从母体流中分离铋-212和铋-213的传统方法的专利。参见Horwitz等人的美国专利5,854,968和Rotmensch等人的美国专利6,126,909,将这些公开在此引入作为参考。

此外,许多α或β辐射同位素的半衰期较短。例如,铋-213的半衰期为大约45.6分钟,并且最终衰减为稳定的铋-209。因此,在远离粒子加速器或其他粒子源的地方,以及在尽可能靠近临床环境的地方能够制备出所需同位素就显得非常有必要。

也可以将放射性核素用来进行身体成像或放射性治疗的目的,以便能够在早期检查有害疾病的存在,如癌,从而及早进行治疗,这样便会增加成功治愈的机会。放射性核素锝-99m、铊-201、氟-18和铟-111可以用于,如放射性诊断的目的。

某些这些所需放射性核素是从母放射性核素“生长”而来。也就是,母放射性核素被储存一段预定的时间,以便使母体通过衰减产生出所需子放射性核素。这样,就必须把子产物从母体以及任何其他可能存在的污染物中分离出来。典型地,这一过程是在溶液中进行的。

在制备这些物质以及其他放射性核素时,很重要的一点便是必须努力降低操作者以及其他通常在“生长”和分离过程附近的人员暴露在辐射中。虽然子产物可能是α辐射粒子,在这种情况下无需屏蔽,但母放射性核素以及子产物和其他可能存在的放射性核素可能为γ-或β-辐射体。在这种情况下,应该将“生长”和分离系统很好地屏蔽和保护起来。

将对所有人员的辐射降低至最小化的原则为人们所熟知,并被认可为“合理地可接受的低”或ALARA原则。ALARA原则和目的在处理和使用所有放射性原料时需要得到执行。

美国专利6,153,154(‘154专利’)公开了一种从锕-225母液中分离出铋-213的方法。但是,此方法在其他方面中存在许多缺点,包括在分离期间使用气体、珍贵母液的可能损失以及子体纯化度的不足。

因此,就需要有一种能够以现场和屏蔽的方式制备出基本上不含杂质的放射性核素的方法和系统,而且这种方法和系统不存在154专利所具有的某些或所有的缺点。理想地,这种装置能够便携,这样,在无需特殊设施的情况下,可以对病人实施现场施药和治疗。此外,这种系统和方法能够将操作人员在有害辐射下的暴露降低至最小。

化学纯度对于安全和有效的医疗操作非常重要,因为,在使用之前,放射性核素通常与生物定位试剂共轭结合。这些共轭反应依据配位化学原理,其中,放射性核素被螯合至共价键合在生物定位试剂上的配位体上。在化学不纯的试样中,离子杂质的存在有可能干扰共轭反应的进行。例如,如果足够多的锝-99m没有耦合至特定的生物定位试剂上,在目标区域的局部范围内和/或在高自然条件背景下,由于在血池或周围组织中不明确的分布,使得无法得到清晰的影像。

放射性核素纯度的规定源于伴随着长寿命或高能量放射性杂质引入到病人体内而产生的危险性,尤其是,如果当人们对放射性杂质的生物定位和身体清除特性还不了解的时候。放射性核素杂质给病人的健康造成的危险最大,而且,这种杂质是试图防止有害施药以及对病人存在潜在的致命辐射剂量的临床质量控制措施的主要焦点。

用辐射进行疾病治疗已经有较长的历史,现在,大剂量的外部辐射流治疗方法已经让位于更精确的定位释放治疗方法,如放射免疫治疗法(RIT),这种方法是使放射性核素共轭结合至肽、蛋白质或抗体上,也就是选择性地富集在病变位置,从而放射性衰减产生细胞毒素效应。放射免疫治疗法代表了最有选择性地将辐射细胞毒素制剂释放至病变细胞上的方式,并尽可能地减少了对健康组织的影响。(参见Whitlock,Ind.Eng.Chem.Res.(2000),39:3135-3139;Hassfjell等人,Chem.Rev.(2001)51:271-278;和McDevitt等人,科学(2001)294:1537-1540)。

典型地,用于放射免疫治疗法的候选放射性核素的放射性半衰期在30min~数天之间,并具有容许连接到生物定位试剂上的配位化学性以及高线性能量转化率(LEL)。线性能量转化率的定义为:带电粒子在每单位路程中沉积至物质上的能量(参见,Choppin等人,核化学杂志:理论和应用;Pergamon出版社:牛津,1980),而且α粒子线性能量转化率通常比β粒子线性能量转化率大。例如,典型地,具有5~9MeV平均能量的α粒子其在人体组织中能量可及的范围为50~90μm,这与几个细胞的直径相当。具有0.5~2.5MeV能量的较低线性能量转化率β粒子在人体组织中能量可及的范围为10,000μm,这些较低线性能量转化率β粒子的辐射需要在细胞表面多达100,000次衰减,从而提供概率为99.99%的细胞杀死率。但是,对于一个在细胞表面的单一α粒子,当单独的α粒子穿过细胞核时,相当高的线性能量转化率提供20~40%的诱导细胞死亡概率。(参见,Hassfjell等人,Chem.Rev.(2001)101:2019-2036)。

不幸的是,能够产生用于癌症治疗的α和β辐射核素强力细胞毒素制剂的线性能量转化率也可能将许多特别的挑战引入到生产和纯化这些用于医疗应用的放射性核素中。在这些挑战中,最重要的挑战就是,当用高线性能量转化率放射性核素使用传统的发生器方法时,所发生的载体原料的放射性分离降解。(参见,Hassfjell等人,Chem.Rev.(2001)101:2019-2036;Gansow等人,放射性核素发生器:核医学应用;Knapp等人编辑,美国化学学会:华盛顿(1984),pp215-227;Knapp等人编辑,放射性核素发生器:核医学应用,美国化学学会:华盛顿(1984)Vol.241;Dietz等人,Appl.Radiat.Isot.(1992)43:1093-1101;Mirzadeh等人,J.Radioanal.Nucl.Chem.(1996)203:471-488;Lambrecht等人,Radiochim.Acta(1997)79:141-144.)。

发生器载体原料的放射性分离降解可能导致:

(a)化学纯度的降低(例如,由载体基质所产生放射分离产物可能污染子溶液);(b)折衷的放射性核素纯度(例如,载体原料可能释放出母放射性核素至洗脱液中:称为“穿透”);(c)子放射性核素收率的降低(例如,α-回弹可能迫使母放射性核素进入载体的滞留区域,导致它们的衰减产物不易进入洗提洗脱液);(d)柱内流率降低(例如,载体基质破碎产生的颗粒增大了柱截面上的压降);和(e)工作状态不稳定(例如产品纯度不一致,收率不稳,流率发生波动等)。为了尽可能地降低辐射分离降解对产物的化学以及放射性纯度所产生的副作用,分离柱应该只使用一次,这样辐射分离降解产物就不会累集并妨碍后续的纯化过程。但在某些应用中,也可以多次使用分离柱。因此,就需要一种方便的方法,能够轻易地将分离柱安装进装置中,并在使用后轻易地从装置中取出来。

附图概述

对于相关领域的普通技术人员来说,在阅读了下文详述和附图之后,本发明的优势和优点将会变得更加明显,其中:

附图1显示的为依据本发明的原理制造的一实施例的自动化放射性核素分离系统的部分图,此系统包含一个分离器、第一、第二和第三多通阀以及一个泵;

附图2显示的为附图1系统的具体化的说明性示意图,此系统被配置为实施从母液中分离出所需子产物的反向记数(cow)(也称为多柱选择性反向发生器)方法,同时,此图还通过箭头,显示出了泵运动的方向;

附图3显示的为附图1系统的具体化的说明性示意图,此系统被配置为实施从母液中分离出所需子产物的传统记数方法。

附图4说明的是一种系统的组装方式,此系统包括一个通过接口模块和电源能够与泵、第一、第二和第三阀可操作连接的处理器,同时也说明泵、第一、第二和第三阀被遮蔽在一个防辐射屏蔽罩中;

附图5与附图3相似,其中箭头用来说明泵运动的方向;

附图6是另一个自动化放射性核素分离系统的具体化部分说明性示意图,此系统包括三个泵和五个多通阀,此外,其中的箭头说明了泵运动的方向;

附图7也是另一个自动化放射性核素分离系统的具体化部分示意图,此系统包括三个泵和六个多通阀;

附图8是附图6系统的具体化示意图,其中,处理器通过接口模块和电源能够与泵和阀可操作连接,同时,说明第一泵和第一、第四和第五阀被遮蔽在一个防辐射屏蔽罩中;

附图9为具有分离器和保护柱单元的用于本发明系统中的模块单元的透视剖视图;

附图10为在本系统中用于将模块分离器和保护柱单元屏蔽起来的屏蔽罩的正视图;

附图11为本系统屏蔽罩的透视图,用以说明在系统中用于不同溶液的可移动容器;

附图12为本系统另一具体实施方案的透视描述图;

附图13为流程图,描述从基本上为第一组分和第二组分的伴生溶液中分离出基本上为第一组分的第一溶液的方法;

附图14为流程图,描述从含有离子种和至少一种组分的溶液中分离出离子种,形成基本上不含杂质的离子种产品溶液的方法。

发明详述

尽管本发明可以用各种不同形式的实施例来描述,但在附图中以及下文中将会被描述成一个具体的实施例,这样,本公开将被认为是本发明的举例说明,而并非是将本发明限制为所说明的具体实施例。

本发明的系统和方法涉及从一种含有子放射性核素和母放射性核素的溶液中分离出含子放射性核素的基本上不含杂质的溶液。利用精心设计的系统和方法可以获得大约1000到1,000,000或更多的去杂。

因此,本系统和方法的一个方面就是一种用于从伴生母液中分离出基本上不含杂质的子产物,例如核素的溶液的无气体系统。此系统包含一个泵;具有至少两个端口的第一多通阀,其中,第一多通阀的第一个端口与泵流体连接;包括至少四个端口的第二多通阀,其中,第二多通阀的第一个端口与伴生母液流体连接,第二多通阀的第二个端口与伴生洗提溶液流体连接,第二多通阀的第三个端口与第一多通阀流体连接,和第四端口。一个与第二多通阀的第四端口流体连接的分离器。还包括一个具有至少两个端口的第三多通阀,其中,第三多通阀的第一个端口与分离器流体连接,而分离器的另一头则与第二多通阀的第四端口流体连接,第三多通阀的第二个端口与伴生产物容器流体连接。一根延伸在第二多通阀的第三个端口与第一多通阀之间的直导管。一个与泵、第一多通阀、第二多通阀和第三多通阀可操作连接的处理器,用以控制这些组件,优选地,是一个能够执行指令的微处理器。

本发明也涉及一种用于从含有母放射性核素的溶液中分离出子放射性核素,形成一种基本上不含杂质的子放射性核素溶液的少气体和少空气的方法。根据本方法,将一种含母放射性核素的溶液转移至生长容器中。母放射性核素放置并等待预定时间,以便使母体发生衰减形成含有所需子放射性核素的母-子溶液。将此母-子溶液与对子放射性核素具有高亲和力、对母放射性核素具有低亲和力的分离介质接触,形成子富集分离介质和子贫乏的母-子溶液。将子贫乏的母-子溶液从分离介质中分离出来;从子富集分离介质中洗提出所需的子放射性核素,形成基本上不含杂质的子放射性核素溶液。

本发明的一个实施例涉及一种自动化系统10、200、300和用于从母原料14中分离出所需子放射性核素产物12的方法。具体地说,本发明涉及一种无空气或无其他气体的系统10、200、300和用于从含有母放射性核素14和任何中间体放射性核素的溶液中分离出基本上不含杂质的子产物12的溶液的方法。如下文中将要详细描述的本系统的例子,其包括泵16、多通阀18、20、22、分离器24、61以及优选地,用以控制系统10操作的处理器26。

系统10、200、300和方法可以用于从母放射性核素中分离出各种不同的放射性核素子产物。例如,本发明可以用于从锶-90中分离出钇-90,从铅-212中分离出铋-212,从锕-225中分离出铋-213,或从钨-188中分离出铼-188,提供可以用于放射性治疗的子产物。也可以用本发明来纯化锝-99m、铊-201、氟-18或碘-111,这些子产物可以用来诊断成像。此系统和方法是自动化的,并且系统可以被屏蔽起来,以根据ALARA原则降低使用者在放射性环境中的暴露。

可以用以下两种方式中的一种进行操作,传统的放射性核素发生器或传统的记数方式和多柱选择性反向发生器或反向记数方式。在传统记数方式中,母原料14被装载在分离器61中,母产物14在分离器61中被捕获,同时,所需子产物12通过分离器61。在反向记数方式中,母产物14不装载在分离器24中,而所需子产物12在分离器24中被捕获。母液14通过分离器24。然后,所需子产物12从分离器24中被洗提出来。

现在,参照附图1,此图显示的为体现了本发明原则的自动化放射性核素分离系统10的第一个实施例。此系统包括一个与第一多通阀18流体连接的驱动装置16,例如泵16,可以是注射泵16。泵16可以用一个电机进行驱动(附图中未表示出来),以提供驱使溶液流经系统10的动力。优选地,泵16为高速注射泵16,例如,位于Milwaukee,WI的高级液体处理公司提供的型号为MBP2000的泵。可以使用一个5ml或10ml大小的注射泵。在另一个实施例中,也可以使用蠕动泵。

第一多通阀18用于引导从泵16出来的溶液。第一阀18包括至少三个端口34、30、32。尽管也可以使用其他类型的阀,在附图1中所示的第一多通阀为具有四个端口28、30、32、34的选择阀。可以使用内V-形插头将相邻的端口互相连接起来。例如,第三个端口32可以与第二个端口30或第四端口34连接,但不可以与第一个端口28连接。

在所说明的实施例中,第三个端口32与泵16流体连接,第二个端口30与洗涤溶液36(下文中讨论)流体连接。第四端口34与一根与第二多通阀20流体连接的直导管38或管38流体连接。

第二阀20包括至少七个端口40、42、44、46、48、50、52。尽管也可以使用其他类型的阀,在附图1中所示的第二多通阀20为具有六个端口42、44、46、48、50、52和一个公用端口40的多通阀(共7个端口)。在附图1所示的第二多通阀20中,公用端口40可以选择性地与任何一个侧端口42、44、46、48、50、52流体连接,但侧端口42、44、46、48、50、52互相之间不连接。直管38与公用端口40流体连接。

依据所使用的特定的方法,侧端口42、44、46、48、50、52可以与不同的溶液和容器,如容器流体连接。例如,如附图2所示,在反向记数方式中,第一个端口42与废料容器54流体连接,第二个端口44与洗提溶液56(下文讨论)流体连接,第三个端口46与临时储存容器58流体连接,第四端口48与分离器24(下文讨论)流体连接,第五个端口50与生长容器60流体连接,以及第六个端口52与母液14(下文讨论)流体连接。

正如下文将要更加详细地描述,子体活性由生长容器60中的母体活性形成。分离之后,含有基本上为母放射性核素(子放射性核素被分离器分离出去)的溶液被储存在临时储存容器58中。在操作期间,含有残余母放射性核素和洗涤溶液的溶液也被储存在临时储存容器58中。使用后的洗涤溶液通常都进入了废料容器54中。

在传统记数方式中,如附图3所示,第一个端口42(在附图1到2中,为第五端口50的位置)与废料容器54流体连接,第二端口44与洗提溶液56(下文讨论)流体连接,第四端口48与分离器61(下文讨论)流体连接,第六端口52与母液14(下文讨论)流体连接。如在下文中将要更加详细描述的,当系统10的第一个实施例为传统记数方式时,因为只有四个侧端口42、44、48、52可以使用,所以第二多通阀20只需要是一个具有4个侧端口和一个公用端口的分配阀。但是,优选地,此系统应该设置成一个即能够实现传统记数方式,又能够实现反向记数方式的通用系统。所以,如上文所述,理想地,第二多通阀为一个六端口的分配阀。

如附图1所示,分离器24、61与第二多通阀20和第三多通阀22流体连接。分离器24中装有用于从母放射性核素中分离出所需子放射性核素活性体的分离介质。

第三多通阀22具有至少四个端口62、64、66、68。尽管也可以使用其他类型的阀,在附图1中所示的第三多通阀22为具有四个侧端口64、66、68、70和一个公用端口62的分配阀(共5个端口)。公用端口62可以选择性地与任何一个侧端口64、66、68、70流体连接,但侧端口64、66、68、70互相之间不连接。优选地,分离器21、61与公用端口62流体连接。

依据所使用的特定的方法;例如传统或反向记数方式,侧端口64、66、68、70可以与不同的溶液和容器流体连接。例如,如附图2所示,在反向记数方式中,第一个端口64与临时储存容器58流体连接,第二个端口66与保护分离器72(下文讨论)流体连接,而保护分离器72则与产品容器74流体连接,第三个端口70与废料容器54流体连接。如下文所述,保护分离器72用于进一步从子溶液中分离出所需母放射性核素。也可以将保护分离器72称为保护柱。

在传统记数方式中,如附图3所示,多通阀22的第二个端口66与保护分离器72(下文讨论)流体连接,而保护分离器72则与产品容器74流体连接,第三个端口70与废料容器54流体连接。如附图3所示,当系统为传统记数方式时,因为只有两个侧端口66、70可以使用,所以第三多通阀22只需要是一个具有2个侧端口和一个公用端口的分配阀。但是,优选地,第一个实施例应该设置成既能够实现传统记数方式,又能够实现反向记数方式的通用系统。所以,优选地,第三多通阀为一个四端口的分配阀。

保护分离器72通过捕获母放射性核素,进一步将所需母放射性核素从子溶液中分离出来。需要指出的是,保护分离器72可能包括一些吸附材料,例如,离子交换树脂或无电荷含碳材料。

分离器24、61和保护分离器72的使用提高了所需子产物的纯度(也即,无杂质)。同时,由于使用较小体积的分离器即可以达到所需纯度,所以分离器24、61和保护分离器72的使用使系统显得更加紧凑。

优选地,如附图4所示,包括泵16、第一多通阀18、第二多通阀20和第三多通阀22的初级单元76与处理器78连接。处理器78用于控制初级单元76的组件(泵16、第一多通阀18、第二多通阀20和第三多通阀22)。优选地,处理器78是能够执行指令的微处理器78。处理器78也可以与存储器80,例如能够存储数据的存储器芯片或硬盘连接。处理器78也可以与能够输入数据的输入设备82,例如键盘或触敏屏幕和用于显示处理器输出的输出设备84,例如显示器、图形显示器或监视器连接。处理器-存储器-输入设备-输出设备的配置可以是,例如,一台微型计算机86。

优选地,初级单元76组件(泵16、第一多通阀18、第二多通阀20和第三多通阀22)通过,例如多芯带状电缆90与接口/电源88、96单元连接。优选地,接口/电源单元通过电缆92、94,例如RS-232系列通信电缆92和TTL数字输入/输出电缆94与处理器78连接。理想地,电源单元96能够提供最大为24V的电源。本领域技术人员可以容易地理解,可以在本发明分离系统10中使用的各种不同的用以控制系统的控制系统配置均在本发明的范围和精神之内。

优选地,如附图4所示,用辐射屏蔽罩98将初级单元组件16、18、20、22(附图1)、生长容器(未显示出来)和临时储存容器(未显示出来)屏蔽起来,根据ALARA原则,以降低操作人员和其他人员(例如,病人)在辐射中的暴露。这样的设计同时也确保了初级单元组件16、18、20、22、生长容器60和临时储存容器58不与任何高压电源接触。此外,电源由最大输出电压为24V直流电的电源提供,如需要,以给初级单元供电。

需要指出的是,依据所产生的射线的类型(α、β、γ射线)以及系统10的第一个实施例的具体应用,辐射屏蔽罩98可以用不同的材料来制备。例如,产生大量γ射线的应用需要铅来屏蔽,而产生α或β射线的应用则需要PlexiglasTM来屏蔽,同时,其他应用则不需要任何屏蔽。

泵16包括一个可以向上或向下做往复运动,驱动各种不同的原料和溶液流经系统(如附图2中泵16旁边的箭头所示)的活塞。被驱动的多通阀引导各种溶液,如母液14、子溶液12、洗提溶液56和洗涤溶液36流经系统10。

表1总结了第一种反向记数方式各步骤中阀的位置和泵运动的方向。第一种反向记数操作方式包括13个步骤,其中10个重复。依据处理器78的命令,操作系统实现各步骤。

                               表1

步骤阀1(18)位置阀2(20)位置阀3(22)位置泵的运动方向1 3-4(32,34)6(52)-2 3-4(32,34)5(50)-4 3-4(32,34)5(50)-5 3-4(32,34)4(48)1(64)6 2-3(30,32)--7 3-4(32,34)4(48)1(64)8 3-4(32,34)2(44)-9 3-4(32,34)4(48)2(66)10 3-4(32,34)3(46)-11 3-4(32,34)5(50)-12 2-3(30,32)--13 3-4(32,34)4(48)3(70)

步骤如下:

第一步:将母液14装入泵16(例如,注射泵)。第一多通阀18将端口3与端口4(32、34)流体连接,第二多通阀20在位置6(52),同时注射泵向下运动。

第二步:将母液14从泵16中转移至生长容器60中。此时,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置5(50),同时泵16向上运动,将母液14驱动至生长容器60中。

第三步:将母液14在生长容器60中保留预定时间,其间母放射性核素发生衰减,“生长”为所需子放射性核素。这样,就得到了母-子混合溶液。

第四步:将母-子溶液转移至注射泵16中。转移期间,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置5(50),同时泵16向下运动。

第五步:将母-子溶液转移至分离器24中。子放射性核素被分离介质(未显示出来)保留住,母-子溶液(子放射性核素从其中分离出去)通过分离器24进入临时储存容器58。为了实现此转移,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置1(64),同时泵16向上运动。

第六步:将泵16中充满洗涤溶液36。为了实现此步骤,第一多通阀18将端口2与端口3(30、32)连接,同时注射泵16向下运动。

第七步:用洗涤溶液36洗涤分离器24。任何残留母-子溶液,以及任何保留母放射性核素均从分离介质中洗涤出来,并进入临时储存容器58。此时,临时储存容器58装有从步骤5中来的含有母-子溶液(子放射性核素从其中分离出去)的稀释母液,和残留母-子溶液以及少量的洗涤溶液。为了实现此步骤,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置1(64),同时泵16向上运动。

需要指出的是,在替代方法中,可以将残留母-子溶液洗涤后转移至废料容器54中,这可以通过将第三多通阀22置于位置3(70)来实现。但是,在第一种记数方式中,为了使残余母放射性核素的损失最小化,不将残留母-子溶液转移至废料容器中。

第八步:将泵16中充满洗提溶液56。在此步骤中,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置2(44),同时泵16向下运动。

第九步:将洗提溶液56排至分离器24。在洗提时,将子放射性核素(由分离介质保留)从分离介质中洗提出来,并将其引入至保护分离器72。保护分离器72捕获任何由子核素富集洗提溶液携带的母放射性核素。这样,一种基本上不含杂质的子放射性核素溶液就从保护分离器72排至产物容器74中。在此步骤中,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置2(66),同时泵16向上运动。

第十步:将泵16中充满从临时储存容器58中引入的稀释母液。为了实现此转移,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置3(46),同时泵16向下运动。

第十一步:将此溶液转移至生长容器60中保留预定时间,其间母放射性核素发生衰减,“生长”为所需子放射性核素(如步骤3)。同样,就得到了母-子混合溶液。为了实现此步骤,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置5(50),同时泵16向上运动。

第十二步:将泵16中充满洗涤溶液36。在此步骤中,第一多通阀18将端口2与端口3(30、32)连接,同时泵16向下运动。

第十三步:将洗涤溶液36从分离器24排出并输送至废料容器。这样,任何保留在分离器24中的废料溶液均被洗涤出去并被输送至废料容器54。为了实现此转移,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置3(70),同时泵16向上运动。

第十四步:重复第三步至第十三步,直至分离到所需量的子放射性核素,以备使用。

对于上文所描述的第一种反向记数方式,有几种设计的变化形式。例如,在第一种方式中,在使用自动化系统10之前,可以手动调节分离器24。系统第一实施例的一种变化形式也可以为分离器24的自动化调节。例如,第一多通阀18可以为一个三端口的分配阀,在附图2中,其中,第一个端口28与调节试剂溶液流体连接,第二个端口30与洗涤溶液流体连接,第四端口34与直导管或管38流体连接,而直导管或管38又依次与第二多通阀20流体连接,第三个端口32与泵16流体连接。

在进行调节时,需包括“预步骤”1和2:(1)使泵16充满试剂(用第一多通阀在位置1(28),同时,泵16向下运动替代);和(2)将试剂转移至分离器24进行调节,然后,再将试剂引入废料容器(用第一多通阀18在位置4,第二多通阀20在位置4(48),第三多通阀22在位置3(68),同时泵16向上运动替代。)

为了降低辐射屏蔽罩98外人员的暴露以及放射性原料的存在,在所示的系统10中引入了数个组件,同时,在第一个反向和传统记数方式中引入了数个步骤。例如,在附图4中,储存母液14的容器100放置在辐射屏蔽罩98的外面。由于母液14具有很强的放射性,所以尽可能将母液14置于被辐射屏蔽罩98保护起来的初级单元76中。这样,第一步中就包括将所有在辐射屏蔽罩98外面的母液14转移至位于辐射屏蔽罩98内的生长容器60。如此放置的话,子放射性核素“生长”时,母液14在辐射屏蔽罩98内的生长容器60中。

在附图4中的母液14、100位于屏蔽罩98之外,因为母液14、100可以从位于较小分离屏蔽(未显示出来)中的供应器中引入。此外,母液14、100也可以位于屏蔽罩98中。如上文所讨论,无论母液14、100位于屏蔽罩98之外(未显示出来)或位于屏蔽罩98之中,典型地,均依据其应用而定(也即,所产生的辐射种类)。

产物容器12、74也可以放置在屏蔽罩98之中或之外。如果产物容器12、74放置在屏蔽罩98之中,那么,当每次使用产物时,就必须打开屏蔽272,这样,就有潜在的可能性使得使用者暴露在产物和母体辐射中。如果产物容器74放置在屏蔽罩98之外(如附图4所示),那么,就可以将其放置在其自身的分离屏蔽(未显示出来)中,这样,使用者就未必要必须打开屏蔽罩98。

如上文所讨论,可以不要屏蔽罩。通常情况下,用树脂玻璃和玻璃面通风柜便足以屏蔽α、β放射源。

此外,也可以将生长容器60放置在分离的辐射屏蔽罩中(未显示出来)。在这种情况下,就无需分离的临时储存容器,可以使用一个五端口分配阀。在使用这种替代实施例的操作方法中,无需第一种反向记数方式中的前三步(至子体“生长”步骤),而从上文所描述方法中的第四步开始。

在研究了本说明书之后,本领域技术人员就可以理解,生长容器60和临时储存容器58的使用提高了母液14的使用效率。临时储存容器58可以用来储存稀释后的母液,其中包含子放射性核素已经从其中分离出去的母液,与洗涤溶液和任何用洗涤溶液洗涤后的流经分离器的残余母液混合。

当稀释母液(母液、残余母液和洗涤溶液)的体积超过泵16的容积时,就需要生长容器60和临时储存容器58。当残余母液中加入洗涤溶液时,稀释母液的体积就可能超过泵16的容积。典型地,当第一种反向记数方式重复数次之后,这种可能性便会增加。

例如,在第一种反向记数方式中,如果稀释母液的体积(如6ml)超过泵的容积(如5ml),那么便只有5ml的稀释母液被转移至分离器中,也就是有5ml的子活性物从其中分离出去的稀释母液被转移至临时储存容器中。有1ml的稀释母液保留在生长容器中。没有临时储存容器时,5ml的稀释母液(子活性物已经从其中分离出去)将会与保留在生长容器中的1ml母-子溶液再次混合,这样便不能被纯化而得到使用。

在第一种传统记数方式中,泵16的活塞可以向上或向下做往复运动,驱动各种不同的原料和溶液流经系统,如附图5中箭头所示。

表2总结了第一种传统记数方式各步骤中阀的位置和泵运动的方向。第一种传统记数操作方式包括8个步骤,其中5个重复。依据处理器78的命令,操作系统实现各步骤。

                                   表2

  步骤    阀1位置    阀2位置    阀3位置 泵的运动方向    1    3-4(32,34)    6(52)    -    下    2    3-4(32,34)    4(48)    3(70)    上    3a    2-3(30,32)    -    -    下    3b    3-4(32,34)    4(48)    3(70)    上    5    2-3(30,32)    -    -    下    6    3-4(32,34)    1(42)    -    上    7    2-3(30,32)    -    -    下    8    3-4(32,34)    4(48)    2(66)    上

步骤如下:

第一步:将母液14装入泵16。为了实现此步骤,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置6(52),同时泵16向下运动。

第二步:将母液14排放至分离器61中,使子放射性核素溶液(在储存和输送期间,杂质发生累积)流入废料容器中。这样,母放射性核素被分离介质(未显示出来)捕获,而将残留的溶液(可能包含污染的子放射性核素)引入至废料容器54中。为了实现此转移,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置3(70),同时泵16向上运动。

第三步:将分离器61洗涤数次,以从分离介质中去除杂质。此步骤包括两个可以重复数次的子步骤,直至操作者对分离介质中杂质的含量满意为止。这两个子步骤为:

第3a步:将注射泵16中充满洗涤溶液。第一多通阀18将端口2与端口3(30、32)连接,同时注射泵16向下运动。

第3b步:使洗涤溶液36流经分离器61以移除或洗涤除任何杂质。洗涤溶液36引入至废料容器。为了实现此转移,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置3(70),同时泵16向上运动。

第四步:将母放射性核素14在分离器61中保留预定时间,期间母放射性核素发生衰减,“生长”为所需子放射性核素。这样,就得到了母-子混合溶液。

第五步:将泵16中充满洗涤溶液来清洗泵16。为了实现此步骤,第一多通阀18将端口2与端口3(30、32)连接,同时泵16向下运动。

第六步:将用于洗涤泵16的洗涤溶液36排至废料容器中。为了实现此步骤,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置1(42),同时注射泵16向上运动。

第七步:将泵16装满用于洗涤从分离器61中分离得到的所需子放射性核素的洗涤溶液。为了实现此转移,第一多通阀18将端口2与端口3(30、32)连接,同时泵16向下运动。

第八步:将洗涤溶液36从分离器61和保护分离器72排至产物容器74。子放射性核素溶液通过保护分离器72,从分离介质中洗涤出来。保护分离器72捕获任何残余的母放射性核素,这样,一种基本上不含杂质的子放射性核素溶液就从保护分离器72转移至产物容器74中。为了实现此转移,第一多通阀18将端口3与端口4(32、34)连接,第二多通阀20在位置4(48),第三多通阀22在位置2(66),同时泵16向上运动。

第九步:当子放射性核素生长到可使用的程度后,可以重复步骤7和步骤8。需要指出的是,在传统记数方式中,无需洗提溶液56、生长容器60和临时储存容器58。这样,第二多通阀就可以是一个三端口的分配阀。公用端口40可以与直导管38(也即第一多通阀)流体连接,三个侧端口42、48、52可以与分离器61、母液14和废料容器54流体连接。但是,由于需要系统10即可以正向也可以反向记数方式操作,上述系统配置为优选。

同时,需要指出的是,根据不同的因素,如所需子放射性核素、母放射性核素以及操作方式(例如,正向或反向记数方式),可以在此系统中引入各种不同的分离器24、61、保护分离器72、洗涤溶液36和洗提溶液56。

一个本发明的方法和系统可以使用一种或多种分离介质。众所周知,用于特定分离用途的分离介质或媒介根据所需要分离的原料而定。典型地,优选的分离介质为球状固体相树脂。

一种优选的固体相载体交换树脂为H+形式的Bio-Rad50W-X8树脂,市场上可以从Richman的Bio-Rad实验室有限公司购得。其他可以使用的强酸型阳离子交换树脂包括Dowex50W系列离子交换树脂和AmberliteIR系列离子交换树脂,市场上可以从St.Louis,MO的sigma化学公司购得。

阴离子交换树脂,如Dowex1系列阴离子交换树脂也可以作为分离介质。

在本发明方法中可以使用的另一种树脂为苯乙烯-二乙烯基苯聚合物基体,包括可以化学键合至其上的磺酸、膦酸和偕二膦酸官能团。这种偕二膦酸树脂市场上可以从位于8205S.Cass Avenue,Darien,伊利诺斯,美国的Eichrom技术有限公司购得,商标为Diphonix。在本发明方法中,Diphonix树脂以H+形式使用。Diphonix树脂的特征和性能在美国专利5,539,003、5,449,462和5,281,631中有更加全面的描述,这些公开在此引入作为参考。

在液-固相系统中已经发现,相对于钙而言,在提高镭和钡的吸收时特别有用的冠醚包括18-冠-6(18C6)和21-冠-7(21C7)。这里的冠醚为那些只具有一个大环体系的冠醚。

有利地,这样的冠醚,尤其是较小的冠醚(例如,18C6)为价格相对较低的试剂,提供了一种成本低且有效地从含有钙阳离子以及可以还含有锶或钡阳离子中的一种或两种的水性样品中分离出镭阳离子的方法。

另外一种可以考虑的方法使用两种萃取色谱法和/或离子交换树脂的分离介质。这两种分离介质的组合尤其适用于从钍和其他核素中分离锕。第一种交换介质为一种吸附在对交换组合物的组分呈惰性的水不溶性载体上的四价锕系元素(TEVA)树脂,含有季铵盐,特别地,含有三辛基和三癸基甲基氯化铵的混合物,如E.P Horwitz等人在分析化学Acta 310(1995)63-78中所讨论的,将其在此引入作为参考。

TEVA树脂对四价氧化态的离子具有很高的选择性,在本方法中为Th-228和Th-229(其价态为+4),相对于它们的衰减产物(其价态为+3,比锕和镭的价态低)。例如,在硝酸溶液中,+4价的钍离子键合在TEVA树脂上,而在同样的条件下,锕(Ac)离子和镭(Ra)离子(分别为+3价和+2价)与此树脂接触则基本上不受影响。市场上可以从8205S.Cass Avenue,Darien,伊利诺斯,美国的Eichrom技术有限公司购得TEVA树脂。

接着,将组合的水性Ra/Ac溶液与第二种分离介质接触,这是第二种离子交换介质,具有多个适合于键合具有次低化合价的键合点,在这里可以是Ac-225阳离子,形成Ac-225富集的第二种离子交换介质。离子交换介质(第二种交换介质)将Ac-225(+3化合价)保留并键合至交换介质上,并可以通过镭同位素(+2化合价)和任何+1价阳离子,如钠离子、钾离子或质子,以及阴离子和任何镭的非-锕衰减产物以及由锕同位素,如钫-221(+1化合价)和砹-217(-1化合价)形成的衰减产物。这样,保持键合在第二种离子交换介质上的材料基本上只有Ac-225,因为其上的键合点键合的+3价Ac-225阳离子优于次低价态的阳离子和阴离子。

也可以进一步用酸性溶液,如大约0.5M~大约10M的硝酸或盐酸水溶液,优选地,大约2.0M~大约3.0M的硝酸冲洗Ac-225富集的离子交换介质,以便从色谱介质中去除任何残余的镭同位素阳离子和Ac-225衰减产物阳离子。

在一种方法中,第二种交换介质(离子交换介质)包含二膦酸(DPA)配位体或基团。几种类型的含DPA的取代二膦酸为本领域技术人员所熟知并可以在此使用。典型的二膦酸配位体具有如下分子式:

                   CR1R2(PO3R2)2

其中R选自氢、C1~C8烷基、阳离子以及它们的混合物;R1为氢或C1~C2烷基;R2为氢或键合在聚合物树脂上的键。

R2为键合在聚合物树脂上的键时,含磷基团的含量为共聚物干重的1.0~大约10毫摩尔/克,毫摩尔/克值基于聚合物,其中R1为氢。含二膦酸配位体的典型交换介质在下文中讨论。

有一种这样的交换介质为Dipex树脂,它是一种属于双酯化甲烷二膦酸,如双-2-乙基己基甲烷二膦酸的含液体二膦酸萃取剂的萃取色谱材料。此萃取剂吸附在一种对流动相,如AmberchromeCG-71(市场上可以从TosoHaas,Montgomeryville,PA购得)或疏水二氧化硅呈惰性的基质上。在这种萃取剂中,R1和R2为氢,其中R之一为2-乙基己基,而另一个则为氢。

Dipex树脂显示出对各种不同的三价、四价和六价锕系元素和镧系元素,如Ac-225阳离子具有很高的亲和力,而对镭阳离子和Ac-225的衰减产物则具有较低的亲和力。这种现象即使在如氟化物、草酸盐和磷酸盐这样的配位阴离子存在的情况下也存在。

优选的Dipex树脂的活性组分为具有如下通式的液体二膦酸:

其中R为C6-C18烷基或芳基,优选地,为衍生至2-乙基-1-己醇的酯。一种优选的化合物为双-2-乙基己基甲烷二膦酸。

可以将活性组分DPA与沸点较低的有机溶剂,如甲醇、乙醇、丙酮、乙醚、甲基乙基酮、己烷或甲苯混合并涂布在本领域技术人员所熟知并应用在色谱柱中的惰性载体,如玻璃球、聚丙烯球、聚酯球或硅胶上。也可以使用丙烯酸和聚芳香族树脂,如AMBERLITE(市场上可以从Rohm和Hass公司,费城,PA,购得)。

Dipex树脂的特性和特征在Horwitz等人于1995年6月6日提交,且许可的美国专利申请序列号08/467,402和美国专利5,651,883中有更加详细全面的描述,将这些公开内容在此引入作为参考。Dipex树脂可以从Eichrom技术有限公司购得。

另一种可以使用的离子交换树脂是Diphosil树脂。与其他DPA树脂相似,Diphosil树脂含有数个偕取代二膦酸配位体,如由偏二膦酸乙烯提供的那些。配位体化学键合至接枝在二氧化硅颗粒上的有机基体上。Diphosil树脂可以从Eichrom技术有限公司购得。

此外,另一种也可以使用的树脂具有通过接枝加成至预成型的水不溶共聚物上的侧链基团-CR1(PO3R2)2;就是说,侧链膦酸基是在共聚物颗粒形成之后加成上去的。对于这些聚合物,R为氢、C1~C8烷基、阳离子以及它们的混合物;R1为氢或C1~C8烷基。对于这类树脂,一种可行的侧链-CR1(PO3R2)2基团具有如下分子式。颗粒中还含有0~大约5毫摩尔/克干重的侧链芳族磺酸基。

一种可行的侧链亚甲基二膦酸酯,如第一次形成的,典型地,含有两个C1~C8二烷基膦酸酯基团。这些酯的典型的C1~C8烷基以及其他C1~C8烷基包括甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、环戊基、己基、环己基、4-甲基环戊基、庚基、辛基、环辛基、3-乙基环己基等。优选的R基团为异丙基。R1 C1-C2烷基为甲基或乙基,最优选地,R1为氢。

形成之后,将烷基酯基团水解以便使用,在上面的分子式中R为氢(质子)、Ca+2离子或碱金属离子,如锂离子、钠离子或钾离子。

优选地,不溶共聚物含有至少2mol%反应乙烯基苄基卤化物,更优选地,其含量为大约10~大约95mol%。如上文所讨论,一种或多种反应单烯键不饱和单体的含量在大约为2~大约85mol%,优选地,此种单体包括至少5mol%的上述单烯键不饱和芳香单体,如苯乙烯、乙基苯乙烯、乙烯基甲苯(甲基苯乙烯)和乙烯基二甲苯。

一种可以使用的不溶性共聚物还包括一种反应交联剂。在此处可以使用的反应交联剂也是种类繁多。典型的可以使用的交联剂选自二乙烯基苯、三羟甲基丙烷三丙烯酸酯或三甲基丙烯酸酯、赤藓醇四丙烯酸酯或四甲基丙烯酸酯、3,4-二羟基-1,5-己二烯和2,4-二甲基-1,5-己二烯。在本发明中,特别优选地为二乙烯基苯。

反应交联剂的量应足以达到所需不溶解性。典型地,反应交联剂的含量至少为0.3mol%。优选地,反应交联剂的含量为大约2%~大约20mol%。

这些可行的颗粒为亲核试剂,如CR1(PO3R2)2-与一种基体的多步反应产物,而CR1(PO3R2)2-则可以用人们所熟悉的方法来获得。这样,CHR1(PO3R2)2,优选地,R为烷基,首先与钠或钾金属、氢化钠或有机锂化合物,例如,丁基锂或任何能够产生二膦酸负碳离子的试剂反应。然后,将所得的负碳离子再与一种上文中已讨论过的一种或多种乙烯基脂肪族、丙烯酸或芳香化合物和聚乙烯基脂肪族、丙烯酸或芳香化合物,如二乙烯基苯等不溶性交联共聚物基体反应。此共聚物含有至少2mol%的乙烯基芳香烃,如乙烯基苄基氯的反应卤代衍生物,优选地,含10~95mol%,大约2~大约85mol%的单乙烯基芳香烃,如苯乙烯和至少0.3mol%的聚乙烯基脂肪族和/或芳香族交联剂,如二乙烯基苯,优选地,为2~20mol%。

优选地,含有对应于大约1.0毫摩尔/克干重,优选2~7毫摩尔/克干重的接枝亚甲基二膦酸四烷基酯基团的共聚物与一种磺化试剂,如氯磺酸、浓硫酸或三氧化硫反应,以便在它们的结构上引入强酸性侧链芳香族磺基。磺化侧链基的存在使得颗粒具有了附加的亲水性优点,并在不影响选择性的基础上,使阳离子配位率得到了惊人的提高。

磺化试剂与含有亚甲基二膦酸基的接枝共聚物的反应通常在,当酯形式的回收树脂产物被一种卤代烃,如二氯甲烷、二氯乙烯、氯仿或1,1,1-三氯乙烷溶胀之后进行。磺化反应可以用0.5~20.0wt%的氯磺酸,在上文所述的卤代烃溶剂中,在大约-25℃~大约50℃,优选地,在大约10℃~大约30℃下进行。反应的进行是通过将预溶胀0(未溶胀)~大约2h的树脂与上述磺化溶液接触0.25~20h,优选地,接触0.5~2h。

当磺化反应结束之后,通过过滤、离心、倾析等将颗粒从液体反应介质中分离出来。接着,仔细地用二氧杂环己烷、水、1M氢氧化钠、水、1M盐酸和水将此最终的二次树脂产物进行洗涤,然后进行干燥。

磺化反应以及在水中的后处理也会水解膦酸C1~C8烷基酯基团。在磺化反应没有进行的部位,膦酸酯的水解就可能通过在回流时与酸,如浓盐酸反应发生。

这些可行的颗粒包含有直接连接在聚合物基体中芳香单元或丙烯酸酯或甲基丙烯酸酯单元的碳原子上的,作为侧链官能团的亚甲基二膦酸和磺酸基团。这些可行的树脂表现出了,在宽范围的pH值中,对宽范围的二价、三价和多价阳离子的高亲和力。在pH值低于1时,由于磷酰基氧的配位能力,树脂能够从阳离子移除离子交换机理转换为双官能离子交换/配位机理。然后,磺酸基发生作用,使基体对快速金属离子的亲水性增加;这样亚甲基二膦酸基便导致了高选择性。关于这种树脂制备的更详细描述可以参阅Trochimczuk等人的美国专利5,618,851,其公开在此引入作为参考。

在一个实施例中,分离器24、61或保护分离器72用“锶树脂”进行填充,“锶树脂”是一种分析用树脂,可以从Eichrom技术有限公司购得,在美国专利5,110,474中描述,其公开在此引入作为参考。总之,锶树脂包含一种惰性树脂基质,在其上分散有一种萃取剂溶液,即可以溶解在一种液体稀释剂中的冠醚。

此稀释剂为一种有机化合物,具有(i)高沸点;大约170℃~200℃,(ii)在水中微溶或不溶,(iii)能够溶解形成大约0.5~6.0M的水溶液,(iv)是一种可溶解冠醚的原料。这些稀释剂包括醇、酮、羧酸和酯。适合的醇包括最优选的1-辛醇,尽管1-庚醇和1-癸醇也可以满足要求。羧酸包括优选的辛酸,此外,还包括庚酸和己酸。典型的酮包括2-己酮和4-甲基-2-戊酮,而酯则包括乙酸丁酯和乙酸戊酯。

大环聚醚可以是任何双环六冠醚,如双环六-18-冠-6,双环六-21-冠-7或双环六-24-冠-8。优选的冠醚具有分子式:4,4′(5′)[(R,R′双环六)]-18-冠-6,其中R和R′为一个或多个选自H和含有1~12碳原子的直链或支链烷基。例如,甲基、丙基、异丁基、叔丁基、己基和庚基。优选的醚包括双环六-18-冠-6(DCH18C6)和双-甲基环六-18-冠-6(DMeCH18C6)。最优选的醚为双-4,4′(5′)-[(叔丁基)环六]-18-冠-6(Dt-BuCH18C6)。

稀释剂中冠醚的含量依据各种不同的醚而不同。例如,上述优选冠醚中的最优选冠醚叔丁基型(Dt-BuCH18C6)在稀释剂中的浓度为大约0.1M~大约0.5M时是可以接受的,而最优选的浓度则为大约0.2M。当使用氢形式时,浓度可以为大约0.25M~大约0.5M。当R和R′为氢时,在稀释剂中,大于大约0.5M浓度的冠醚不能改善铅的回收。

优选的锶树脂使用一种惰性树脂基质,这是一种非离子丙烯酸酯聚合物颗粒树脂,如AmberliteXAD-7(60wt%~70wt%),在其上涂有一层冠醚,如溶解在正辛醇(5-20wt%)中的4,4′(5′)双-叔丁基环六-18-冠-6(双-叔丁基-顺式-双环六-18-冠-6)(20wt%~25wt%),萃取剂的含量为40wt%。E.P.Horwitz等人,溶剂萃取和离子交换,10(2):313-16(1992)。

同时,也可以用Eichrom技术有限公司提供的一种铅树脂,一种相关的树脂,来纯化并聚集铅-212,以生产铋-212。除了较高分子量的醇之外,铅树脂具有与锶树脂相似的性能。也即,用异癸醇来制备铅树脂。E.P.Horwitz等人在分析化学Acta292,263-73(1994)中研究发现,铅树脂可以使铅-212从树脂中产生后继移除,而研究发现,铅-212基本上不可逆地键合在锶树脂上。

Eichrom技术有限公司提供的另一种改进锶树脂甚至具有更高的选择性。这种分离介质被称为超级铅(锶)选择性树脂,包含自由流动的颗粒,其具有大约5wt%~大约50wt%的双-4,4′(5′)[C3~C8-烷基环六]18-冠-6,如双-叔丁基环六-18-冠-6,此冠醚在正辛醇和1M硝酸之间的分配率(D冠醚=冠醚有剂相中的含量/冠醚水相中的含量)大于大约103,通常为大约103~106,且分散在惰性多孔载体,如聚合物树脂(例如,AmberchromCG-71)或二氧化硅颗粒上。分离介质不含稀释剂,尤其是不含这样的稀释剂(i)在水中不溶或微溶,(ii)能够溶解一定量的锶树脂中的水。

此外,母体和所需子放射性核素也对操作方式有限制。特别地,如果使用传统记数方式,就需要使用对母放射性核素具有亲和力的分离介质。相反,如果使用反向记数方式,则需要使用对子放射性核素具有高亲和力的分离介质。同时,也需要考虑诸如成本以及分离介质的可用性等方面的问题。

保护分离器的使用和类型也要受到母体和子放射性核素的限制。对于反向记数方式,典型地,保护分离器是用来捕获母放射性核素并使子放射性核素流入至产品容器。在传统发生器或正相记数方式中,保护分离器也捕获母放射性核素以使所需子放射性核素得到进一步的纯化。

所使用的优选洗涤和洗提溶液的选择也基于母体和子放射性核素以及所需产品的用途。读者可以参阅Horwitz等人的美国专利5,854,968和Dietz等人的美国专利5,863,439中关于分离介质和溶液的说明性讨论。

此外,还有一种分离介质特别适合于从水溶液中分离出chaotropic阴离子。此种分离介质可以从美国的Eichrom技术有限公司购得,商标为ABEC,其包含具有多共价键合-X-(CH2CH2O)n-CH2CH2R基团的颗粒,其中X为O、S、NH或N-(CH2CH2O)m-R3,其中m为一个平均值在0~大约225的数,n为一个平均值在大约15~大约225的数,R3为氢、C1~C2烷基、2-羟乙基或CH2CH2R,R选自-OH、分子量最高达-(CH2CH2O)n-部分的大约1/10的C1~C10烃基醚、羧酸酯、磺酸酯、膦酸酯和-NR1R2基团,其中,独立地,R1和R2为氢、C2~C3羟烷基或C1~C6烷基,或-NR1R2一起形成一个在环中具有0个或1个氧原子或0个或1个附加氮原子的5元或6元环胺。分离颗粒的CH2O/mm2颗粒表面积%为高于大约8000,低于大约1,000,000。典型的chaotropic阴离子包括简单的阴离子,如Br-、I-和离子根,如TcO4-1、ReO4-1或IO3-1。chaotropic阴离子也可以是金属阳离子与卤化物或假卤化物阴离子的络合物。ABEC分离介质也可以用来分离阴离子染料混合物。使用这种分离介质可以实现的一个特别有用的分离是从含有母99MoO4-2(高钼酸根-99)离子的水溶液中分离出99mTcO4-1(高锝酸根-99m)。在美国专利5,603,834、5,707,525和5,888,397中有关于ABEC分离介质的更详细描述。

本系统和方法被配置为基本上在没有空气或气体的情况下操作,因此,在使用颗粒载体分离介质上就表现出了较大的灵活性。特别地,空气或气体在这种分离介质中的移动可能会引起通道,在这样的通道中溶液和分离介质之间可能会发生达不到所需的充分接触。因此,本系统被配置为液体传输和处理系统。这种少空气或气体系统的优点之一便是没有必须要处理或过滤的空气或气体(由于可能的放射性污染夹带物)。因此,本系统的设计复杂程度比组合使用空气和液体的系统要简单。

在此颗粒载体分离介质系统中,含有分离介质的载体颗粒被装填在柱子中。当有溶液流经颗粒时,溶液可以与分离介质进行充分的接触。如果柱子中引入了空气或气体,那么空气或气体就有可能推开颗粒,导致颗粒产生“通道”。这种情况可能使溶液在没有流经颗粒的情况下穿过通道;更确切地说,就是溶液在没有与分离介质接触的情况下就穿过了通道。这会导致所需放射性核素的纯化效率降低。

因此,本系统由于无需使用空气或气体来分离溶液,相比与其他使用非液体气流(也就是空气或气体)分离系统就具有了另一个优点。所以,有利地,由于本系统可以使用不同类型的分离介质,使其具有了很大的灵活性。

依据所需流率,使用的导管系统的大小尺寸以及阀的类型可以有所不同。根据一项研究表明,10~50ml/min的流率足以保证液体在导管中的转移(不通过分离器),20~25ml/min为最佳流率。当将液体泵经分离器时(在此研究中,使用了颗粒装填柱分离器),100~500μL/min的流率便可以满足需求,500μL/min为最佳流率。通常情况下,最大流率为整个注射泵体积/秒。最小流率为注射泵体积的0.0005倍/线性驱动部件每次脉冲,其中,脉冲频率低于毫秒。

在一实施例中,使用了带有数字通信阀的汉密尔顿“模块阀定位器”。例如,型号为4-5MVP,具有4个分配端口的旋塞阀,和型号为6-5MVP,具有6个分配端口的旋塞阀。

接插件可以由多种材料制造。如市售的有3M公司的KEL-F。另一种可以用来制造接插件的材料是三氟氯乙烯(CTFE)。该接插件为高效液相色谱用接插件,汉密尔顿公司有售。

一种可以用作导管的材料为聚四氟乙烯(PTFE),市售的有TEFLON。所使用的导管为标准商品级和标准尺寸。例如,可以使用市售的内径为0.042英寸或0.028英寸导管。本领域技术人员知道,导管的尺寸应该与所使用的接插件、设备以及容器的尺寸相匹配。在本研究中,使用了上述提到的汉密尔顿公司的接插件。这些接插件的外径为0.074英寸。优选地使用这些接插件,因为它们容许使用较大直径(内径)的导管,由于这样的导管可以降低对系统的背压,从而容许较大的流率,所以是优选的。也可以使用内径较小的导管,但只能在低流率下。

本系统的其他实施例在附图7~9中有说明。当然,其他的操作方法也符合这些实施例。但是,所有的这些实施例和操作方法都是通用的,因为它们均无气体或空气,并既可以用正向记数方式,也可以用反向记数方式操作。

实施例系统200中包括三个在附图6中表示的注射泵210、212、214。此实施例用三个泵210、212、214来降低母液对洗涤溶液和洗提溶液的污染。

此实施例200包括第一多通阀216,具有至少三个端口218、220、222,分别与第四多通阀224、母液226(可以储存在容器中)和第一泵210流体连接。替代系统也可以包括通过第二和第三多通阀232和234而分别与洗提溶液228和洗涤溶液230流体连接的第二和第三泵212和214。第二和第三泵212和214同时也与第四多通阀224流体连接。第二和第三多通阀232和234可以是,例如,三个或四个端口的选择阀。

第四多通阀224可以包括四个侧端口236、238、240、242和一个公用端口244。侧端口236、238、240、242分别与废料容器246,和通过第一、第二和第三多通阀216、232、234而与第一、第二和第三泵210、212、214流体连接。公用端口244与分离器248流体连接。

分离器248在首端250与第四多通阀224流体连接,在另一端254与第五多通阀252流体连接。第五多通阀252包括四个侧端口256、258、260、262和一个公用端口264。侧端口256、258、260、262分别与母洗涤溶液收集容器266、废料容器246、母液226和保护分离器268流体连接。如前文实施例,保护分离器268与产品容器270流体连接。

需要指出的是,在本实施例中,使用者是通过人工的方法将母洗涤溶液收集容器266中的溶液转移至母液容器226中。实施这一操作的目的是为了,在分离过程中循环引入至母洗涤溶液收集容器266中的残余母放射性核素。使用者也可以通过,在将所含物转移至母液容器之前,从母洗涤溶液收集容器中移除洗涤溶液来富集残余母放射性核素溶液。

附图7中说明了另一个类似于附图6中所示的实施例300。此实施例300包括第一、第二和第三泵310、312、314,这三个泵通过第一、第二和第三阀322、324、326分别与母液316、洗涤溶液318和洗提溶液320流体连接。优选地,第一、第二和第三阀322、324、326有三个端口,也可以是,例如,具有一个公用端口和两个侧端口的两端口分配阀。此外,也可以使用三端口或四端口的选择阀。

第一泵310与具有四个侧端口330、332、334、336和一个公用端口338的第四多通阀328流体连接。侧端口330、332、334、336与生长容器340、临时储存容器342、废料容器344和第五多通阀346流体连接。公用端口338与第一泵310流体连接。

第五多通阀346具有三个侧端口348、350、352和一个公用端口354。三个侧端口348、350、352与第二和第三泵312、314以及第四多通阀328流体连接。公用端口354与分离器356的首端358流体连接。

分离器356的另一端360与第六多通阀362流体连接,第六多通阀362包括三个侧端口364、366、368和一个公用端口370。三个侧端口364、366、368与废料容器344、临时储存容器342和保护分离器372流体连接,保护分离器372的另一端与产品容器374流体连接。

附图7中的实施例300容许自动循环通过使用生长容器340和临时储存容器342而与洗涤溶液相混合的残留母放射性核素溶液。循环残留母放射性核素溶液的步骤与在上文第一种反向记数方式中所描述的步骤相似。

附图8说明的是附图6中实施例200的另一种方式,此系统包括辐射屏蔽罩272。可以用辐射屏蔽罩272将第一泵210、分离器248以及第一、第四和第五阀216、224、252屏蔽起来。

在附图8中所示的母液226可以放置在辐射屏蔽罩272之外,因为可以将母液226放置在较小的分离屏蔽罩内(未示出)。此外,也可以将母液226放置在辐射屏蔽罩272之内。如上文所述,无论是将母液226放置在一个较小的分离屏蔽罩内(未示出)还是放置在辐射屏蔽罩272之内,典型地,均依据应用情况(也就是所产生放射线的类型)。

产物容器270也可以放置在屏蔽罩272之中或之外。如果产物容器270放置在屏蔽罩272之中,那么,当每次使用产物时,就必须打开屏蔽罩272,这样,就有潜在的可能性使得使用者暴露在产物和母体的辐射中。如果产物容器270放置在屏蔽罩272之外(如附图8所示),那么,就可以将其放置在其自身的分离屏蔽罩(未示出)中,这样,使用者就未必要必须打开屏蔽罩272。

如上文所讨论,可以不要屏蔽罩。通常情况下,用树脂玻璃和玻璃面通风柜便足以屏蔽α、β放射源。

也可以用一台处理器274,通过如附图8中所示的接口模块276和电源278,类似于附图4中所示的配置,来控制本实施例中的阀216、224、232、234、252和泵210、212、214(附图6)。接口模块276和电源278依次与处理器274连接。控制系统可以包括处理器274、存储器280、输入装置282和输出装置284,如一台图形显示器。

本领域技术人员可以容易地理解,可以对包括一个泵和三个泵的实施例10、200、300的本系统做各种不同的改动,而这些改动也均在本发明的范围和精神之内。使用各种不同实施例的方法类似于如上文所描述的第一种反向记数和传统记数方式。

例如,下面列出了一种以反向记数方式操作附图6实施例的方法的步骤。同样,附图6中的箭头表明了每一个泵中活塞的运动方向。

步骤如下:

第一步:将母液226装入第一泵210中。为了实现此转移,第一多通阀216将端口2与端口3(220、222)连接,同时第一泵210向下运动。

第二步:将母液226排放至分离器248中。所需子放射性核素被分离介质保留,同时,含有母放射性核素和杂质(污染物)的溶液流经分离器248。含有母放射性核素和杂质的溶液被引入至母液容器226中。为了实现此转移,第一多通阀216将端口1与端口3(218、222)连接,第四多通阀224在第二个位置238,第五多通阀252在第二个位置258,同时第一泵210向上运动。

第三步:将第三泵214中充满洗涤溶液230。在此步骤中,第三阀234将第三阀的端口1与端口3(288、292)连接,同时第三泵214向下运动。

第四步:使洗涤溶液流经分离器248以从分离介质中洗涤任何残余母放射性核素。将残余母放射性核素与洗涤溶液引入至母洗涤溶液收集容器266中。为了实现此转移,第三多通阀234将第三多通阀的端口2与端口3(290、292)连接,第四多通阀224在第四位置242,第五多通阀252在第一位置256,同时第三泵214向上运动。

第五步:将第二泵212中充满洗提溶液228。在此步骤中,第二多通阀232将第二多通阀的端口1与端口3(294、298)连接,同时第二泵212向下运动。

第六步:将洗提溶液排经分离器248,以洗提已捕获的子放射性核素,然后,将子放射性核素引入至保护分离器268中。子放射性核素流经保护分离器268,期间,保护分离器268捕获任何残留母放射性核素。一种基本上不含杂质的子放射性核素溶液被引入至产物容器270中。为了实现此转移,第二多通阀232的端口2与端口3(296、298)连接,第四多通阀224在第一位置236,第五多通阀252在第四位置262,同时第二泵212向上运动。

第七步:将第三泵214中充满洗涤溶液230。在此步骤中,第三阀234的端口1与端口3(288、292)连接,同时第三泵214向下运动。

第八步:将洗涤溶液引入分离器248以从分离器和导管中洗涤任何洗提溶液。在此步骤中,任何残余母放射性核素和洗涤溶液被引入至废料容器246中。为了实现此转移,第三多通阀234的端口2与端口3(290、292)连接,第四多通阀224在第四位置242,第五多通阀252在第三位置260,同时第三泵214向上运动。

第九步:将母液在母液容器226中保留预定时间,以便使母放射性核素发生衰减,产生所需的子放射性核素。

第十步:重复步骤1~步骤9。

化学纯度对于安全和有效的医疗操作非常重要,因为,在使用之前,放射性核素通常与生物定位试剂共轭结合。为了尽可能地降低辐射降解对化学药品和产品的放射性核素纯度的副作用,分离柱的使用可以为一次性,这样,辐射降解产物就不会积累,从而影响后续的纯化操作。在附图9描述的实施例中,分离和保护柱902、904被放置在模块单元900中。模块单元900带有连接器906,连接器906的两端分别与分离器和保护柱连接。

附图10描述了一个可用于本系统的外罩1000,在外罩1000中,含有可拆装连接的分离器和保护柱的模块单元1002。这样就能够使由于一次性分离柱的使用而带来的模块单元1002的互换变得容易。在此实施例中隔室1008的使用是为了罩住可移动连接的产物容器,同时,隔室1004和1006可以容纳,例如,母液、洗提溶液、生长容器和/或储存容器和废料容器。

附图11所示的外罩1100中容纳有,装有放射性母源溶液的容器1104、装有洗涤溶液的容器1106以及装有洗提溶液的容器1108。图中也描写了产品容器1110和分离器模块1102。所有这些容器都可以拆卸并容易地从外罩1100中取出来。这特别适合于一次性使用分离器模块1102,虽然,如果需要,对于多次使用的分离器模块,也可以将其保留在外罩1100中。

附图12描述了本系统的另一个实施例。在此实施例中,主单元1200包含有可移动的容器1202,此容器可以装有洗涤溶液、母液和洗提溶液等。如单元1204所描述,模块单元1208借助连接器1206与系统连接。可以用各种不同类型的连接器来连接模块单元1208。在此实施例中的模块单元1208利用导向装置1210和定位针孔1212与主单元1200可滑动地啮合。模块单元1208也带有用以移出所需子放射性核素的下拉式舌片1214。在附图12中也描述了一个拉出式收集盘1216。

附图13描述了本发明方法的一个实施例,用于从基本上为第一和第二组分的伴生溶液中分离出第一组分。在第一步1300中提供基本上为第一和第二组分的溶液。在步骤1302中,溶液被转移至第一个容器中。在步骤1304中,溶液与对第一组分具有高亲和力的分离介质接触,形成第一组分富集的分离介质和第一组分贫乏的溶液。在步骤1306中,第一组分富集的分离介质和第一组分贫乏的溶液从分离介质除去。在步骤1308中,所需第一组分从第一组分富集的分离介质中被洗提出来,形成基本上为第一组分的第一溶液。

本方法也可以在软件或硬件和软件的组合中实现。例如,附图13所描述的方法就可以包含在一种计算机可读介质中,该计算机可读介质包含用于从基本上为第一组分和第二组分的伴生溶液中分离出第一组分的嵌入式计算机程序代码段。此计算机程序代码段可以为:

将溶液转移到第一个容器的第一个计算机程序代码段;

将溶液与对第一组分具有高亲和力的分离介质接触的第二个计算机程序代码段,形成第一组分富集的分离介质和第一组分贫乏的溶液;

将第一组分富集的分离介质和第一组分贫乏的溶液从分离介质中除去的第三个计算机程序代码段;和

将所需第一组分从第一组分富集的分离介质中洗提出来的第四个计算机程序代码段,形成基本上为第一组分的第一溶液。

附图14描述了本发明方法的另一个实施例,用于从包含离子种和至少一种组分的溶液中分离出离子种,形成一种基本上不含杂质的离子种产品溶液。在第一步1400中,提供一种含有离子种和至少一种组分的溶液。在步骤1404中,将此溶液与对离子种具有高亲和力的第一种分离介质接触,形成离子种富集的分离介质和离子种贫乏的溶液。在步骤1406中,将离子种贫乏溶液与对最初存在于离子种混合物中的其他组分具有高亲和力的第二种分离介质接触,形成基本上不含杂质的离子种溶液。

这种方法也可以在软件或硬件和软件的组合中实现。例如,可以将在附图14中描述的方法包含在一种计算机可读介质中,该计算机可读介质包含用于从包含离子种和至少一种组分的溶液中分离出离子种,形成一种基本上不含杂质的离子种产品溶液的嵌入式计算机程序代码段,此计算机程序代码段可以是:

将含有至少一种组分的溶液转移到生长容器的第一个计算机程序代码段;

将溶液与对离子种具有高亲和力的第一种分离介质接触的第二个计算机程序代码段,形成离子种富集的分离介质和子体贫乏的溶液;和

将子体贫乏溶液与对母放射性核素具有高亲和力的第二种分离介质接触的第三个计算机程序代码段,形成基本上不含杂质的子放射性核素溶液。

无需进一步地说明,相信本领域技术人员在利用上文描述的基础上能够最大程度地实施本发明。因此,下文中所说明的一些具体的优选实施例仅仅起一个说明性作用,在任何情况下都不应该理解为对本发明其他公开的限制。

实施例1:从铅、钍和铀的混合物中分离钡

可以通过从一根含有纯化铅-212(半衰期为10.6小时)的铅选择性色谱柱中“提取”或洗脱出铋-212来制备用于放射性治疗目的用的铋-212。因为铅-212的半衰期较短,所以必须在单天内,从其长寿命的母体中得到,通常为224镭(半袁期为3.6天)。下面所做研究的目的是为了说明从232铀、228钍和224镭的混合物中选择性地分离出铅-212的可行性。天然产生的238铀、232钍、钡和铅被用作铅-212母体的替代物(stand-in)。使用Eichrom技术有限公司提供的超级铅(锶)选择性树脂,利用上文中所描述的自动放射性核素分离单元来实现分离。

将含有超级铅(锶)选择性树脂且床体积为0.29ml的柱子放置在分离单元中。下表列出了分离条件以及结果:

柱子的床体积:0.29ml(截面积为0.125cm2)

流率:0.2ml/min或1.6ml/cm2/min

树脂:粒径为20~50μm

                                μg

收集到的馏分     体积    Ba   Pb   Th   U

                 (mL)

从3M洗脱         10      60   0    185  191

硝酸负载

0.5M硝酸洗涤     10      41   0    7    11

水洗提           2.0     0.8  0    0    0

0.05M NH4      1.0     0    156  0    0

柠檬酸盐洗提

0.05M NH4      1.0     0    6    0    0

柠檬酸盐洗提

0.05M NH4      1.0     0    0    0

柠檬酸盐洗提

总收集量                 102  162  192  202

                            μg

            体积    Ba    Pb    Th    U

进料溶液    10mL    101   162   191   202

从上面的数据可以看出,铅选择性树脂对Ba、Th和U的保留不显著。另一方面,在0.5M硝酸中对铅的保留很大,但是容易用洗脱液柠檬酸铵洗提出来。在铅的馏分中没有发现Ba、Th或U就说明,去杂指数大于103。质量平衡,也就是说,所加入的每一种组分的量与所回收的量的比在实验误差范围之内。

实施例2:利用TEVA树脂从铀中分离出钍

从铀(U)中分离出钍(Th)对生产铋-212(Bi-212)发生器很重要。铋-212的长寿命母体同位素为钍-228(半衰期为1.9年)和铀-232(半衰期为70年)。50毫居里的铋-212发生器系统需要2.34毫克的铀-232,但只需要6.09微克的钍-228。从铀中分离出钍,可以开发出较小的更加有效的铋-212发生器系统,因为用于保留钍-228的色谱柱要比用于铀-232的色谱柱小得多。

使用Eichrom技术有限公司提供的TEVA树脂可以非常有效地从铀中分离出钍。钍被1~6M的硝酸溶液牢牢地保留住,而铀却保留不牢,并在装载和洗涤时从TEVA树脂柱中轻易地被洗脱出来。

从铀-232中分离钍-228可以用钍-232和铀-238来模拟,它们是这些元素在自然界中最稳定的同位素。可以用基本上如附图2所示的分离系统来实现上述分离。使用床体积为150μL的柱子。下表列出了分离条件以及结果:

柱子的床体积:0.158ml(2cm×0.518cm直径)

流率:0.2ml/min或1.6ml/cm2/min

TEVA树脂:50~100μm

                               μg

收集到的馏分    体积          Th  U

                (mL)

从2M洗脱:       2            0   2137

硝酸负载:

用2.0M硝酸洗涤   0.5       0    655

用2.0M硝酸洗涤   0.5       0    226

用2.0M硝酸洗涤   0.5       0    58

用2.0M硝酸洗涤   0.5       0    16

用2.0M硝酸洗涤   2.0       0    0

用1.0M盐酸洗提   2.0       202  0

总收集                     202  3092

                             μg

进料溶液         体积(mL)  Th   U

2.0M硝酸         2.0       200  3000

在钍馏分中没有发现铀,在铀馏分中也没有发现钍。从钍中分离铀和从铀中分离钍的去杂指数分别为104和103。质量平衡,也就是说,所加入的每一种组分的量与所回收的量的比在实验误差范围之内。

实施例3:利用Dipex树脂从钡-133和铈-139(III)中分离出铋-207

可以通过从能够牢固地保留住锕-225(225Ac,锕-225的半衰期为10天)的色谱柱中“提取”或洗脱出铋-213来制备用于放射性治疗目的用的铋-213。锕-225可以含有镭-225(225Ra),因此,在装填色谱柱时,防止镭-225是非常重要的。从色谱柱中回收铋-213可以通过用带有软供电子阴离子的酸,如盐酸洗脱来进行。

下面所做研究的目的是为了说明用一个基本上如附图2所描述的分离系统,从钡-133(用钡-133来代替镭-225)和铈-139(用铈-139来代替锕-225)中分离出铋-207(用铋-207来代替铋-213)。选择Dipex萃取色谱树脂作为色谱柱用树脂,以得到所必需的选择性(参见美国专利5,854,968)。Dipex萃取色谱树脂可以从Eichrom技术有限公司购得。

用20~50μm的Dipex树脂浆液填充床体积为0.16mL的柱子。将溶解在1.0M硝酸中的7×104cpm的钡-133、2×105cpm的铈-139和3×104cpm铋-207的2.0ml混合物填装进柱子中。如所预料,钡-133迅速穿透,保留时间很短。装填进料之后,用1.0M的硝酸冲洗柱子,以便进一步除去钡-133的活性。Dipex柱子能够保留住95%以上的铈-139。其余5%的铈-139随着钡-133被冲洗掉。

当用1.0M的硝酸负载时,铋-207也被Dipex柱牢牢地保留住,但用2.0M的盐酸却可以轻易地将其从柱子上洗涤下来。另一方面,铈-139被盐酸中的Dipex树脂牢牢地保留住,在这种条件下不能被洗脱掉。使用该自动系统,93%以上的铋-207可以在钡-133和铈-139浓度较低的情况下,也即去杂指数为103~104时,得到回收。

本文中所引述的专利、申请和文章均在此引入作为参考。冠词“一”意指一个或多个。此外,术语“与......流体连接”,“与......连接”,“耦合”和“可操作地连接”意指不仅包括两个直接互相连接的部件,而且也指包括两个间接互相连接的部件,可以通过一个介于两个部件之间的其他中间部件、导线和/或导管连接。

从上文中可以看出,在不偏离本发明概念的真实精神和范围的情况下,可以进行各种各样的修改。需要指出的是,本发明中所说明的具体实施例并没有或被理解为对本发明做出了限制。本公开包括所有属于权利要求书范围内的修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号