首页> 中国专利> 在分组交换移动电话网络中利用分组交换和电路交换消息来定位用户终端

在分组交换移动电话网络中利用分组交换和电路交换消息来定位用户终端

摘要

本发明的目的是用于在分组交换移动电话网络中定位用户终端的一种方法、网络单元和系统,所述网络包括核心网络单元(SGSN,504)、基站、控制这些装置的基站控制器(501)和移动终端;该移动电话网络中的连接以分组交换方式设置。该系统包括位置单元(SMLC,505)用于确定终端的定位,它与移动电话网络的基站控制器(501)在功能上连接;基站控制器(501)和位置单元(SMLC)之间的连接是电路交换的。基站控制器(501)包括电路交换(BSC)和分组交换(PCU)功能性,用于分别处理电路交换和分组交换消息,以及包含用于在该电路交换和分组交换的功能性之间建立关联的装置(506,507),以便在该分组交换和电路交换的功能性之间传送涉及具体定位的数据。

著录项

  • 公开/公告号CN1471796A

    专利类型发明专利

  • 公开/公告日2004-01-28

    原文格式PDF

  • 申请/专利权人 诺基亚有限公司;

    申请/专利号CN01817866.9

  • 发明设计人 V·韦恩蒂宁;J·拉亚拉;

    申请日2001-10-18

  • 分类号H04Q7/38;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人程天正;罗朋

  • 地址 芬兰埃斯波

  • 入库时间 2023-12-17 15:05:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-04-17

    专利权的转移 IPC(主分类):H04Q7/38 变更前: 变更后: 登记生效日:20130326 申请日:20011018

    专利申请权、专利权的转移

  • 2005-11-16

    授权

    授权

  • 2004-04-07

    实质审查的生效

    实质审查的生效

  • 2004-01-28

    公开

    公开

说明书

技术领域

本发明涉及在分组交换的移动电话网络中的用户终端的定位。

背景

定位用户终端,即确定它的地理位置,是蜂窝无线电网络中一个重要的特征。在美国,FCC(联邦通信委员会)要求必须能够确定任何启动紧急呼叫的用户终端的位置(最精细的有50米的分辨率)。位置信息还能够利用于商业装置,例如,用于确定各种资费区或实现用于引导用户的导航服务。迄今为止位置服务(LCS)主要被开发用于例如GSM系统(全球移动通信系统)的电路交换蜂窝无线电网络中的应用。

有多种方法用于实现位置服务。在最粗略的级别上,用户终端的定位能够通过服务它的小区的标识来确定。这个信息不是非常精确,因为小区的直径可以是好几万米。

更精确的结果能够通过利用该无线电连接的定时信息(例如定时超前(TA))作为附加信息来实现。在GSM系统中,TA以大约550米的分辨率来指示用户终端的位置。问题是如果小区使用非定向天线,则用户终端的位置仅能够确定为基站周围的某一范围。具有三个单独的扇区的基站会使情况稍微好一点,但即使在这种情况下,用户终端的位置仅能够被确定为在距离基站某一距离的120度宽和550米深的扇区内。

甚至这些不精确的方法对于一些应用也是合适的,例如,对于资费区的确定。另外,更精确的方法已经得到发展。通常,这些方法根据的是一些不同的、测量通过用户终端发送的信号的基站,一个例子是TOA方法(到达的时间)。

用户终端还能够测量通过多个基站发送的信号,这种方法的一个例子是E-OTD方法(增强的观察的时间差)。在同步网络中,用户终端能够测量来自各种基站的信号的接收时刻的相互关系。在非同步网络中,通过基站发送的信号还在位置测量单元(LMU)上接收,该位置测量单元(LMU)处于一个已知的定点。用户终端的位置可以从根据时间延迟计算的几何分量确定。

另一种用于确定位置的方法是使用安装于用户终端的GPS(全球定位系统)接收机。GPS接收机可以从至少四颗绕地球运行的卫星接收信号;从这些信号中,可能计算/确定用户终端的纬度、经度和海拔高度。用户终端能够独立或得到辅助地确定位置。无线电系统的网络部件能够发送给用户终端辅助信息使得其能够更快定位,因此减少用户终端的功率消耗。辅助信息包括日期、可见卫星的列表、卫星信号的多普勒相位,和用于代码相位的搜索窗口。用户终端可以发送接收的信息到网络部件,该网络部件完成位置的实际计算/确定。在本申请中,无线电网络的网络部件指的是无线电系统的固定部分,即不包括用户终端的整个系统,或网络的指定元件(即,不是所有的网络功能都需要网络的所有元件,因此“网络”这个词也可被称为通过该网络的单个元件完成的操作)。因此,网络部件包括以多种方法相互通信的网络元件。

现有技术

先前已知的用于定位网络部件的方法,例如那些用于电路交换的GSM系统的方法,都利用SMLC(服务移动位置中心)网络元件;需要定位的网络元件之间的通信是通过在数据链路层和更高层中发送信令消息来进行的。因此,SMLC网络元件将通过请求来实现实际的定位计算/确定。

在移动始发的位置请求(MO-LR)或移动终止的位置请求(MTLR)的情况下,后者由外部客户始发,两个SCCP(信令连接控制部分)连接将启动来接入网络级的功能性;SCCP包括用于交换确定位置所需的消息的规定。一个SCCP在MSC(移动交换中心)和BSC(基站控制器)之间,而另一个SCCP在使用中的BSC和SMLC(服务移动位置中心)之间。SCCP连接的类型是被称为面向连接的类型。每个SCCP连接具有自己的、能够用于建立关联的标识符(SCCP连接ID)。

在启动了两个SCCP连接后,就可能传送位置请求到SMLC;BSC通过无线电接口在移动终端和SMLC之间发送定位消息。相同的连接还能够用于在SMLC和服务于该用户的基站之间传送BSSLAP(基站子系统链路接入协议)消息。因为引导该连接到正确的移动站(MS)是基站控制器(BSC)的责任,所以所述更高层的消息不需要包括任何有关该连接的信息或任何终端识别数据。

不可能在分组交换的网络中使用上述介绍的方法,因为没有办法利用电路交换的信令。例如,没有SCCP连接来用于这种用途。在分组交换的网络中,识别第三层连接的信息必须包括在消息中。例如,所谓的TLLI(临时逻辑链路标识)能够包括在第三层或更高层的消息中。相同的TLLI还在无线电连接中用于RLC/MAC(无线电链路控制/媒体接入控制)协议。

问题是BSC和SMLC之间的通信(后者具有Lb接口),和如何使Lb接口支持分组交换的通信。困难的部分是如何建立三方:SMLC,MS和SGSN(服务GPRS支持节点)之间的信令。SGSN已知不同于GPRS(通用分组无线业务)系统。具体的困难是PCU(分组控制单元)不能将通过Lb接口的通信和特定终端的通信关联起来。

在分组交换无线电系统中,例如GPRS或EGPRS(增强的通用分组无线业务),迄今为止还没有太关注位置服务的实施。EGPRS是基于GSM(全球移动通信系统)的、利用分组交换通信的系统。EGPRS利用EDGE(GSM演进的增强数据速率)技术来增加通信容量。除了通常供GSM使用的GMSK(高斯最小移频键控)调制外,还可能使用用于分组数据信道的8-PSK(8相移频键控)调制。最初的目标是实现例如文件复制和因特网浏览的非实时数据通信服务,但也能够实现例如用于语音和视频传输的实时分组交换服务。

为了发送上述定位方法需要的信息,分组交换的无线电系统需要在无线电系统的核心网络(例如SGSN)和用户终端MS之间建立分组交换传输信道(使用所谓的无连接协议)。因此,核心网络请求无线电系统的无线电网络(例如BSC)来启动连接。需要的信令是相对繁重和低速的。不过,在时间关键的应用中,从位置服务中快速得到用户终端的位置是很重要的。

发明内容

本发明的目的是利用合适的网络元件之间的分组交换(无连接)和电路交换(面向连接)的通信,来在分组交换的网络中定位用户终端。特别的,本发明的目的是使用基站控制器和服务移动位置中心之间的电路交换连接和其他网络元件之间的分组交换连接。在本发明中,分组交换和电路交换的功能性之间的关联在基站控制器中建立。

在本发明的优选实施例中,所述关联能够通过在分组交换和电路交换消息之间建立关联而实现,或例如通过在分组交换和电路交换协议层之间建立关联而实现。进一步的,在本发明的实施例中,关联可被建立为将分组交换消息标识符和电路交换消息标识符关联起来的一个表。

本发明的实施例利用BSC和SMLC之间基于SS7协议的信令。CCITTSS7(7号信令系统)协议是被电信运营者广泛使用的一种信令协议;网络元件之间的信令是由协议层在特定的信令信道上载送的。按照通用的7层协议模型,所使用的协议层是高度统一的。

根据本发明的第一方面,实现一种方法,用于在分组交换的移动电话网络中定位用户终端,其中为了定位该终端,通过该移动电话网络的基站控制器传送消息;该方法的特征是:为了实现定位所要求的通信,电路交换和分组交换消息均被使用;在这些消息之间建立关联,以便在分组交换和电路交换功能性之间传送涉及某一定位的数据。

根据该方法,就可能在分组交换的网络中通过利用电路交换位置服务器来实现定位。该方法的益处是SS7协议信令能够用于分组交换的定位,并且与用于现在的电路交换的定位的信令相比较,这种信令将保持不变(因为定位所需要的额外信息在传输层中传送),所以在分组交换网络中的定位能够使用来自(老)电路交换的网络(使用SS7信令)的位置中心来实现。

根据本发明的第二方面,提供一种系统,用于在分组交换移动电话网络中定位用户终端,所述网络包括核心网络元件、基站、控制该基站的基站控制器,和移动电话网络的移动终端;移动电话网络的连接被安排为分组交换方式,该系统的特征在于它包括

位置单元,用于确定该终端的定位,在功能上连接该移动电话网络的基站控制器,并且该基站控制器和位置单元之间的连接是电路交换的,所述基站控制器包括

电路交换和分组交换的功能性,分别用于处理电路交换和分组交换的消息,

用于在电路交换和分组交换的功能性之间建立关联的装置,以便在电路交换和分组交换的功能性之间传输涉及具体定位的数据。

本发明适用于在例如利用GERAN(GSM EDGE无线电接入网络)基站控制器的基于GSM的分组交换的GPRS或EGPRS无线电系统中定位。

根据本发明的第三方面,提供一种用于分组交换移动通信系统的网络元件,所述元件包括用于实现处理分组交换消息的分组交换功能性的装置;所述网络元件的特征在于它包括

用于实现处理电路交换消息的电路交换功能性的装置,和

用于在电路交换和分组交换的功能性之间建立关联的装置,以便在电路交换和分组交换的功能性之间传输涉及具体通信的数据。

本发明的优选实施例是非独立专利权利要求的主题。

根据本发明的方法和系统具有以下优点。可能避免使用不同的设备来实现分组交换的位置服务。另外,根据本发明,不需要对现有的装置进行大的改动,网络中的信令变得更统一,得到相对快的位置服务,能够在当前分组交换网络中以相对快和对于网络运营者来说相对费效合理的方法来实现。在某些情况下位置服务变得更快,不需要在该终端和位置中心之间打开特定的分组数据连接。

根据本发明的方法使得有可能在GERAN(GSM EDGE无线电接入网络)系统中,通过以适用于分组交换的方式、利用Lb接口和通过在GERAN系统的BSC和SMLC网络部件中执行适合于分组交换的协议堆栈,来实现位置服务。

附图说明

下面,通过参看附图,结合优选实施例更详细地描述本发明,其中

图1A示出了蜂窝网络的结构的例子;

图1B示出了蜂窝网络的更详细的方框图;

图1C示出了电路交换的连接;

图1D示出了分组交换的连接;

图2示出了蜂窝无线电网络的具体部分中协议堆栈的例子;

图3是示出了在定位方法中实现的操作的流程图;

图4是示出了在定位方法中实现的信令的信号时序图;

图5示出了根据本发明的基站控制器的实现的方框图;和

图6示出了根据本发明Lb接口上的电路交换协议信令。

发明的详细描述

参见图1A和1B,描述分组交换无线电系统的典型的结构,及其到固定电话网络和分组传输网络的接口。图1B仅包括了描述实施例的最重要的模块,但对本领域技术人员来说很明显,典型的分组交换蜂窝无线电系统还包括其他功能和结构,这些功能和结构在这里不需要详细描述。例如无线电系统可以是基于GSM的GPRS或EGPRS,利用宽带码分多址的通用移动电话系统UMTS,或这些系统的混合,其中网络的结构以UMTS形式概述出来,且无线电网络被称为GERAN(GSM增强无线电接入网络),其中该无线接口仍然是通常的基于GSM的无线电接口,或者是利用EDGE调制的无线电接口。

图1A和1B的描述主要是基于UMTS。移动电话系统的主要部件是核心网络CN,UMTS地面无线电接入网络(也被叫作无线电网络UTRAN)和用户终端(也被叫作用户设备UE)。CN和UTRAN之间的接口称为Iu,而UTRAN和UE之间的空中接口称为Uu。

UTRAN包括无线电网络子系统RNS。RNS之间的接口称为Iur。RNS包括无线电网络控制器RNC及一个或多个节点B,RNC和B之间的接口称为Iub。节点B的范围,也称为小区,在图1A中通过字母C标记。RNS还可以称为基站子系统(BSS),这是更传统的术语。因此无线电系统的网络部件包括无线电网络UTRAN和核心网络CN。

图1A是在很一般的级别上描述,因此通过示出GSM系统的部件的图1B来进一步阐明,该GSM系统粗略地对应于UMTS系统的每个部件。应该注意的是这里示出的描述决不是限制,而是示意的,因为各种UMTS部件的职责和功能仍然处于设计阶段。

用户终端150可以是例如固定终端、适用于车辆的终端、或便携式终端。无线电网络基础结构UTRAN包括无线电网络子系统RNS,也称为基站系统。无线电网络子系统RNS包括无线电网络控制器RNC,也称为基站控制器102,和至少一个在RNC控制下操作的节点B,也称为基站100。

基站100包括多路复用器116、多个收发机114,和控制收发机114和多路复用器116的操作的控制单元118。多路复用器116用于将由多个收发机114使用的业务和控制信道放入传输信道160。

基站100中的收发机114连接到天线单元112,该天线单元用于实现双向无线电连接Uu到用户终端150。在双向无线电连接Uu上发送的帧结构被精确地定义。

基站控制器RNC(附图标记102)包括群交换矩阵120和控制单元124。群交换矩阵120用于交换语音和数据及用于连接信令电路。由基站100和基站控制器102组成的基站系统RNS还包括代码转换器122。

基站控制器102和基站100的物理结构,及它们之间的任务的分配,能够根据实现而变化。典型的,基站100负责以上述方式实现无线电路径。基站控制器102典型的管理以下内容:无线电资源的管理、小区之间的信道切换的控制、功率调节、定时和同步以及寻呼用户终端。

代码转换器122的位置典型地尽可能接近于移动交换中心(MSC)132,因为这样语音数据便能够以移动电话系统的格式在代码转换器122和基站控制器102之间发送,从而节省传输容量。代码转换器122在用于公共交换电话网络和无线电电话网络的不同的数字语音编码格式之间转换;例如能够从固定网络中的64kbit/s格式向其他用于蜂窝无线电网络的格式(例如,13kbit/s)转换,反之亦然。这里不详细讨论需要的装置;然而应该注意的是,除语音之外没有其他数据能够在代码转换器122中进行转换。

控制单元124实现呼叫控制、移动性管理、收集统计信息和信令。

核心网络CN包括在UTRAN之外的移动电话系统基础结构。在涉及核心网络CN中的电路交换传输的设备中,图1B示出了移动交换中心132。

如在图1B所看到的,交换矩阵120能够用来通过移动交换中心132连接(黑圆点示出的)到公共交换电话网络(PSTN)134以及连接到分组传输网络142,例如GPRS网络。在公共交换电话网络(PSTN)134中,典型的终端136是常规电话或ISDN(综合业务数字网络)电话。通过例如因特网146的数据通信网络,进行从连接到移动电话系统的计算机148到连接到用户终端150的便携式计算机152的分组传输。代替用户终端150和便携式计算机152的组合,可能使用例如WAP(无线应用协议)电话或Nokia 9110通信器类型的装置,它将移动通信终端和PDA(个人数字助理)集成起来。

分组传输网络142和交换矩阵120之间的连接通过支持节点140(SGSN=服务GPRS支持节点)来建立。支持节点140的目的是在基站系统和网关节点(GGSN=网关GPRS支持节点)144之间发送分组,并在它的操作区域内保持对用户终端150的位置的跟踪。

网关节点144连接公共分组传输网络146和分组传输网络142。互联网协议或X.25协议能够用于该接口。通过使用封装,网关节点144将向公共分组传输网络146隐藏分组传输网络142的内部结构,因此从公共分组传输网络146的观点来看,分组传输网络142看上去象子网;公共分组传输网络146能够在该子网中发送分组到用户终端150并从它那里接收分组。

典型的,分组传输网络142是利用互联网协议和传送信令及用户数据的专用网络。网络142的结构能够根据运营者的不同而变化,这包括它的结构和互联网协议层之下的协议。

公共分组传输网络146能够是例如全球互联网;连接到它的例如服务器计算机的终端148想要发送分组到用户终端150。

图1C示出了如何在用户终端150和公共交换电话网络终端136之间建立电路交换传输信道。在图中,粗线示出了通过系统在空中接口170中从天线112到收发机114的数据流,然后在多路复用器116中进行多路复用,再通过传输信道160到交换矩阵120,在那里建立了通向代码转换器122的输出的连接,从那里通过在移动交换中心132中作出的连接而通到公共交换电话网络134和它的终端136。在基站100,控制单元118控制多路复用器116来实现传输,和在基站控制器102中,控制单元124控制交换矩阵120来作出正确的连接。

图1D示出了分组交换连接。便携式计算机152已经连接到用户终端UE(在图1B中附图标记150)。粗线示出了从服务器计算机148到便携式计算机152的发送数据流。当然还可能在相反的方向上发送数据,即从便携式计算机152到服务器计算机148。数据在空中接口中通过网络从天线112向收发机114流动,空中接口还称为Um接口170,并且从那里在多路复用器116中进行多路复用,然后通过在Abis接口中的传输信道(在图1B中附图标记160)到交换矩阵120,这里已经在Gb接口中建立了通向支持节点140的输出的连接;从支持节点140,经分组传输网络142通过网关节点144发送数据,网关节点144连接到公共分组传输网络146和它的服务器计算机148。

为了清楚,图1C和1D没有示出其中同时发送电路交换和分组交换的情况。不过这是完全可能和普遍的,因为不用于电路交换传输的容量能够以灵活的方式用于分组交换传输。还可能构造一种不发送电路交换数据的网络;该网络只用于分组交换数据。这就可能简化网络结构。

让我们进一步看一下图1D。UMTS系统中的不同的实体-CN,UTRAN,RNS,RNC,B-用虚线框画出。下面更详细的描述在核心网络CN中涉及分组交换传输的装置。除了支持节点140、分组传输网络142和网关节点144外,核心网络还包括网关移动位置中心(GMLC)186和归属位置寄存器(HLR)184。

网关移动位置中心186的用途是提供位置服务给外部用户188。归属位置寄存器184包括用于位置服务的用户数据和路由信息。在图1D示出的另外的位置服务装置包括服务移动位置中心182,服务移动位置中心182能够存在于所示的基站控制器RNC中,例如在它的控制部件124中;它还能够是连接到基站控制器RNC或支持节点140的单独的装置。

另外,示出了位置测量单元(LMU)180;它能够存在于基站B,例如在它的控制部件118中,或它可以是连接到基站B的单独的装置。位置测量单元180的用途是实现定位方法可能需要的无线电测量。

用于用户终端的位置测量单元180是还称为SMLC(服务移动位置中心)的网络元件。

图1D还示出了有关本申请的用户终端UE的结构部分,用户终端UE包括天线190,通过该天线,收发机192从无线电接口170接收信号。用户终端UE的操作由控制部件194控制,典型的是具有它所需的软件的微处理器。

除了这里示出的部件,用户终端UE还包括用户接口,典型的包括扬声器、麦克风、显示器和键盘及电池。在这里不再详细描述这些东西,因为与本申请无关。

这里不再详细描述基站B中的收发机的结构或用户终端UE中的收发机的结构,因为所述装置的实现对于本领域技术人员来说是很明显的。例如能够使用一般适应EGPRS的无线电网络收发机和用户终端收发机。涉及定位的操作在OSI(开放系统互连)模式的上层执行,特别是在第三层。

图2示出了作为例子的EGPRS控制平面的协议堆栈。应该注意的是实施例并不限于EGPRS。根据ISO(国际标准化组织)OSI(开放系统互连)模式已经建立了协议堆栈。在OSI模式中,协议堆栈被分为层。原则上是七层。对于每个网络元件,图2示出了在该元件中处理的协议部分。所述网络元件是用户终端MS、基站系统BSS、支持节点SGSN,和位置中心SMLC。基站和基站控制器没有单独示出,因为在它们之间没有定义接口。因此分配给基站系统BSS的协议处理原则上能够在基站100和基站控制器102之间自由分配;实际上,在这里没有使用代码转换器122,尽管它是基站系统BSS的一部分。各种网络元件通过它们的接口Um、Gb和Gn分隔开。

在每个装置MS、BSS、SGSN和SMLC中的层,逻辑上与其他装置的相应的层通信。只有最底层,物理层互相直接连接。其他层总是使用下一较低层提供的服务。因此消息必须物理地在层间垂直传送,并且只有在最底层(也称为物理层),消息在层间水平地传送。

在比特级上,实际的传输使用最底层,第一层RF,L1来实现。物理层定义用于连接进入所讨论的传输媒体的机械的、电学的和功能的特征。

接着,第二层,称为数据链路层,利用物理层的服务来实现可靠的通信,例如实现传输误差的校正。在空中接口170,数据链路层被分为RLC/MAC子层和LLC子层。第三层(称为网络层)给上层提供装置之间的数据传输和交换技术的独立性。

网络层负责建立、保持和断开连接。在GSM系统中,网络层也称为信令层。负责两个主要任务:消息路由,和用于在两个实体之间建立多个独立的、同时的连接手段。网络层包括会话管理(SM)子层和GPRS移动性管理(GMM)子层。

GPRS移动性管理子层GMM管理不直接涉及无线电资源管理的用户终端移动的结果。在固定网络中,这个子层将负责用户鉴权控制和连接用户到网络。因此,在蜂窝网络中这个子层支持用户移动性和注册,及由移动性产生的数据的管理。另外,这个子层验证用户终端的标识和授权的服务。在这个子层中的消息收发发生在用户终端MS和支持节点SGSN之间。

会话管理子层SM管理所有涉及分组交换呼叫的管理的操作,但不检测用户的移动。会话管理子层SM将建立、保持和释放连接。它包括用于用户终端150发出的呼叫和在它那里终止的呼叫的单独的程序。在这个子层中的消息收发也发生在用户终端MS和支持节点SGSN之间。

在基站系统BSS中,会话管理子层SM和移动性管理子层GMM中的消息被透明地处理,即它们只是来回地发送。

LLC(逻辑链路控制)层在SGSN和MS之间实现可靠的、加密的逻辑链路。LLC是独立的并与较低的层无关,以最小化修改的空中接口对移动电话网络的网络部件的影响。要发送的信息,及用户数据通过加密来保护。在Um和Gb接口之间,在LLC中继层‘LLC中继’中发送LLC数据。MAC(媒体接入控制)层负责以下任务:数据的多路复用和在上行链路连接(从用户终端到网络部件)和下行链路连接(从网络部件到用户终端)中的信令,管理上行链路的资源请求、和用于下行链路业务的资源的分发和定时。业务优先级的处理也是这一层的责任。RLC(无线电链路控制)层负责传送LLC层数据,即LLC帧,到MAC层;RLC拆分LLC帧为RLC数据块,并转发它们到MAC层。在上行链路方向上,RLC从RLC数据块构造LLC帧,并传送它们到LLC层。在Um接口例如在GSM系统中定义的空中接口中,将使用无线电连接实现物理层。物理层实现,例如,载波调制、被发送数据的交织和纠错、同步以及发射机功率调节。

GPRS隧道协议GTP(GPRS隧道协议)将通过不同的SGSN和GGSN之间的干线网,以隧道传输信令。如果需要,GTP也能够实现SGSN和GGSN之间的流控制。UDP(用户数据报协议)在GTP层中发送那些数据分组,它们不需要可靠的链路,例如在使用IP(互联网协议)时。在用户级,TCP(传输控制协议)也能够被使用;它提供流控制并保护那些通过它进行发送的分组不被丢失和破坏。相应地,UDP只提供对分组破坏的保护。

IP是GPRS骨干协议,它的功能包括用户数据及控制数据的路由。IP可基于IPv4协议,但稍后,会转移系统来使用IPv6协议。除了上层数据之外,BSSGP(基站子系统GPRS协议)层将载送涉及BSS和SGSN之间的路由和服务质量的信息。该信息的物理传输在FR(帧中继)层执行。NS(网络服务)根据BSSGP协议转发消息。

接着,参考图3至6,描述根据本发明的用户终端定位方法的可能的信令和它可能的使用。图3是示出了在定位方法中实现的操作的流程图,和图4是示出了在定位方法中实现的信令的信号时序图。

应该注意的是,示出的例子使用还没有在3GPP(第三代合作计划)的阶段三描述中规定的操作,因此这里使用的名称将来可能会改变。

另外,例如SMLC和基站控制器实际上可以集成在同一装置中。甚至在这种情况下也可以使用根据本发明的方法,用来使基于联系的、通到所需要的终端的连接更加方便。

操作从步骤301开始,在步骤302具有位置请求。这样的请求400,401可以是来自移动终端的MOLR请求401或来自另一网络元件的MTLR请求400。在两种情况下操作是相同的。

根据图4,位置服务的内部和外部的用户,或移动终端MS,通过发送位置服务请求400,401来请求关于某一用户终端的位置的信息,位置服务请求400,401由SGSN接收。所需的到合适的SGSN的路由信息通过特殊的路由信息请求从HLR中得到,由HLR以路由信息确认来进行确认。这个操作大家都是知道的,不再进一步讨论。根据路由信息,GMLC知道合适的SGSN来发送对于用户终端位置的请求。

在图3的下一步骤303中,所讨论的SGSN发送BSSGP消息402到分组控制器(即,基站控制器GERAN的分组交换功能性PCU),包括至少TLLI(临时逻辑链路标识)和BVCI(BSSGP虚拟连接标识符)信息。BVCI指出了其中移动终端操作的小区。

分组控制器PCU检查在步骤304中接收的BSSGP消息402,并且如果它是位置消息,就转换到BSSAP-LE协议,以便电路交换控制器,即基站控制器GERAN(见图5)的电路交换功能性BSC能够通过为消息403建立的SCCP连接而进一步发送消息403到SMLC。

在下面的步骤305中,位置请求消息403通过SCCP连接被传送到SMLC,作为使用BSSAP-LE协议的附加信息。

通过在步骤306建立的SCCP连接,SMLC接收包括所述BSSAP-LE消息的位置请求消息403;SMLC使用所需的方法完成位置请求。因为已经建立了SCCP连接,在步骤306中,SMLC能够使用SCCP连接通过基站控制器在MS方向开始通信。因为通过TLLI,基站控制器BSC知道SCCP连接和相应的分组连接之间的联系,所以能够使用合适的终端开始通信。这种通信409被用来使用请求的方法实现定位,借助于BSSAP-LE消息通过SCCP连接405返回位置信息或其他涉及位置的信息。这里发送的信息是高度地依赖于所使用的定位方法的。对于不同的方法来说,有一点是相同的:从终端MS需要某种信号(即,通过移动通信网络的rf链路传输的信号,或者来自GPS收发机的信号,这取决于所使用的定位方法),以便能够以所需分辨率确定其定位。

在步骤307,电路交换控制器BSC发送消息到分组控制器PCU,该分组控制器PCU通过BSSGP协议发送进一步要发送的消息406到SGSN。之后,释放SCCP连接。当SGSN发送返回信息407,408到请求者时,在步骤309中结束操作。

图5示出了根据本发明的实现关联的基站控制器的粗略框图。根据本发明的GERAN(BSC,PCU)基站控制器501包括用于分组交换功能性的协议堆栈502和用于电路交换功能性的协议堆栈503。基站控制器使用分组交换协议堆栈502与SGSN 504通信,且该基站控制器使用电路交换协议堆栈503与SMLC位置服务器505通信。

基站控制器501还通过空中接口Um与移动站MS通信,但为了清楚,没有在图5中示出。

控制单元506在基站控制器中控制关联,以及因而控制分组交换和电路交换通信,在存储装置507中记录涉及某一连接的分组交换和电路交换消息的标识数据(或整个位置数据)来建立关联,并在发现关联后,发送消息到其他协议堆栈的相应层。关联存储器505保存所需的信息,即它的标识数据或整个位置消息;例如,对于分组交换连接,这是对应于特殊的LCS消息的TLLI,对于电路交换连接,这是SCCP连接ID。例如(如图中所示的),这能够作为一个表来实现,其中每个分组交换连接标识符TLLI1、TLLI2、TLLI3等等对应于电路交换连接标识符SCCP-ID1、SCCP-ID2、SCCP-ID3等等。当接收到位置返回消息时,使用关联存储器507中的数据,它能够被引导(即,被修改成包含合适的标识符,并分别被转换为一个分组交换的或电路交换的消息)直接发送到另一个协议堆栈和合适的接收者。

图6示出了根据本发明的在Lb接口上使用SS7协议的连接。L1或第一层是物理层,MTP协议层用于在位置中心SMLC和基站控制器BSC(即,基站控制器GERAN的电路交换基站控制器功能性)之间的消息的发送。SCCP层实现相应层之间的虚拟连接。第三层L3优选的实现是根据BSSAP-LE协议,它起应用层传输协议的作用。

在本发明的另一实施例中,位置中心SMLC与基站控制器GERAN集成在一起。甚至在这种情况下,位置中心的优选位置是位于基站控制器的电路交换功能性中,仍然在基站控制器内实现该根据本发明的关联。

与现有技术相比,实现新特征的优选方法是基于软件的,这意味着定位方法需要相对简单的软件修改来清楚地定义无线电系统和位置服务器的网络部件中的功能。

在优选实施例中,网络的分组交换端的协议堆栈包括基于软件的装置,用于检测从分组交换网络接收的位置消息,和用于在电路交换协议控制下在电路交换网络中转换该消息来发送到合适的终端;分别的,网络的电路交换端的协议堆栈包括基于软件的装置,用于检测从电路交换网络接收的位置消息,和用于在分组交换协议下,在分组交换网络中使用合适的标识符转换该待转发的消息。

另外,根据本发明的基站控制器包括用于从分组交换网络端向电路交换网络端发送消息的装置,反之亦然。

为该定位而建立的SCCP连接能够有效地利用于实现定位的方法中,该连接能够在给出了位置响应后被释放。

尽管在上面的附图中参考实施例介绍了本发明,但很明显本发明的范围并不限制于此实施例,而是这种基于软件的实现能够在下面的专利权利要求所概括的框架下以多种方式修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号