首页> 中国专利> 数字QAM接收器的载波恢复装置

数字QAM接收器的载波恢复装置

摘要

本发明公开一种用于正交调幅(QAM)接收器的载波恢复装置,载波恢复装置包括一相位检测器、一锁控器、一锁频器、一相位环路滤波器,提供相位/频率误差信息到数值控制振荡器(NCO),以产生恢复载波,相位检测器检测由I/Q抽取器所得抽取信号的信号能量信息及相位误差信息,锁控器监测从相位检测器输出的信号能量,并将抽取信号分成两个部份:有效部分及无效部分,输出有效信号的控制标记到锁频器和相位环路滤波器,可以达到大范围的搜索及良好的追踪效果,锁控器在三个运算阶段中控制锁频器及相位环路滤波器的运算,由锁频器和相位环路滤波器分别得到的检测频率偏差和相位偏差将被馈入数值控制振荡器,以恢复载波偏差。

著录项

  • 公开/公告号CN1464708A

    专利类型发明专利

  • 公开/公告日2003-12-31

    原文格式PDF

  • 申请/专利权人 矽统科技股份有限公司;

    申请/专利号CN02122280.0

  • 发明设计人 邱荣樑;

    申请日2002-06-03

  • 分类号H04L27/38;

  • 代理机构北京市柳沈律师事务所;

  • 代理人王志森

  • 地址 台湾省新竹科学工业园区

  • 入库时间 2023-12-17 15:05:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2010-08-04

    未缴年费专利权终止 IPC(主分类):H04L27/38 授权公告日:20060809 申请日:20020603

    专利权的终止

  • 2006-08-09

    授权

    授权

  • 2004-03-10

    实质审查的生效

    实质审查的生效

  • 2003-12-31

    公开

    公开

  • 2002-08-28

    实质审查的生效

    实质审查的生效

说明书

                           技术领域

本发明有关于一种应用于集成电路或接收系统中的载波恢复装置,特别是指一种应用于正交调幅(quadrature amplitude modulation,QAM)接收器的载波恢复装置。

                           背景技术

在一通信系统中,位于发送端和接收端的各本机振荡器间无可避免地总是存在有频率偏差及相位偏差,针对正交调幅系统,这种偏差会造成信号方位图的旋转及偏斜,而严重地破坏了传输的信号。

请参阅图1A至图1C,这三张图显示了解调QAM-16信号的三种信号方位图,其中图1A是理想的信号方位图,图1B是因为发送端和接收端间的相位偏差造成信号方位图偏斜,而图1C则是因为发送端和接收端间的频率偏差造成信号方位图旋转,如果解调信号的信号方位图如图1B或图1C般失真,我们就无法正确地解码这些解调信号以获得原始的信息,因此,很多研究都朝向解决这些问题而努力。

请参阅图2,这张图是传统正交调幅接收器的功能方块图,调谐器11先将接收到的RF信号转换成中频(intermediate frequency,IF)信号,然后利用模拟数字转换器12以取样间隔T对其进行取样及数字化,然后电压控制振荡器(voltage controlled oscillator,VCO)13进一步将已数字化的中频取样转换成一基带(baseband)信号,适当地过滤掉其中不需要的高频部分,如此所得到就是解调信号,可是如果电压控制振荡器13的中心频率与中频载波不同时,基带信号的同相波段和正交波段间会出现串音(cross talk)现象,载波恢复装置14就是根据这些载波信息来估计Δθ[n]的值,让电压控制振荡器13调整其相位,以改善基带取样的串音现象,美国专利号5,058,136、5,519,356、5,940,450公开了一些有关这类装置的传统载波恢复方法,其提供与相位偏差实质相关的参数,用以修正接收端的本机振荡器,好消除相位偏差,然而,如果另外同时存在有频率偏差,要同时修正相位偏差和频率偏差,就必须要用到更多的参数和修正步骤,来修正有关相位偏差的部分,因此为了修正系统并使系统收敛,要花掉很长的时间,再者,修正速率和结果精确度间的取舍也不易掌握。

                           发明内容

本发明的目的是提供一种载波恢复装置,可以同时改善相位偏差与频率偏差的问题,并兼顾修正速率与结果精确度。

本发明有关一种应用于通信系统解调端的载波恢复装置,在一优选实施例中,载波恢复装置位于供接收载波之用的正交调幅接收器之中。

根据本发明的第一构想,载波恢复装置包括相位检测器、锁频器、锁控器。相位检测器是用于检测待解调信号的第一部份和第二部份,并根据第一部份和第二部份间的相互关系输出一相位误差参数;锁频器与相位检测器电连接,用于响应相位误差参数而产生一频率调整值和一频率误差估计值;锁控器与锁频器电连接,根据频率调整值及第一设定值的比较结果而输出第一标记状态信号到锁频器,并响应第一标记状态信号而控制频率误差估计值的改变状态,频率误差估计值是根据改变状态来进行处理的,将提供到通信系统解调端的载波频率产生器,以产生恢复载波。

最好,相位检测器会响应正交调幅信号的第一部份和第二部份而更进一步输出一功率参数到锁控器,锁控器并根据功率参数和第二设定值的比较结果而输出第二标记状态信号,当功率参数不小于第二设定值时,第二标记状态信号指示一有效状态。

最好,在第二标记信号指出有效状态之前不会先比较频率调整值和第一设定值。

最好,载波恢复装置更进一步包括相位环路滤波器,其与相位检测器和锁控器电连接,用于响应相位误差参数而输出相位误差估计值,并从锁控器接收第三标记状态信号,根据频率调整值及第三设定值的比较结果,控制相位误差估计值的改变状态。

同样地,在第二标记信号指出有效状态之前不会先比较频率调整值和第三设定值。

在一实施例中,第三设定值比第一设定值大,当频率调整值大于第一设定值时,第一标记状态信号指示锁频器位于作用状态,而当频率调整值不大于第一设定值时,第一标记状态信号指示锁频器位于无作用状态。当频率调整值不大于第三设定值时,第三标记状态信号指示相位环路滤波器位于作用状态,而当频率调整值大于第三设定值时,第三标记状态信号指示相位环路滤波器位于无作用状态。

当第一标记状态信号指示锁频器位于无作用状态时,频率误差估计值的改变状态指示保留频率误差估计值的原先值;相反地,当第一标记状态信号指示锁频器位于作用状态时,则频率误差估计值的改变状态表示要导入一个频率调整值的因子来更新频率误差估计值。

最好,锁频器会根据相位误差参数和第四设定值的比较结果而输出一平均频率误差,锁频器包括计数器,当计数器计数到一预定值,锁频器会响应频率调整值和平均频率误差的正负值而产生频率误差估计值,当相位检测器输出的连续三个平均频率误差有同样的正负值,则将频率调整值加倍,如果连续三个平均频率误差正负相间,则将频率调整值减半。

另一方面,当第三标记状态信号指示相位环路滤波器位于无作用状态时,相位误差估计值的改变状态表示保持相位误差估算值为原先值;相反地,当第三标记状态信号指示相位环路滤波器位于作用状态,则相位误差估计值的改变状态表示需更新相位误差值,其通过导入输入相位环路滤波器的搜索频宽因子来达到。

最好,相位环路滤波器包括一次滤波器和多任务器。一次滤波器与相位检测器电连接,用于接收相位误差参数,并处理相位误差参数和搜索频宽,而得一更新的相位误差估计值;多任务器与一次滤波器电连接,响应第二和第三标记状态信号,从原先的相位误差估计值和更新的相位误差估计值两者中择一输出。

最好,载波频率产生器是一个数值控制振荡器(numerically controlledoscillator,NCO)。

根据本发明的第二观点,用于正交调幅接收器的载波恢复装置包括一个相位检测器,响应正交调幅信号的同相和正交部份而输出一相位误差参数;一个锁频器,与相位检测器电连接,用于响应相位误差参数而产生一频率调整值和一频率误差估计值;一个相位环路滤波器,与相位检测器电连接,用于响应相位误差参数而输出一相位误差估计值;以及一个锁控器,与锁频器及相位环路滤波器电连接,根据频率调整值及第一设定值的比较结果而输出第一标记状态信号到锁频器,并根据频率调整值及第二设定值的比较结果而输出第二标记状态信号到相位环路滤波器,以响应第一标记信号而控制频率误差估计值的第一改变状态,同时响应第二标记信号而控制相位误差估计值的第二改变状态,这里是分别根据第一改变状态和第二改变状态来处理频率误差估计值和相位误差估计值,将其提供到通信系统解调端的载波频率产生器,以产生一恢复载波。

最好,相位检测器还会响应正交调幅信号的同相及正交部份而输出一功率参数到锁控器,并根据功率参数及第三设定值的比较结果而输出第三标记状态信号,如果功率参数不大于第三设定值,则第三标记状态信号指示一有效状态,在第三标记状态信号指示为有效状态之前不会先比较频率调整值及第一设定值。

                           附图说明

本发明通过下列附图及优选实施例的详细说明,得以更深入的了解:

图1A至图1C是解调QAM-16信号的三种信号方位图;

图2是传统正交调幅接收器的功能方块图;

图3是本发明正交调幅接收器的功能方块图;

图4是本发明载波恢复装置的优选实施例的运算方块图;

图5A是图4中相位检测器的优选实施例的运算方块图;

图5B是图4中相位检测器的另一优选实施例的运算方块图;

图6是说明图4中锁控器32运算原则的流程图;

图7是64-AQM信号的方位图,加上根据本发明所选择的供信号能量检测使用的预先设定值;

图8是256-AQM信号的方位图,加上根据本发明所选择的供信号能量检测使用的预先设定值;

图9A和图9B是说明图4中锁频器33运算原则的流程图;

图10是图4中相位环路滤波器的运算方块图;以及

第十一图是说明图10中相位环路滤波器34运算原则的流程图。

附图中各组件标号说明如下:

11、21:调谐器         12、22:模拟数字转换器

13:电压控制振荡器       14、24:载波恢复装置

23:数值控制振荡器       31:相位检测器

32:锁控器               33:锁频器

34:相位环路滤波器       331:计数器

341:一次滤波器          342:多任务器

                        具体实施方式

如上所述,如果在发送端和接收端的各本机振荡器间存在有相位偏差或频率偏差时,正交调幅信号的方位图会有偏斜或旋转的现象,换句话说,只要其间有相位偏差或频率偏差存在,由数字正交调幅接收器的I/Q抽取器所抽取出来的同相信号‘I’和正交信号‘Q’间会有串音现象,因而降低其性能,所以必须要用载波恢复装置检测位于发送端和接收端本机振荡器间的频率及相位偏差,以补偿信号方位图的偏斜及旋转情况。

我们先解释载波偏差的情形,请参阅图3,这张图是本发明正交调幅接收器的功能方块图,正交调幅接收器包括一个调谐器21,可以将接收到的RF信号降频转换成中频信号,然后模拟数字转换器22对这些信号进行取样及数字化,获得取样时间为T的不连续信号,每一个经过数字化的取样x[n]可以写成 >>x>[>n>]>=>Re>{>>(>I>[>n>]>+>jQ>[>n>]>)>>·>>e>>j>2>π>>f>c>>nT>>>}>,>>>其中fc是中频载波的中心频率,数值控制振荡器23会进一步将数字化的中频取样降频转换成基带信号,接着适当地滤除掉不需要的高频部份,根据系统的传输速率(符号k),过滤后的信号经过转换,会具有新的取样速率,如此即解调完估计信号([k],)。然而,如果数值控制振荡器23和中频载波的中心频率间存在有频率偏差Δf[n]及相位偏差Δθ[n],则降频转换后的基带信号内同相波段和正交波段间会有串音现象发生,这种影响说明如下。

有载波偏差Δf[n]和Δθ[n]的数字化中频取样可以写成 >>x>[>n>]>=>Re>{>>(>I>[>n>]>+>jQ>[>n>]>)>>·>>e>>j>[>2>π>>(>>f>c>>+>Δf>[>n>>]>)>>nT>+>Δθ>[>n>]>]>>>}>,>>>或另外写成I[n]·cos[2π(fc+Δf[n])nT+Δθ[n]]-Q[n]·sin[2π(fc+Δf[n])nT+Δθ[n]]。

如果没有使用任何的载波恢复装置,信号会产生讨厌的扭曲现象:

I′[n]=I[n]·cos(2π·Δf[n]·nT+Δθ[n])-Q[n]·sin(2π·Δf[n]·nT+Δθ[n])

Q′[n]=Q[n]·cos(2π·Δf[n]·nT+Δθ[n])+I[n]·sin(2π·Δf[n]·nT+Δθ[n])。

我们必须要使用载波恢复装置24来估计偏差Δf[n]和Δθ[n],通过这些载波信息,数值控制振荡器23可以调整其频率及相位,以消除有害的旋转及基带取样(I[n],Q[n])的串音现象。

请参阅图4,这张图是本发明载波恢复装置优选实施例的功能方块图,载波恢复装置包括相位检测器31、锁控器32、锁频器33、相位环路滤波器组件34。相位检测器31从信号中抽取出的同相部份[k]和正交部份中产生两种信息,其中的一的抽取信号([k],)检测能量( >ver>>I>^>>>>[>k>]>>2>>+ver>>Q>^>>>>[>k>]>>2>>>>)被馈入锁控器32,另一检测相位误差“cur_phase”则被送至锁频器33和相位环路滤波器34,锁控器32利用控制信号“FL_out_flag”、“PLF_out_flag”和“valid_flag”主导锁频器33和相位环路滤波器34的状态,藉以控制其搜索及追踪模式,这部份我们将于稍后加以说明;同时,锁频器33反馈其工作状态FSS到锁控器32,然后,锁频器33和相位环路滤波器34分别输出Δf[k]和Δθ[k]到数值控制振荡器23(图3)。

现在请参阅图5A,这张图是图4中相位检测器31的优选实施例的运算方块图,我们可以将[k]和视为复数向量 >ver>>I>^>>[>k>]>+>jver>>Q>^>>[>k>]>,>>>抽取信号在方位图上的象限与另一复数向量 >>sign>>(ver>>I>^>>[>k>]>)>>+>j>·>sign>>(ver>>Q>^>>[>k>]>)>>>>相同,就是利用抽取信号中同相部份和正交部份的正负号来决定其象限,我们可以利用下式导出这两个复数向量间的相位关系: >>>(ver>>I>^>>[>k>]>+>jver>>Q>^>>[>k>]>)>>/>>(>sign>>(ver>>I>^>>[>k>]>)>>+>j>·>sign>>(ver>>Q>^>>[>k>]>)>>>>>

经过正常化(normlization)及简化,我们选择虚数部份作为相位误差信息,公式为: >ver>>Q>^>>[>k>]>·>sign>>(ver>>I>^>>[>k>]>)>>-ver>>I>^>>[>k>]>·>sign>>(ver>>Q>^>>[>k>]>)>>/>>2>·>>(ver>>I>^>>>>[>k>]>>2>>+ver>>Q>^>>>>[>k>]>>2>>)>>)>>>>

相位检测器31将相位误差信息cur_phase传送到锁频器33和相位环路滤波器34,并将检测信号能量 >ver>>I>^>>>>[>k>]>>2>>+ver>>Q>^>>>>[>k>]>>2>>>>传送到锁控器32,以供进一步的判断是否接受此抽取信号。图5B的相位检测器比图5A更为简化,其中省略了一些数学预算,改以常数CV取代。

根据本发明,锁频器33和相位环路滤波器34不是一直都处在运算状态下,本发明的载波恢复装置分成三个主要的运算阶段,第一是在搜索模式下、第二是在搜索及追踪合并模式下、第三是在追踪模式下。假设当载波恢复装置开始激活时,中频的频率偏差大到几万赫兹,这时同相和正交部份的信号方位图会严重旋转,而这时相位偏差的估计值Δθ[k]对补偿载波偏差没有什么帮助,所以在第一阶段中,只有锁频器33是有作用的,以取得频率偏差的信息,而锁控器32则控制相位环路滤波器34处于无作用状态。当估计频率的变化已经被拉至较小的范围,相位环路滤波器34开始加入运算线,进行快速搜索,换句话说,在第二阶段中,锁频器33和相位环路滤波器34同时作用。经过一段处理时间的后,当锁频器33趋向稳定,估计频率的变化也变得很小,此时微调相位环路滤波器34以补偿剩下的相位误差,的后,锁控器32关闭锁频器33,固定锁频器33的输出值Δf[k],避免载波恢复装置产生不必要的震动,在第三阶段中,只有相位环路滤波器34有作用。

图6的流程图说明锁控器32的运算原则,在本发明的载波恢复装置中,不是所有的抽取信号([k],)都会被用来搜索频率和相位误差信息,如果信号能量 >ver>>I>^>>>>[>k>]>>2>>+ver>>Q>^>>>>[>k>]>>2>>>>比预定的设定值“PWR_THRES”小,载波恢复装置会保留原有的Δf[k]和Δθ[k]值,本装置聚集能量大于预先设定值的信号,可以加强系统免受新增噪声的干扰。

有关选择64-QAM和256-QAM的设定值“PWR_THRES”请参考图7和图8的例子,设定值“PWR_THRES”的选择方式是要让方位图中位于角落的抽取正交调变信号 >ver>>I>^>>[>k>]>+>jver>>Q>^>>[>k>]>>>中能有适当的数量进入载波恢复装置,如果设定值“PWR_THRES”的选择适当,可以进行相当快速的搜索,本领域技术人员会知道快速搜索会在检测相位误差中加入噪声,利用一连串检测相位误差的平均值可以滤除掉这些噪声。

请再参阅图6,锁控器32从相位检测器31接收检测信号能量,如果检测信号能量大于设定值“PWR_THRES”,则将控制信号“valid_flag”设成“TRUE”,相反地,如果检测信号能量没有大于设定值“PWR_THRES”,则将控制信号“valid_flag”设成“FALSE”。当控制信号“valid_flag”为“TRUE”时,执行前面所叙述的三阶段运算,锁控器32会监测锁频器33的输出“FSS”,并与设定值“PLF_THRES”和“FL_LOCK”比较,其中“PLF_THRES”的值大于“FL_LOCK”。“FSS”大于预先设定值“PLF_THRES”表示在局部数值控制振荡器和中频载波频率间仍存在有很大的频率偏差,这时,锁控器32会强制载波恢复装置保持在搜索阶段,将控制信号“FL_out_flag”设成”TRUE”,让锁频器33作用,同时控制信号“PLF_out_flag”被设定为“FALSE”,使相位环路滤波器34没有作用。当“FSS”等于或小于设定值“PLF_THRES”,但是仍然大于另一设定值“FL_LOCK”(其定义小于“PLF_THRES”)时,锁控器32命令载波恢复装置进入第二运算阶段,将控制信号“PLF_out_flag”设成“TRUE”,令相位环路滤波器34开始作用。如果“FSS”等于或小于这个第二设定值“FL_LOCK”,那就是要进入第三运算阶段了,载波恢复装置将控制信号“FL_out_flag”设成“FALSE”,强制关闭锁频器33。

图9A和图9B的流程图说明锁频器33的运算原则,当载波恢复装置激活后,一开始在步骤A中就先将锁频器33内的所有控制标记设成预定值,起始条件为:

  count_pnt=0

  over_flag=“FALSE”

  AFE=0

  pre_AFE=0

  FSS=FSS_INIT

  sflag1=0

  sflag2=0

  Δf[0]=0

在步骤91中,锁频器33首先从锁控器32检测控制信号“FL_out_flag”,如果控制信号“FL_out_flag”是“FALSE”,表示载波恢复装置处于第三运算阶段,要关闭锁频器33,接着在步骤92中,将频率调整步数值“FSS”设定成预先设定值“FL_LOCK”,同时锁频器33固定输出Δf[k]为前一估计值,再来进行步骤B,输出“FSS”到锁控器32;在流程图的另一边,如果控制信号“FL_out_flag”是“TRUE”,表示载波恢复装置正处在前述的第一或第二运算阶段,在步骤93中,锁频器33内计数器331(图4)的输出“count_pnt”会加1,然后在步骤94中,锁频器33会检查控制信号“valid_flag”的状态,如果锁频器33检测到控制信号“valid_flag”为“FALSE”,则进行步骤C,这部份将在后面说明,否则,当控制信号“valid_flag”是“TRUE”时,则激活检测频率误差的功能。

在步骤96中,先从相位检测器31加载检测相位误差“cur_phase”,检测频率偏差的步骤如下:

步骤97:如果“cur_phase”的绝对值没有小于预先设定值“THRES_PHASE”,则执行步骤98,否则执行步骤101。

步骤98:检查控制信号“over_flag”,这是用来说明“cur_phase”的绝对值是否大于“THRES_PHASE”,如果“over_flag”是“TRUE”,则执行步骤99,如果“over_flag”是“FALSE”,则执行步骤100。

步骤99:将“AFE”加上“pre_FE”,作为“AFE”的更新值,然后到步骤C。

步骤100:将“pre_FE”设成设定值“THRES_PHASE”,其正负号则与“cur_phase”相同,然后同样将“AFE”加上“pre_FE”,以更新“AFE”,并将“over_flag”设成“TRUE”,进到步骤C。

步骤101:将“AFE”的值更新成“AFE”加上“cur_phase”的值,并将“over_flag”设成“FALSE”,进到步骤C。

步骤C:调整频率步骤值“FSS”,输出“FSS”和Δf[k],其步骤将在后文说明。

在图9B的步骤102中,锁频器33检查“count_pnt”的值是否到了“CAL_PNT”,如果还没,在步骤103中保留“FSS”和Δf[k]的原始值,如果“count_pnt”的值到了“CAL_PNT”,如下列步骤更新“FSS”和Δf[k]。

步骤104:检查“sflag1”和“sflag2”是否都为‘0’,如果不是,执行步骤105;如果是,在步骤106中,将“sflag2”设定为‘1’,执行步骤107。

步骤105:加载“sflag1”的值到“sflag2”,并更新“sflag1”的值为“AFE”乘以“pre_AFE”的正负号,执行步骤108。

步骤108:检查“sflag1”和“sflag2”是否都为‘1’,如果是,那表示连续三个“AFE”有相同的正负号,将“FSS”乘以2,然后执行步骤107;如果不是,执行步骤109。

步骤109:检查“sflag1”和“sflag2”是否都为‘-1’,如果是,那表示连续三个“AFE”是正负相间,在步骤111中,将“FSS”除以2;如果不是,则不改变“FSS”的值,执行步骤107。

步骤107:将“pre_AFE”设成“AFE”,将Δf[k]加上“FSS”乘以“AFE”的正负号,作为Δf[k]的更新值,然后将“count_pnt”和“AFE”的值都设成0。

在步骤112中,不管“FSS”和Δf[k]有没有被更新,锁频器33都会分别将其输出到锁控器32和数值控制振荡器23。

现在请参阅图10,图10是图4中相位环路滤波器的电路方块图,相位环路滤波器34包括一次回路滤波器341和输出多任务器342,多任务器342检测从锁控器32出来的控制信号“PLF_out_flag”和“valid_flag”,响应这些控制信号决定相位环路滤波器是要输出更新值或是原始值。请参阅第十一图的流程图,这张图说明了相位环路滤波器34的运算原则,参数“Cp”和“Ci”代表搜索频宽,如果“Cp”和“Ci”的值越大,则搜索速率也越快,但是也会产生较大的震动;相反地,如果选择较小的“Cp”和“Ci”,则震动较小,但是系统需要较长的时间收敛。我们可以在一开始的时候选择较大的“Cp”和“Ci”,然后在经过预设的处理时间后改成较小的“Cp”和“Ci”,这样可以同时达到快速搜索和较好的追踪效果。

第十一图是说明相位环路滤波器34运算原则的流程图,流程图从步骤D开始,起始条件为:

  Δθ[0]=0

  D_reg[0]=0

在步骤113中,相位环路滤波器34首先检测从锁控器32输出的两个控制信号“valid_flag”和“PLF_out_flag”,如前所述,控制信号“valid_flag”指出抽取信号是否有效,而控制信号“PLF_out_flag”指出是否应该激活相位环路滤波器34,当这两个控制信号都是“TRUE”时,执行步骤114和115,相位环路滤波器34会将相位误差信息“cur_phase”传到低通滤波器(没有画出),经过运算后,以更新其输出,这可以帮助避免新增噪声;相反地,如果“valid_flag”或“PLF_out_flag”是“FALSE”,在步骤116中,相位环路滤波器34会保持原有的输出值,然后在步骤117中,相位环路滤波器34输出Δθ[k]到数值控制振荡器23。

总结来说,即使数字正交调幅接收器有很大的频率偏差和相位偏差([-π,π]),本发明的载波恢复装置也有助于抽取未失真的信号([k],),本发明不只适用于宽广的锁定范围,同时也有快速搜索的能力,但是因为上述相位环路滤波器的收敛会导致0°、90°、180°、270°的相位不明确,所以需要额外的装置,还好现有已知的信号对准技术可以克服相位不明确的问题,或是另外可利用微分编码方法,让信号方位图中的旋转固定。

在不脱离权利要求所述的保护范围的情况下,本发明可由本领域技术人员进行各种修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号