首页> 中国专利> 具有突入电流抑制手段的电源电路及具有该电源电路的集成电路

具有突入电流抑制手段的电源电路及具有该电源电路的集成电路

摘要

一种电源电路,包括:将电流供到输出端4的输出晶体管1;和控制输出晶体管1的电流供给,使得基准电压REF和输出电压OUT相等的差动放大电路2。在差动放大电路2的输出级的电流通路上设置作为源随器的抑制用晶体管11,它的源电位控制输出晶体管1的栅电位。在电源电路启动之前,由动作控制部15给电容器16充电,而在初始动作时靠电流源17使电容器16逐渐放电。因此,输出晶体管1的栅源极间电压逐渐上升,突入电流的产生可被抑制。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-11-06

    未缴年费专利权终止 IPC(主分类):H02M7/00 授权公告日:20090722 终止日期:20120913 申请日:19990913

    专利权的终止

  • 2009-07-22

    授权

    授权

  • 2001-09-26

    实质审查的生效

    实质审查的生效

  • 2000-03-22

    公开

    公开

说明书

本发明属于一种有关能转换电源电压而输出的电源电路的技术,尤其属于可抑制电源电路初始动作时,突入电流产生的技术。

在集成电路中,为了将电压施加到在与所给出的电源电压不同的电压下工作的电路元件,而使用电源电路。电源电路是可将电源电压转换成任意的一个电压而输出的电路。

图17示出现有的电源电路的结构。图17的电源电路包括:可将电流供到与输出端4连接的负载上的输出晶体管1;可对输出晶体管1的电流供给量进行控制,以使设给基准端5的基准电压REF和从输出端4输出的输出电压OUT相等的差动放大电路2;以及可减弱负载的急剧变化的平滑电容器3。

然而,在图17所示的现有的电源电路中,由于在初始动作时,输出晶体管1便处于使可供给的最大电流流过的状态,因此有时候会发生过大的电流即所谓的突入电流从电源100通过输出晶体管1而流到平滑电容器3中的情形。这样的突入电流会对包括电源电路的LSI(大规模集成电路)器件和外部构件造成损伤等不好影响。

在现有技术中有一种通过与输出晶体管串联设置用以抑制突入电流产生的双极型晶体管,来抑制上述的突入电流产生的方法(参照日本国公开专利公报:特开平8-154338号)。在该构成中,利用双极型晶体管的发射极-集电极间电流被限定在基极电流乘以电流放大率(双极型晶体管的发射极-集电极间电流对基极电流之比小于或者等于基极电流的电流放大率)的特性,通过对突入电流抑制用的双极型晶体管的基极电流进行控制,来抑制突入电流产生。

然而,此时,另要一个可制造双极型晶体管的工序,因此,例如在用MOS(金属-氧化物-半导体)晶体管构成输出晶体管和差动放大电路的情况下,即发生了制造工序变得很复杂的问题。

再就是,由于与输出晶体管1串联设置了突入电流抑制用晶体管,因此要想给出大电流作为输出电流时,就必须将该突入电流抑制用晶体管的沟道宽度设得极大。因此,又发生了电源电路的布置面积变大、成本也随之增高的问题。加上,在给出大电流作为输出电流时,由于突入电流抑制用晶体管的发射极-集电极间的压降增大,所以产生了给不出近似于电源电压的输出电压的问题。为了减小突入电流抑制用晶体管所引起的压降,将其沟道宽度加大即可,但是,若这样做,电源电路的布置面积会进一步加大,不能令人满意。

本发明是鉴于上述问题而想出来的。其目的是:提供一种可借助于和现有技术不同的构成而抑制初始动作时的突入电流产生的电源电路。尤其是,在不加大布置面积的情况下,制造一种可抑制突入电流产生的电源电路,并且使得只用CMOS(互补型金属氧化半导体)制造工序而制成所述电源电路。

为达到上述目的,本发明的第1个方案中所采用的电源电路是一种用于转换电源电压而输出的电源电路,它包括:将电流从电源供到输出端的输出晶体管;根据所设定的基准电压并按照所述输出端的电压,来控制所述输出晶体管的电流供给的差动放大电路;以及在该电源电路的初始动作时,可将所述输出晶体管的电流供给量逐渐增加的突入电流抑制手段。

按照上述第1个方案,由于突入电流抑制手段的作用,在该电源电路的初始动作时,输出晶体管的电流供给量便可逐渐增加。这样,可利用和现有技术不同的构成,来抑制初始动作时的突入电流产生。

本发明的第2个方案是:在上述第1个方案的电源电路中,上述突入电流抑制手段包括:设置在上述差动放大电路的输出级的电流通路上的、具有可对上述输出晶体管的栅极电位进行控制的源极电位的抑制用晶体管;和可对所述抑制用晶体管的栅极电位进行控制的动作控制部。

按照上述第2个方案,输出晶体管的栅极电位即受抑制用晶体管的源极电位的控制,抑制用晶体管的栅极电位则受动作控制部的控制。因而,在该电源电路的初始动作时,让抑制用晶体管起到源随器(source follower)的作用,从而靠着动作控制部对抑制用晶体管的栅极电位的控制,免得输出晶体管的电流供给量过大。这样一来,可抑制初始动作时的突入电流产生。

还有,例如,所述抑制用晶体管可由MOS晶体管构成,因此不需要双极型晶体管的制造工序,可仅用CMOS制造工序来制造可抑制突入电流的电源电路。

并且,由于所述抑制用晶体管不是与输出晶体管串联设置的,而是设在差动放大电路的输出级的电流通路中的,所以输出电流不流过抑制用晶体管。因此,不用将抑制用晶体管的沟道宽度加大,故可在不加大电源电路的布置面积的情况下抑制突入电流产生。此外,又不产生由于抑制用晶体管的压降所引起的输出电压的下降,所以在要给出大电流作为输出电流的情况下,也给得出近似于电源电压的输出电压。

在本发明的第3个方案中,上述第2个方案的电源电路中的动作控制部,在该电源电路的初始动作时,可将上述抑制用晶体管的栅极电位控制在一个不让上述输出晶体管供给过大的电流的值;在正常动作时,则将所述抑制用晶体管的栅极电位设在一个可将上述抑制用晶体管接通的值。

本发明的第4个方案是:在上述第2个方案的电源电路中,动作控制部包括:一端的电位可对上述抑制用晶体管的栅极电位进行控制的电容器;在该电源电路启动之前,可将所述电容器的电压设到所规定的电压值的电容器预置手段;以及可自由接通或断开,在接通时,可将所述电容器逐渐充、放电的电流源。

在本发明的第5个方案中,上述第4个方案的电源电路中的电容器预置手段由在所述电容器的一端和电源端或者接地端之间串联设置的、可自由接通或者断开的开关和进行二极管连接的晶体管构成。

在本发明的第6个方案中,上述第4个方案的电源电路中的动作控制部具备多个上述电流源,可选择要接通的电流源。

在本发明的第7个方案中,上述第4个方案的电源电路中的动作控制部具有多个上述电容器,可选择要进行充、放电的电容器。

在本发明的第8个方案中,上述第2个方案的电源电路中的动作控制部被施加了第1及第2控制电位,在该电源电路的初始动作时,它便选择所述第1控制电位;在正常动作时,则选择所述第2控制电位,按照所选择的控制电位而对上述抑制用晶体管的栅极电位进行控制。

在本发明的第9个方案中,上述第2个方案的电源电路中的动作控制部包括:由串联的多个电阻构成,可将其两端的电位差分割为多个电位的电阻列;和可从由所述电阻列得到的多个电位中选择一个电位的电位选择手段,按照由所述电位选择手段选出的电位而对上述抑制用晶体管的栅极电位进行控制。

在本发明的第10个方案中,上述第1个方案的电源电路中的突入电流抑制手段包括:在电源和输出端之间,与上述输出晶体管串联设置的抑制用晶体管;和可控制所述抑制用晶体管的栅极电位的动作控制部。

在本发明的第11个方案中,上述第10个方案的电源电路中的动作控制部,在该电源电路的初始动作时,可将上述抑制用晶体管的栅极电位控制在一个不让上述输出晶体管供给过大的电流的值;在正常动作时,则将所述抑制用晶体管的栅极电位设在一个可将上述抑制用晶体管接通的值。

本发明的第12个方案是:在上述第10个方案的电源电路中,动作控制部包括:一端的电位可对上述抑制用晶体管的栅极电位进行控制的电容器;在该电源电路启动之前,可将所述电容器的电压设到所规定的电压值的电容器预置手段;以及可自由接通或断开,在接通时,可将所述电容器逐渐充、放电的电流源。

在本发明的第13个方案中,上述第1个方案的电源电路中的突入电流抑制手段,在该电源电路的初始动作时,可将上述输出晶体管的栅源极间电压从微小值逐渐增加。

本发明的第14个方案是:一种集成电路,包括上述第1个方案中所述的电源电路,它在由该电源电路转换而输出的电压下进行动作。

下面,对本发明中的附图作简要说明。

图1是表示本发明的第1实施例所涉及的具有突入电流抑制手段的电源电路的概略结构图。

图2是表示图1中所示的电源电路的动作特性的图,(a)表示栅源极间电压Vgs随时间的变化图,(b)表示输出晶体管的供给电流Id随时间的变化图。

图3是图1中所示的电源电路的电路结构图。

图4是图1中所示的电源电路的其他电路结构图。

图5表示突入电流抑制手段的第1个其他结构例。

图6表示突入电流抑制手段的第2个其他结构例。

图7表示突入电流抑制手段的第3个其他结构例。

图8表示突入电流抑制手段的第4个其他结构例。

图9表示突入电流抑制手段的第5个其他结构例。

图10表示突入电流抑制手段的第6个其他结构例。

图11表示图3的电源电路的变形例,是表示由电阻将输出电压进行分割而将该分压反馈到差动放大电路中的电源电路的结构图。

图12表示图3的电源电路的变形例,是表示用双极型晶体管构成输出晶体管和差动放大电路的电源电路的结构图。

图13表示图3的电源电路的变形例,是表示用n型晶体管构成输出晶体管的电源电路的结构图。

图14是本发明的第2实施例所涉及的电源电路的电路结构图。

图15是本发明的第2实施例所涉及的电源电路的其他电路结构图。

图16是具有本发明所涉及的电源电路的集成电路的概略结构图。

图17是现有的不具有突入电流抑制手段的电源电路的电路结构图。

下面,参照附图对本发明的实施例加以说明。

(第1实施例)

图1是表示本发明的第1实施例所涉及的具有突入电路抑制手段的电源电路的概略结构图。图1中所示的电源电路包括:可将电流从电源端100供到输出端4的输出晶体管1、控制输出晶体管1所供给的电流值,以使输出端4的输出电压OUT和设给基准电压端5的基准电压REF相等的差动放大电路2、以及平滑电容器3。差动放大电路2包括突入电流抑制手段10,它能在电源电路的初始动作时,将输出晶体管1的电流供给量逐渐增加。

在电源电路的初始动作时,差动放大电路2靠着其中的突入电流抑制手段10对输出晶体管1的栅源极间电压Vgs进行强制性的控制以使它从微小值逐渐增大。在进入正常动作之后,差动放大电路2执行原来的动作,即对输出晶体管1进行控制,以使输出电压OUT和基准电压REF相等。

图2示出图1的电源电路的动作特性。该图中,(a)是表示输出晶体管1的栅源极间电压Vgs随时间的变化而变化的图。实线a1表示具有突入电流抑制手段10时的情况,点划线a2表示没有突入电流抑制手段10时的情况。图2(b)是表示输出晶体管1的供给电流Id随时间的变化而变化的图。实线b1表示具有突入电流抑制手段10时的情况,点划线b2表示没有突入电流抑制手段10时的情况。

如图2所示,在没有突入电流抑制手段10时,由于在初始动作时栅源极间电压Vgs高,因此会流过大电流即所谓的突入电流(点划线a2、b2)。与此相对,通过设置突入电流抑制手段10,在初始动作时,栅源极间电压Vgs便能从微小值逐渐增大,而在进入正常动作之后,便受与无突入电流抑制手段10时同样的控制。借助于这样的控制,初始动作时的突入电流产生可被抑制(实线a1、b1)。另外,在从动作开始时经过了一段时间之后,或者被突入电流抑制手段10所控制的电压Vgs超过正常动作时的电压Vgs时,电源电路便从初始动作进入正常动作。

图3具体地表示图1的电源电路的电路结构。在图3中,在构成了差动放大电路2的输出级的电流通路的晶体管31、32之间设置有抑制用晶体管11,还设置有可对该抑制用晶体管n的栅极电位进行控制的动作控制部15。由抑制用晶体管11和动作控制部15构成突入电流抑制手段10。

在没有抑制用晶体管11的电路结构中,由于在初始动作时,基准电压REF高于输出电压OUT所以晶体管31不将电荷供到输出晶体管1的栅极,另一方面,晶体管32则从输出晶体管1的栅极抽出电荷。因此,输出晶体管1的栅极电位下降,从而产生突入电流。

于是,在本实施例中,设置了抑制用晶体管11来对晶体管32从输出晶体管1的栅极抽出电荷的动作加以限制,这样抑制突入电流产生。由于实际上抑制用晶体管11起到源随电路的作用,因此输出晶体管1的栅极电位则是抑制用晶体管11的栅极电位和晶体管阈值电压的和。从而,通过将抑制用晶体管11的栅极电位进行控制,就能够对输出晶体管1的栅源极间电压Vgs进行控制。

于是,在电源电路的初始动作时,动作控制部15首先将抑制用晶体管11的栅极电位设得高,而随着时间的经过,将它逐渐降低。这样以来,输出晶体管1的栅源极间电压Vgs便可从微小值逐渐增高,因此可抑制突入电流产生。在经过了一段时间之后,抑制用晶体管11的栅极电位变成十分低,而且基准电压REF和输出电压OUT成为相等,从而晶体管31开始将电荷供到输出晶体管1的栅极,因此抑制用晶体管11不再影响到差动放大电路2的动作,这样,电源电路自动地进入正常动作。

动作控制部15由电容器16、带有开关的电流源17和充电用开关18构成。电容器16的一端与抑制用晶体管11的栅极连接,另一端接地,该一端的电位能控制抑制用晶体管11的栅极电位。带有开关的电流源17的正端与电容器16的上述一端连接,负端接地,它在开关接通时便启动,而将电容器16中的电荷逐渐地抽出。作为电容器预置手段的充电用开关18被设在电容器16的上述一端和电源之间,在接通状态下将电容器16充电到电源电压。

在电源电路启动之前,动作控制部15不令带有开关的电流源17进行动作而使充电用开关18接通,从而对电容器16进行预充电。其结果,电容器16被充电到电源电压,抑制用晶体管11的栅极电位被设为电源电压。电源电路启动时,动作控制部15将充电用开关18切换为断开状态,同时令带有开关的电流源17进行动作。这样一来,在初始动作时电容器16徐徐地放电,其电压也徐徐下降。结果,抑制用晶体管11的栅极电位也逐渐下降。

图4表示用OTA(运算互导放大器)型差动放大电路来构成图1的电源电路时的具体电路结构图。在图4中,抑制用晶体管11被设在构成OTA型差动放大电路2A的输出级的电流通路的晶体管41、42之间。动作控制部15具有和图3中的动作控制部15一样的构成。由于图4中的突入电流抑制手段10的动作和图3中的突入电流抑制手段10的一样,所以不再进行说明。

本实施例所涉及的电源电路和现有的电源电路构成不同,不用在电源端100和输出端4之间设置输出晶体管1以外的晶体管。换句话说,不用设置与输出晶体管1串联的大型晶体管,因此在保持小布置面积的电源电路的情况下,能够抑制突入电流产生。并且,在要给出大电流作为输出电流的情况下,也可给出近似于电源电压的输出电压。

另外,在本实施例中,示出了采用一级差动放大电路或者OTA型差动放大电路之类的差动放大电路的电源电路。但是,本发明并不局限于那些构成,例如,用二级差动放大电路等其他构成的差动放大电路,也是可以的。在此情况下,也和本实施例一样,通过在差动放大电路的输出级的电流通路中设置抑制用晶体管,便可容易构成突入电流抑制手段。再就是,在本实施例中采用了n型差动放大电路,但毫无疑问,采用p型差动放大电路,也是完全可以的。

下面,对本实施例所涉及的突入电流抑制手段的其他构成例加以说明。

(第1个其他例)

图5示出本实施例所涉及的突入电流抑制手段的第1个其他构成例。在图5所示的动作控制部15A中,在电容器16的一端和电源之间串联地连接着充电用开关18和进行二极管连接的晶体管21、22,由它们构成电容器预置手段。由于加入了进行二极管连接的晶体管21、22,使得电源电路启动前的电容器16充电到由式:(电源电压—晶体管阈值电压×2)所表示的那一电压。

在输出晶体管1的栅极电位成为(电源电位—晶体管阈值电压)时,即抑制用晶体管11的栅极电位成为(电源电位—晶体管阈值电压×2)时,输出晶体管1便能开始供给电流。因此,通过采用具有图5的构成的突入电流抑制手段,与图3或者图4中所示的电源电路相比,能够早点进入正常动作,即以输出晶体管1的栅极电位可达(电源电位—晶体管阈值电压)所需的时间,早进入正常动作状态。

另外,仅用一个进行二极管连接的晶体管,也可得到同样的效果,就是说,能够比图3或者图4的电源电路早点进入正常动作状态。

(第2个其他例)

图6示出本实施例所涉及的突入电流抑制手段的第2个其他构成例。在图6所示的动作控制部15B中,设置有多个带有开关的电流源17,其中能够选择要接通的电流源17。如图3和图4所示,在只有一个带有开关的电流源17时,由于电容器16的放电速度由该一个电流源17的能力来决定,因而,电源电路的启动所需的时间被固定了。与此相对,如果采用图6的构成,通过选择要接通的电流源17,使得电容器16的放电速度可变。因此,例如在没有产生突入电流的担心时,便可加快电容器16的放电速度,来缩短电源电路的启动所需的时间。

譬如,能够进行下述的控制:在平滑电容器3中没存储有电荷时,突入电流产生的可能性大,因此仅让小电流源(或者一个电流源)接通来抑制突入电流产生,另一方面,在平滑电容器3中存储有某一程度的电荷时,由于突入电流产生的可能性小,所以可通过接通大电流源(或者多个电流源),来迅速地启动电源电路。

此时,通过设各不相同的电流源17的能力,选择接通合适的电流源17,来调节电容器16的放电速度,也是可以的。或者,通过改变要接通的同一个能力的电流源17的数量,来调节电容器16的放电速度,也是可以的。

(第3个其他例)

图7示出本实施例所涉及的突入电流抑制手段的第3个其他构成例。在图7所示的动作控制部15C中,没设多个带有开关的电流源17(如图6所示),而设多个电容器16。并且,在抑制用晶体管11的栅极和各电容器16的一端之间分别设置开关23,以便可自由地选择为充放电对象的电容器16。在图7的构成中,通过由开关23来选择为充放电对象的电容器16,便可改变电容器16的总电容量。

在电容器16的总电容大的情况下,由于电流源17使电容器16放电所需的时间长,所以突入电流的产生可被抑制。与此相反,在电容器16的总电容小的情况下,电容器16很快地放完电,因此电源电路可在短的时间内启动。也就是说,按照所设定的电容器16的总电容,抑制用晶体管11的栅极电位下降的速度也发生变化。这样,可达成和图6的构成一样的作用。

此时,通过设互不相同的电容器16的电容量,从而选择要进行放电或者充电的电容器16,来调节电容器16的总电容,也是可以的。或者,通过改变要进行放电或者充电的同一个电容的电容器16的数量,来调节电容器16的总电容,也是可以的。

(第4个其他例)

图8示出本实施例所涉及的突入电流抑制手段的第4个其他构成例。图8所示的动作控制部15D包括被设为第1控制电位CTL1的端子24a和被设为第2控制电位CTL2的端子24b。动作控制部15D还包括用于控制是否要将第1控制电位CTL1施加到抑制用晶体管11的栅极的开关25a和用于控制是否要将第2控制电位CTL2施加到抑制用晶体管11的栅极的开关25b。

第1控制电位CTL1被设为一个在抑制用晶体管11的栅极被施加了该电位CTL1时,可靠抑制用晶体管11的动作来抑制突入电流产生的那一电位。第2控制电位CTL2被设为一个在加到抑制用晶体管11的栅极时,抑制用晶体管11不会影响到差动放大电路的正常动作的那一电位。

在电源电路的初始动作时,开关25a接通,第1控制电位CTL1被加到抑制用晶体管11的栅极。在过了一段时间之后,电源电路进入正常动作时,开关25b便接通,第2控制电位CTL2被加到抑制用晶体管11的栅极。通过这样的动作,突入电流的产生可被抑制。

另外,也可将第1控制电位CTL1设为多个值,从而根据要做的动作选择使用。

(第5个其他例)

图9示出本实施例所涉及的突入电流抑制手段的第5个其他构成例。在图9所示的动作控制部15E中,通过用电阻将电源电压进行分割而设定对应于图8中的第1及第2控制电位CTL1、CTL2的电位。就是说,在电源和接地之间设置由串联的多个电阻构成的电阻列26,来将电源和接地之间的电位差分割为多个电位。从而,利用由多个开关构成的电位选择手段27,从由电阻列26得到的多个电位中选择一个电位。被选择的电位便加到抑制用晶体管11的栅极。

在电源电路的初始动作时,电位选择手段27可将多个电位按从高电位到低电位的顺序加到抑制用晶体管11的栅极。这样,可抑制突入电流产生。另一方面,在正常动作时,电位选择手段27可将地电位加到抑制用晶体管11的栅极。这样一来,抑制用晶体管11便接通,差动放大电路进行正常动作。

(第6个其他例)

图10示出本实施例所涉及的突入电流抑制手段的第6个其他构成例。图10所示的动作控制部15F还包括设在图9所示的动作控制部15E的电阻列26和电源之间的进行二极管连接的晶体管28、29。

在第1个其他列中所说明过的那样,在抑制用晶体管11的栅极电位成为(电源电位—晶体管阈值电压×2)时,输出晶体管1便开始给出电流。因此,在图10的构成中,通过设置进行二极管连接的晶体管28、29,来将电阻列26的上端的电位设为(电源电压—晶体管阈值电压×2)。按照这样的构成,与图9的情况相比,可进一步减小电阻列26的电阻值。

另外,仅用一个进行二极管连接的晶体管,也可得到一样的效果。

(图3的电源电路的变形例)

图11表示图3的电源电路的变形例。在图11中,将输出电压OUT由电阻51、52进行分割而反馈到差动放大电路2中。这样,可设输出电压OUT大于基准电压REF。

图3的电源电路是由MOS晶体管构成的,但本发明并不限于此。例如在图12中所示,本发明也容易应用到用双极型晶体管构成输出晶体管1A和差动放大电路2B中的各晶体管的电源电路中。

还有,在图3的电源电路中,用p型晶体管构成输出晶体管1,但如图13所示,用n型晶体管构成输出晶体管1B,也是完全可以的。在此情况下,在电源电路的初始动作时,突入电流抑制手段10A可将输出晶体管1B的栅极电位从地电位慢慢地上升。

与图3的突入电流抑制手段10不一样,图13所示的突入电流抑制手段10A由设在构成差动放大电路2C的输出级的电流通路的晶体管31、32之间的n型抑制用晶体管51和可对该抑制用晶体管51的栅极电位进行控制的动作控制部55构成。

动作控制部55由电容器56、带有开关的电流源57和放电用开关58构成。电容器56的一端与抑制用晶体管51的栅极连接,另一端接地,该前一端的电位可对抑制用晶体管51的栅极电位进行控制。带有开关的电流源57的正端与电源端连接,负端与电容器56的上述不接地的一端连接,它在开关接通时便启动,而将电荷慢慢地供到电容器56中。作为电容器预置手段的放电用开关58被设在电容器56的上述不接地的一端和接地之间,在接通状态下,使电容器56放电。

在电源电路启动之前,动作控制部55不将带有开关的电流源57接通而将放电用开关58接通,从而使电容器56进行预放电。其结果,电容器56的电压成为0V,抑制用晶体管51的栅极电位被设到地电位。电源电路启动时,动作控制部55将放电用开关58切换为断开状态,同时将带有开关的电流源57接通。这样一来,在初始动作时电容器56徐徐地被充电,其电压徐徐上升。结果,抑制用晶体管51的栅极电位也徐徐上升。由于抑制用晶体管51起到源随电路的作用,因此,输出晶体管1B的栅极电位也徐徐上升,这样,突入电流的产生可被抑制。

(第2实施例)

图14表示本发明的第2实施例所涉及的具有突入电流抑制手段的电源电路的结构。图14的电路结构是:与输出晶体管1串联设置抑制用晶体管61,而在该抑制用晶体管61的栅极上连接和第1实施例中所示的相同的、由电容器66、带有开关的电流源67和充电用开关68构成的动作控制部65的电路结构。由抑制用晶体管61和动作控制部65构成突入电流抑制手段60。

在电源电路的初始动作时,动作控制部65通过将从电源电位徐徐下降的电容器66的一端的电位施加到抑制用晶体管61的栅极,来抑制突入电流产生。另一方面,在电源电路的正常动作时,抑制用晶体管61的栅极电位成为地电位,所以抑制用晶体管61接通,几乎不影响到电源电路的动作。但在本实施例中,由于在电源电路的正常动作时,与输出电流相等的电流会流过抑制用晶体管61,因此就需要大型的抑制用晶体管61。为此,与第1实施例的电路结构相比,布置面积相当大。

图15表示图14的电源电路的变形例。动作控制部65A的结构和第1实施例所涉及的图5中的动作控制部15A的一样,即在电源端和电容器66之间串联设有充电用开关68和进行二极管连接的晶体管69。在抑制用晶体管61的栅极电位成为(电源电位—晶体管阈值电压)时,抑制用晶体管61便开始供给电流。因此,通过利用进行二极管连接的晶体管69,将电容器66的充电电位设到(电源电位—晶体管阈值电压),便可更快地启动电源电路。

再就是,在第1实施例中所述的突入电流抑制手段的其他结构例,也可同样地应用到本实施例中。

另外,在第1及第2实施例中,另设可使突入电流抑制手段无效的控制手段,也是可以的。

在电源电路启动之前,平滑电容器3中几乎没存储有电荷,并与所设定的基准电压相比,启动前的输出电压非常低时,会产生突入电流。另一方面,在电源电路启动之前,平滑电容器3被充电到近似于基准电压的那一电压时,就不产生突入电流。

因此,在电源电路启动之前,平滑电容器3已处于充电状态时,即不用启动本发明所涉及的突入电流抑制手段。假如,在启动它时,反而发生电源电路的启动所需的时间变长的问题。于是,通过设置可使突入电流抑制手段无效的控制手段,能构成一个可随时抑制突入电流产生,并且,在不用抑制突入电流产生时,便可使突入电流抑制手段无效,从而快速地启动电源电路的系统。

例如,在输出电流小的情况下,为了节省功耗而要间断地启动电源电路的那一系统中,就要设置所述的可使突入电流抑制手段无效的控制手段。此时,由于电源电路则在平滑电容器充电的状态下交替地反复地接通或者断开,所以仅在第一次接通时,必须启动突入电流抑制手段。在第一次接通之外的情况下,就必须在短时间内启动电源电路,所以最好使突入电流抑制手段无效。因而,在这样的系统中,最好设置可使突入电流抑制手段无效的控制手段。

图16表示用本发明所涉及的电源电路构成的LSI系统的示例。在图16中,集成电路70包括LSI核心部71和作为电源电路的直流/直流转换器72,它还包括电容器76作为附设元件。73a~73e是集成电路70的接线区。例如,直流/直流转换器72具备在上述实施例中所述的突入电流抑制手段,它可通过上述实施例所涉及的动作,将供到接线区73a、73b的电源电位Vdd、Vss转换成电压Vnd,从而输出到接线区73c。直流/直流转换器72的输出电压Vnd作为内部电源电压Vout而被供到LSI核心部71。

如上所述,按照本发明,由于利用了突入电流抑制手段,输出晶体管的电流供给量能在该电源电路的初始动作时徐徐增大,所以通过和现有的技术不同的结构来抑制在电源电路的初始动作时的突入电流产生。还有,由于可用MOS晶体管构成突入电流抑制手段中的抑制用晶体管,因此不再需要双极型晶体管的制造工序,仅用CMOS制造工序能够制成可抑制突入电流产生的电源电路。并且,通过在差动放大电路的输出级的电流通路中设置该抑制用晶体管,便可在保持小布置面积的情况下,抑制突入电流产生。再就是,即使在要供给大电流作为输出电流时,也能够给出近似于电源电压的输出电压。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号