首页> 中国专利> 可将碳质原料转化成能量且无温室气体排放的方法和系统

可将碳质原料转化成能量且无温室气体排放的方法和系统

摘要

本发明的方法和系统将来自矿物燃料和其它可燃原料的碳质原料转化成电能,且无有害的温室气体排放。该方法和系统使用气化炉(112)和重整器(120)相结合的流程,将原料和温室气体转化成包括一氧化碳和氢气的合成气。合成气的一部分在产生电能的燃料电池(120)中经电化学氧化生成二氧化碳和水组成的排放气体,将其分离后,二氧化碳循环回到气化炉。另一部分,从气化炉出来的合成气转化成有用的烃产品。

著录项

  • 公开/公告号CN1329761A

    专利类型发明专利

  • 公开/公告日2002-01-02

    原文格式PDF

  • 申请/专利权人 特里·R·加洛韦;

    申请/专利号CN99813930.0

  • 发明设计人 特里·R·加洛韦;

    申请日1999-11-01

  • 分类号H01M8/06;

  • 代理机构11021 中科专利商标代理有限责任公司;

  • 代理人胡交宇

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 14:10:59

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-12-16

    未缴年费专利权终止 IPC(主分类):H01M8/06 授权公告日:20050309 终止日期:20141101 申请日:19991101

    专利权的终止

  • 2005-03-09

    授权

    授权

  • 2002-02-06

    实质审查的生效

    实质审查的生效

  • 2002-01-02

    公开

    公开

说明书

本申请要求美国临时申请第60/064,692号,1997年11月7日提交的优先权。

本发明广泛地涉及消除传统的用煤,石油和天然气的发电厂排放二氧化碳和其它温室气体的方法和系统。

发明背景

矿物燃料在锅炉中燃烧以产生透平发电机使用的高温、高压蒸气的过程中会产生二氧化碳和其它温室气体,例如甲烷、臭氧和含氟烃的问题。这些矿物燃料燃烧,特别是煤,需要一种工艺装置以防止二氧化碳和其它温室气体的排放,它们的这些不需要的伴生物释放到地球的大气中,会吸收太阳辐射,被称之为温室效应。世界上很多地方要依赖煤为能源。人们已经作过许多有意义的尝试以开发清洁煤工艺,以大大地减少酸性气体的排放,如硫氧化物和氮氧化物。但是,到目前为止,这些清洁煤项目无一是针对消除二氧化碳和其它温室气体排放的。在发电厂和气化系统采用纯氧以防止氮的稀释效应和达到较高的效率的努力,遇到由于需要空分装置而成本不能接受和透平发电机进氧而温度过高的问题。

人们还进行过广泛的尝试,通过采用先进的热动力学复合循环,更高效的透平发电机,改进冷凝器和冷却塔,以及类似系统,来提高发电厂的效率。这些尝试中的一小部分涉及采用高效的矿物燃料气化工艺,因为这种工艺防止了燃烧和大量燃烧产物的排放。最后,威斯汀豪斯(Westinghouse,Corporate liferafure,“Sure Cell”1996)等进行的一种尝试,是将先进的高温透平发电机和燃料电池结合使用,使电转化率达到约70%,而目前传统的发电厂只有约47%。

今天,大气中二氧化碳和其它温室气体的增加,开始对地球对流层温度、全球降雨的分布、水平衡、剧烈气候风暴造成严重的环境后果以及类似的结果,这已成为世界性的担心问题。从技术上解决这个问题成为全世界的需要。

在世界范围内,由政府鼓励的,不同机构提供资金的研究机构,继续着力研究验明商业上有吸引力的从烟气中除去二氧化碳的气体分离技术,以及利用二氧化碳作为原料生产有用产品的化学。事实上,这是很大的挑战,进展很小,正如一些评述文献所阐述的那样,见Michele Aresta,and Eugenio Quaranta,“Carbon Dioxide:A Substitute for Phosgene”,Chem.Tech.pp.32-40,March 1997和Bette Hileman,“Industry Considers CO2Reduction Methods”,Chem.& Engr.News,pg.30,June 30,1997。将CO2从烟气中分出和使回收的CO2进行化学反应的尝试,明显不是正确的研究路线,因为使二氧化碳反应技术困难,过程费用太大。

发明概述

本发明方法和系统可将来自矿物燃料和其它可燃原料中的碳质原料转化为能量,而不产生有害的温室气体排放。该方法包括以下步骤:

(a)将碳质原料和温室气体在气化装置中转化成包括一氧化碳和氢的

   合成气;

(b)将至少一部分来自气化装置的合成气在燃料电池的第一半室中进

   行电化学氧化,生成包括二氧化碳和水的第一半室排出气体;

(c)回收第一半室排出气体中的二氧化碳,作为(a)步中温室气体的至少一部分;和

(d)在燃料电池的第二半室中电化学还原含氧气体,完成循环,并产生电能。

该系统包括:

(a)气化装置,设有碳质原料和温室气体入口,以及用于将混合原料转化成合成气的催化剂或其它手段;

(b)生产电能的燃料电池,包括:第一半室,设有与合成气流体连通的入口,和用于将合成气电化学氧化生成第一半室排出气体的第一手段或阳极;第二半室,设有用于将含氧气体电化学还原的第二手段或阴极;还有一个隔离第一半室和第二半室的膜,使气体组份不能从各自半室通过;和

(c)使来自第一半室的二氧化碳通过,以作为进入气化装置的温室气体的至少一部分的通路。

该方法回避了试图从烟气中除去和捕集二氧化碳的困难,并且没有试图使二氧化碳分别进行化学反应以期生产有用产品。本发明的方法和系统采用工业上通用的气化技术并与燃料电池相结合,可以高效地生产电能。这是通过利用燃料电池的特异性能的优点而完成的,即利用燃料电池的阳极和阴极上的两个反应用导电膜隔开以保持气体产物不混的特点。按此方法,可燃烧的原料气体在燃料电池第一半室中可被完全氧化,而且不与第二半室电极中的空气最终产物,即N2混合。例如,在煤气化时,生成主要由氢和一氧化碳组成的合成气。此合成气送入燃料电池,例如固体氧化物或熔融碳酸盐型电池的第一半室,即阳极或负端子侧,合成气在此被氧化成水和二氧化碳。这些气体不会被用于第二半室或另一半室,即燃料电池的阴极或正端子侧的燃烧空气中的通常的氮所稀释。当在锅炉或炉子中使用空气燃烧时,氮和燃烧气体混合。因此,合成气在燃料电池中进行氧化,而不是与空气燃烧,并且不会被其它气体稀释。在燃料电池中产生的水和二氧化碳通过冷凝液态水,可很容易地彼此分离,并使二氧化碳可返回到气化装置。二氧化碳进入高温气化装置,经与高温碳质原料反应,而生成更多的一氧化碳,如此反复循环。

通过本方法和系统,燃料电池中的二氧化碳很容易与空气和氮隔开。该二氧化碳几乎可以以纯净的形态循环进入气化装置。同样,水也以纯净形态进行再循环,其量按照气化装置控制的系统要求,以保持理想的氢和一氧化碳比,约1.75~约2.25。这有助于气化装置中保持高含氢量,使得气化装置产生的合成气可用于下游化学反应装置,如费一托(Fische-Tropsch)反应系统,生产从甲醇到石腊等各种有用化学品。这些产品再用于生产例如石脑油、柴油、汽油等有用化学品。这样,一氧化碳可用来生产有用的化学品,而不是以二氧化碳的形式丢弃有价值的碳源。装置保持了碳平衡,这样,装置输入的废弃物料中的碳质量,与输出的有价值的烃产品而非二氧化碳的碳质量相等。

这样实现的是一座化学工厂与一发电厂的结合,它可以生产有用的烃产品和高效率的电能,而无任何二氧化碳或其它温室气体排放。还有,最重要的气化装置比炼油厂、燃煤锅炉有更大的灵活性,因为它可以使用更多样的废弃物作为原料。解决了两个重要的问题。

该方法可用于采用矿物燃料,如碳质原料,包括煤、烃油、天然气、油页岩和石油焦的发电厂,以及炼油厂和石油化工厂。其它碳质原料,如废油、危害性废物、医院废物或它们的混合物均可作为本发明气化装置的原料。

附图说明

从以下说明和附图中,本发明的优点对本领域技术人员来说是显而易见的,其中:

图1是本发明方法和系统的第一种实施方案的简要流程图;

图2是本发明方法和系统的第二种实施方案的简要流程图;

图3是本发明方法和系统的第三种实施方案的简要流程图。

发明详述A.第一种实施方案,产生氢燃料电池能而不产生有害的温室气体的方法。

图1说明了本发明方法和系统的一种特殊的实施方案,在该过程中碳质废弃原料通过管线10进入内设催化剂床14的气化炉12,并在约400℃~约600℃(750°F~1100°F)的高温下转化成合成气。优选地,在气化炉12中采用流化催化剂床。在气化炉12中生成的合成气通过管线18出炉,然后在下游分成两路流经管线20和22。流经管线20的合成气从气门28进入燃料电池26。第二路合成气流经管线22去费一托催化反应器30。

本发明采用的气化方法和装置的一个实例是荷兰阿姆斯特丹荷兰壳牌公司(Royal Dutch Shell)气化炉(见L.O.M.Koenders,S.A.Posthuma,andP.L.Zuideveld,“The Shell Gasification Process for Conversion of HeavyResidues to Hydrogen and Power”,in a paper presented at GasificationTechnologies Conference,San Francico,CA,Oct.2-4,1996)。另一实例是德士古气化炉(见Corporate literature,“Texaco Gasification Process for SolidFeedstocks”,Texaco Depvolopment Corp.,White Plains,N.Y.and“Gasificaton:Reliable,Efficient and Clean”,Texaco Global Gas and Power,White Plains,N.Y.)。这些文献的有关部分作为参考结合在本发明详述中。气化技术另一实例是采用了美国专利NO.4,874,587所公开和要求保护的蒸汽重整反应器系统,亦作为参考结合在此发明详述中。

对于通过管线10进入气化炉12的石油焦原料,最适宜的操作条件是通过管线34输入6%氧,通过管线36输入12%CO2和通过管线38加入15%H2O。这样的条件可使气化炉12有足够氧气以保持其温度非常接近约900℃(1700°F),并且生成的合成气包括约22%CO和约45%H2。这些条件随原料的H/C比不同而稍有变化,但是合成气H2/CO比的目标值为约1.75~约2.25,可以通过稍稍改变进入气化炉12的O2、CO2和H2O的相对比例来控制。

在燃料电池26中,合成气原料向上通过电介质40周围和多孔催化阳极42,在此气体进行电化学氧化反应。膜44是离子导电体,但它不会让燃料电池26两侧的任何气体或烃类通过。

可以接受合成气并适宜用作本发明的燃料电池26的燃料电池实例包括固体氧化物燃料电池(由Westinghouse,Monroeville,Pennsylvania或Technical Management Inc.,Cleveland,Ohio制造)和熔融碳酸盐燃料电池(由Energy Research Corp.,Danbury,Connecticut制造)。下面文献的有关部分作为参考结合在本发明详述中,这些参考文献有:C.M.Caruana,“FuelCells Poised to Provide Power”,Chem.Eng.Progr.,pp.11-21,September,1996和S.C.Singhal,“Advanced in Tubular Solid Oxide Fuel Cell Technology”,Proceedings of the 4th International Symposium on Solid Oxide Fuel Cells,Pennington,N.J.,Vol.95-1,pp.195-207(1995)。

主要含有氢和一氧化碳的合成气被氧化后,离开燃料电池26的阳极42,其大部分成为水蒸汽和二氧化碳。这股被氧化的合成气物流通过管线48进入空冷冷凝器50,在此水蒸汽被冷凝成液态水,并从冷凝器底部通过管线52排出回用。从城市污水系统回收的废水可用于气化炉12。而管线52流出的全部或部分相当纯的水可以出售或再循环,以及与废水混合通过管线38送入气化炉12。二氧化碳气在冷凝器50中未被冷凝,通过冷凝器顶部和管线36以二氧化碳气的形式进入气化炉12。该二氧化碳在高温气化炉12中与炉内的碳质进料反应,生成更多的合成气以便进一步参加总反应。CO2或其它温室气体可通过管线56进入气化炉12,以保持希望的原料H/C比。

为了全面阐述图1,还要提到燃料电池26的另一半室,它包括在阴极60上进行空气还原。该标准空气电极可以使通过管线64进入的含氧气体,一般是空气,由下而上通过空气电解质66周围和电极60。空气流中的惰性组份,最主要是氮气,通过阴极半室并通过排放气流68排出。尽管成本可能更高,阴极半室也可以使用纯氧代替空气以求获得更高效率和产生更多的热量。该燃料电池产生的主要是电能,可达4~9kw/标准立方英尺氢气/分钟。

从管线22来的合成气在费一托催化反应器30中,在催化剂70上反应生成高沸点烃,例如石蜡或其它有用烃产品,并通过管线76回收。这些石蜡,例如可以用作壳牌中等馏份合成(Shell Middle DistillatesSynthesis)过程的原料,在此通过反应可生成石脑油、燃料气和煤油,这些均为有价值的化学产品(见J.Eilers,s.A.Posthuma,和S.T.Sie,“The ShellMiddle Distillate Synthesis Process(SMDS)”,Catalysis Letter,7,pp.253-270(1990))。该文献的有关部分作为参考结合在本发明详述中。

这样,通过管线10作为原料通入的全部碳物质均以有用烃产品形态的碳物质通过管线76回收,这就避免了当烃原料气化时排放的二氧化碳。而且不需要为从烟气中回收二氧化碳而使用昂贵和麻烦的碱洗塔,这是通常的燃烧/蒸气透平发电厂的配置。B.第二种实施方案,产生太阳能一甲醇燃料电池能而不产生有害的温室气体的方法。

本发明的方法和系统可用于生产甲醇,通过循环二氧化碳和电化学反应制得的氢反应生成“平衡的”最适合于生产甲醇的合成气。在该生产过程中,“平衡的”合成气中适宜的H2/CO=2.00。图2所示实施方案中,使用太阳能再生燃料电池系统将太阳能生产的氢气转化成甲醇,这种甲醇储存比较安全,用于燃料电池在夜间或阴天条件下生产电能。该第二种实施方案中还采用了旋转式废料进料器蒸气重整系统,在该系统中过热蒸气和氢与有机废料反应生成合成气和轻烃。该气体从旋转进料器出来送入高温蒸气重整器中,反应后生成完全纯净的“平衡的”合成气。

该第二种实施方案是对NASA提出的太阳能再生系统(G.E.Voecks,etal.Jet Propulsion Laboratory,Warshay,M.et al.NASA Lewis Research Center,Edwards,II.S.et al.,Navel Air Warfare Center,“Operation of the 25 kW NASALewis Research Center Solar Regenerative Fuel Cell Testbed Facility,”Paper#97295,International Energy Conversion Engineering conference,Proceedings,Vol.3,1999)的大改进。后一系统要求将氢气储存以备供给燃料电池。氢气储存在有人居住的建筑物或居民区的隐蔽区域,从现在安全观点出发是不能允许的。由一小型、自动化甲醇合成装置生产的甲醇,是约50%的甲醇/水混合物。这种混合物具有理想的安全特性,它在室温下,甚至有明火和过量空气存在下均不易燃烧。这种50%甲醇混合物作为图2所示燃料电池系统的进料也最为适宜。与第二种实施方案的燃料电池相匹配的是低温重整器和选择性氧化器。该燃料电池系统采用商品化的PEM膜电池,它已用于早期开发的燃料电池汽车(即Daimler-Benz等)和公共汽车(乔治敦大学)。单个电池可以以50或100kW大小购得。

图2所示太阳能甲醇燃料电池系统是为东圣路易斯太阳住宅村(EastSt.Louis Solar Cluster Village)的示范装置而设计的。该村将包括环绕娱乐中心而建的50套太阳能顶盖的住宅,娱乐中心内还安置了甲醇合成装置、甲醇储存和生产电能的燃料电池。该村的全套系统形成一个能量几乎可以自给自足的系统,包括太阳能和家庭垃圾废物的利用。当不能使用太阳能时,储存的甲醇驱动燃料电池生产住宅群和小型电解池所需的电能,该电解池用于生产甲醇合成装置所需“平衡的”合成气中的氢。多余的甲醇可用于该太阳能村居民的甲醇燃料电池小汽车和公共汽车。本发明第二实施方案中的这种太阳能甲醇燃料电池系统可以用于没有公共基础设施的边远地区和发展中国家。

现在参见图2流程,固体碳质废料通过管线100送入旋转式废料进料器112中,将废料转化成气体。该气体从进料器112出来,通过管线114和泵116进入设有流化催化剂床122的高温重整器120。废料气体在重整器120中,在约400℃~约700℃温度下,转化成“平衡的”合成气。该平衡的合成气从出口123通过管线124进入甲醇合成装置130。部分合成气通过管线136送入进料管线114,用以保持催化剂床的最低流化速率。从甲醇装置130回收的甲醇通过管线142送入甲醇储槽140。储槽140中的甲醇经过管线154进入低温蒸汽重整器150,转化成合成气。该合成气经过管线156进入选择性氧化催化剂热交换器160反应,将CO转换成CO2,CO2通过管线162循环回到进料管线114。而氢通过管线168,与目前可以买到的PEM燃料电池170的第一半室流动连通。第一半室的排出气体大部分为水蒸汽,通过管线172再循环,与管线162的CO2一起送入进料管线114。电解池180利用燃料电池170产生的电能174和太阳能板190提供的能量,将水分解为氢和氧。氢通过管线182送至进料管线114,以保证可以生产“平衡的”合成气并送入甲醇装置130。电解池180生成的氧通过管线184进入燃料电池的第二半室,用作燃料电池阴极最适宜的含氧气体,以生产电能174和热能186。由PV(聚乙烯基)太阳能电池板190产生的热能192与燃料电池170产生的热能186结合,使第二种实施方案达到能量平衡。多余的热能186可以出售。储槽150中多余的甲醇经由管线194,可用作前述的燃料源。C.第三种实施方案,使用带有循环的综合气化燃料电池而不产生有害温室气体的方法。

本发明方法和系统的第三种实施方案包括一个小型发电厂的较大规模的系统,使用煤和废料的混合物作为原料。图3所示实施方案中,采用高温固体氧化物燃料电池(SOFC),这种燃料电池可以接受气化装置或气化炉生产的合成气。燃料电池产生的CO2没有明显掺杂空气,因之可以循环。

SOFC燃料电池与三级透平机组联合循环体系,作为发电厂可以达到68%~74%的高效率。(见S.C.Singhal,“Advances in Tubular Solid OxideFuel Cell Technology”,Proceeding ofthe 4th International Symposium on SolidOxide Fuel Cell,Pennington,N.J.Vol.95-1,195-207(1995);和W.I.Lundberg,“Solid Oxide Fuel Cell/Gas Turbine Power Plant Cycles and PerformanceEstimates”,Power-Gen International,96,Orlando,FL.(Dec.4-6,1996))。SOFC的空气进料用一台透平驱动压缩机增压,然后在回收SOFC废热的“热回收装置”中加热。该加热的空气随后进入透平机第二段进行膨胀发电。最后,气化炉产生的部分蒸汽与SOFC产生的蒸汽一起推动蒸汽透平机的第三段。水冷凝器的目的是接受SOFC排出的含有CO2和水蒸汽的气体,并将水分出,以制造蒸汽透平机使用的蒸汽,并回收CO2,循环用于气化炉。虽然此水冷凝器仅象征性地表示为一个很简单的设备,但它有一个换热器作为该装置的一部分,以便有效地将水冷凝和将分离的水在其进入气相“热回收装置”之前再沸,此“热回收装置”产生高温蒸汽,送至蒸汽透平机。

蒸汽透平机是燃料电池整套设备的一个组成部分,由其排出的低压蒸汽可以提供给与发电厂毗邻的界区外用户,如其生产需要的低温热能。该流程避免使用蒸汽羽状排放的大型冷却塔。这样显著节约了费用,并对环境有利。

图2流程中设置了接受燃料电池输出的电能的电解池,能使装置进行负荷跟踪,同时保持煤进料和蒸汽重整器在恒定通量的条件下操作。装置电能输出量可通过改变电解池用电量而改变,以生产和储存过量的氢和氧。在用电高峰期间,可以将这些过量的氢输入燃料电池,大大增加燃料电池的发电量。

在图3所示的第三种实施方案中,固体碳质废料以煤或固体废料的形态,通过管线200进入湿式研磨机212,并与通过管线214加入的水或液体废料混合,制成适宜密度的浆液。将此浆液从进料器212通过进料管线216送入两段气化炉220的第一段218的入口219。通过管线222通入氧气与第一段218中的浆液混合。该浆液在气化炉220的第二段224中,在约800℃~1600℃温度下转化成合成气。副产物残渣从第二段224底部通过管线226回收。合成气从第二段224通过管线228去脱硫装置230。二硫化碳副产物从装置230底部通过管线232回收。从装置230出来的基本上无硫的合成气通过管线234进入SOFC燃料电池240的第一半室236。第一半室236排出的气体主要含有水蒸汽和CO2,通过管线244去水冷凝器250。CO2通过管线252循环回到气化炉220的第一段218。从燃料电池240回收的氮气废热258被收集在热回收装置260中。从热回收装置出来的氮气通过管线262放空。通过管线264供给燃料电池240第二半室266的空气,经气体透平机组272第一段压缩机270增压,并通过管线274经过热回收装置260。从热回收装置260出来的经加热的空气,经由管线282进入燃料电池240之前,先在透平机组272的第二段透平机280膨胀。管线284中的水,在气化炉220中的废热再沸器286的第二段224转化成蒸汽。来自冷凝器250的管线292中的冷凝水,在热回收装置260中转化成蒸汽。管线294中来自气化炉220第二段224的蒸汽,和管线296中来自热回收装置260的蒸汽,用作透平机组272第三段透平机290的动力。

另外,在不脱离本发明的精神和范围的情况下,本领域的普通技术人员可以提出本发明方法和系统的各种其它实施方案和形式,以使其适应特定的用途和条件。这样,这些改变和改进是合理的、正确的,并且是在下述权利要求等价物的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号