首页> 中国专利> 彩色特性测量装置、彩色特性测量方法和摄像数据的存储媒体

彩色特性测量装置、彩色特性测量方法和摄像数据的存储媒体

摘要

本发明的课题是测定摄像装置的准确的彩色特性,在图像显示装置中准确地再现被摄物。在测试图(1)中设置孔(2)作为摄像装置(6)的被摄物,在测试图(1)的背面一侧具备内表面被形成为黑色的暗箱(3),在通过孔(2)从外部可观察的暗箱(3)内的位置上具备光输出部(4)而构成。

著录项

  • 公开/公告号CN1246253A

    专利类型发明专利

  • 公开/公告日2000-03-01

    原文格式PDF

  • 申请/专利权人 三菱电机株式会社;

    申请/专利号CN97181837.1

  • 申请日1997-12-18

  • 分类号H04N17/02;H04N9/04;H04N9/67;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人杨凯;叶凯东

  • 地址 日本东京都

  • 入库时间 2023-12-17 13:33:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-02-10

    未缴年费专利权终止 IPC(主分类):H04N17/02 授权公告日:20050720 终止日期:20141218 申请日:19971218

    专利权的终止

  • 2005-07-20

    授权

    授权

  • 2000-03-08

    实质审查请求的生效

    实质审查请求的生效

  • 2000-03-01

    公开

    公开

说明书

技术领域

本发明涉及彩色特性测量装置、彩色特性测量方法和摄像数据的存储媒体,更详细地说,涉及测定数字摄像机(digital video camara)及数码相机(digital still camara)等的摄像装置的彩色特性、或测定彩色特性并进行校正的装置和方法,以及存储保存利用摄像装置拍摄的数据的存储媒体。

背景技术

迄今,作为摄像装置的彩色特性测量装置和彩色特性测量方法,在由IEC(国际电工委员会)于1994年5月出版的「国际标准IEC1146-1摄像机(PAL/SECAM/NTSC)-测量方法-第一部分:非广播单一传感器相机」的第三章第18项中示出的内容作为国际规格,是有代表性的。

图48是测定应用了这样的现有的测定装置和方法、作为摄像装置的一例使用数码相机时的数码相机的彩色特性和灰度特性的装置的构成图。在该图中,6是打算测定彩色特性的数码相机等的摄像装置,1是作为摄像装置6的被摄物的测试图,5是具有稳定的照度和色温且照射测试图1的照明光源,19是接受从摄像装置6输出的数据的计算机。

此外,图49是测试图1的构成图,作为基准色,包含白、黑和从白到黑呈阶梯状变化的灰度级200,以及红、绿、蓝等几个比色图(colorchart)210。作为这些比色图的例子,有在上述的国际规格的Annex A、Annex B中规定了其特性的例子。

首先,假定图49中示出的测试图1的各比色图210的RGB值是已知的,将其设为理论值。例如,如果将数据定为8比特,则在理想的情况下,如果是红,则R=255,G=B=0,如果是绿,则G=255,R=B=0,如果是蓝,则B=255,R=G=0。

其次,通过求出对应于在用摄像装置6拍摄测试图1时测定的各比色图210的RGB值与理论值的差(色差),可评价摄像装置6的色再现性。

此外,由用摄像装置6拍摄从白到黑呈阶梯状变化的灰度级200时的测定值可求出摄像装置6的灰度特性。

但是,由于在照明光源照射的测试图的面上的照度和色度随位置不同而不同,故存在下述问题:即使拍摄相同的比色图,因在测试图上的位置不同,测定值也不同,如果不校正照明的照度和色度的不均,则不能得到准确的值。

此外,即使在理想的均匀照明下,由于摄像装置的摄像光学系统的特性的缘故,例如由于中心部和周边部的光量差的缘故,即使拍摄相同的比色图,测定值也不同。因此,存在下述问题:如果摄像装置的摄像光学系统的特性不是已知的,且不使用该特性来校正测定值,则不能得到准确的值。

此外,在摄像装置的摄像光学系统的特性为同一的部位处拍摄测试图时,存在下述问题:必须移动或更换测试图,或者移动摄像装置。

此外,对于摄像装置来说,由于具有自动曝光功能、自动增益校正功能、自动白平衡校正功能等的自动校正功能,故如果改变被摄物,则以与被摄物对应的设定进行了校正,故存在不能在相同的设定条件下拍摄不同的被摄物的问题。

此外,虽然求出测试图上的对于各比色图的RGB值的测定值与理论值的色差,但存在不能测定成为彩色管理的基础的摄像装置的光谱灵敏度特性的问题。

此外,作为被摄物使用的测试图是通常的印刷物,由于难以制成反射率接近于0%的黑色或接近于100%的白色,故存在不能校正测定数据的最大值、最小值的问题。此外,由于如果测试图是印刷物的话,则伴随褪色、变色等的随时间的变化,故存在难以进行再现性高的测定的问题。

此外,存在下述问题:只限于摄像装置拍摄的有限的种类的图像,不了解与其它一般的被摄物的色差。

此外,存在下述问题:只限于从摄像装置拍摄的有限的种类的图像得到的信息,对于其它一般的被摄物的图像,不能进行精度高的色校正。

此外,存在下述问题:为了将彩色特性测量装置的已测定的数据与摄像装置已拍摄的图像联系起来,必须另外进行制成对应表等的工作。

此外,如果照明光源的种类(光谱分布特性)改变,则虽然与摄像装置已拍摄的各个比色图对应的数据也变化,但由于迄今不具有准确地反映各个照明光源的特性的办法,故存在难以进行包含照明光源的摄像装置的彩色管理的问题。特别是,从上述的原因可知,由于没有准确地测定摄像装置的光谱灵敏度特性的方法,故即使例如准确地测定光源的光谱灵敏度特性,也与有效地利用该光谱灵敏度特性的色管理无关。

发明的公开

与本发明有关的彩色特性测量装置具备下述部分而构成:作为被摄物的测试图;在该测试图中设置的孔;设置在上述测试图的背面一侧且内表面被形成为黑色的暗箱;以及在该暗箱内从上述测试图的前面通过上述孔可观察的位置上设置的光输出部。

与设置在测试图中的孔相比,测试图占据摄像装置6的拍摄范围的大部分。因此,可一边使自动校正功能固定,一边使光输出部的输出光变化。

此外,来自测试图的照明光源的照射光,即使通过孔入射到暗箱内也在暗箱内被吸收而不反射,不会再次从孔射出。因此,不会受到外部环境的影响,可观察来自光输出部的输出光。

此外,本发明的彩色特性测量方法中,将彩色特性测量装置和照明光源配置成来自照明光源的照射光不照射暗箱内的光输出部,摄像装置拍摄上述彩色特性装置的测试图,根据从被拍摄的图像数据抽出的与光输出部的区域对应的部分的第1数据或从该第1数据进行运算得到的第2数据求出摄像装置的彩色特性。

因此,可一边使自动校正功能固定,一边观察不受外部的照明光源的影响的来自光输出部的输出光。

此外,本发明的存储媒体将该摄像装置的灰度特性和光谱灵敏度特性、或从灰度特性和光谱灵敏度特性进行运算得到的数据附加到由摄像装置得到的图像数据上进行存储。

因此,可不受摄像装置的彩色特性的影响地在图像显示装置中准确地再现被摄物。

附图的简单说明

图1是示出作为本发明的实施形态1的彩色特性测量装置的一例的外观的图。

图2是用与包含虚线AB的测试图1垂直的平面切断图1的彩色特性测量装置时的剖面图。

图3是示出作为本发明的实施形态2的彩色特性测量装置的一构成例的剖面图。

图4是示出作为本发明的实施形态3的彩色特性测量装置的一构成例的剖面图。

图5是示出本发明的实施形态3的彩色特性测量装置的分光特性的一例的图。

图6是示出作为本发明的实施形态4的彩色特性测量装置的一构成例的剖面图。

图7是示出作为本发明的实施形态5的彩色特性测量装置的一构成例的剖面图。

图8是示出作为本发明的实施形态6的彩色特性测量装置的一构成例的剖面图。

图9是示出在实施形态6中没有设置散射板时的图像数据的图。

图10是示出在实施形态6中设置了散射板时的图像数据的图。

图11是示出作为本发明的实施形态7的彩色特性测量装置的一构成例的图。

图12是示出作为本发明的实施形态7的彩色特性测量装置的另一构成例的图。

图13是示出包含偏移部分的光谱灵敏度的测定结果的一例的图。

图14是示出从图13中示出的测定结果中扣除偏移部分求出的摄像装置的光谱灵敏度特性的一例的图。

图15和图16是示出作为本发明的实施形态7的彩色特性测量装置的一构成例的图,都是应用于在光输出部的前方具备分光滤光器的图6中示出的装置的情况的构成例。

图17和图18是示出作为本发明的实施形态7的彩色特性测量装置的一构成例的图,都是应用于在光输出部的前方具备散射板的图8中示出的装置的情况的构成例。

图19是示出作为本发明的实施形态8的彩色特性测量装置的主要部分的一例的图,将灰度级配置在测试图上。

图20是示出作为本发明的实施形态9的彩色特性测量装置的主要部分的一例的图,将比色图配置在测试图上。

图21是示出作为本发明的实施形态10的彩色特性测量装置的主要部分的一例的图。

图22是示出作为本发明的实施形态11的彩色特性测量装置的主要部分的一例的图。

图23是示出作为本发明的实施形态14的彩色特性测量装置的测试图的一例的图。

图24是示出摄像装置输出的各图像数据的关系的图。

图25是示出在作为本发明的实施形态15的彩色特性测量装置的孔中放入的比色图的一例的图。

图26是示出摄像装置输出的图像数据的一例的图。

图27是示出被求出的摄像装置的灰度特性的一例的图。

图28是示出将比色图放入测试图中而拍摄的图像的一例的图。

图29是示出将比色图放入测试图中而拍摄的图像的另一例的图。

图30是示出摄像装置输出的各图像数据值的关系的图。

图31是在实施形态16中摄像装置输出的各波长中的图像数据。

图32是示出摄像装置的光谱灵敏度特性的图。

图33是示出从光输出部输出了某个单一波长的光时的一例的图。

图34是示出从光输出部输出了某个单一波长的光时的另一例的图。

图35是示出摄像装置输出的各图像数据值的关系的图。

图36是说明作为本发明的实施形态17的彩色特性测量方法用的图。

图37是说明使用了灰度特性的光谱灵敏度特性的校正用的图。

图38是说明作为本发明的实施形态17的彩色特性测量方法用的图,是示出摄像装置的灰度特性的图。

图39是示出被测定的摄像装置的光谱灵敏度特性的图。

图40是示出除去了摄像装置的灰度特性的影响的光谱灵敏度特性的图。

图41是示出本发明的实施形态19的数据形式的图。

图42是示出作为本发明的实施形态20的彩色特性测量装置的一构成例的框图。

图43是说明本发明的实施形态21的彩色管理方法用的图。

图44是说明实施形态21的彩色管理方法用的图。

图45是说明作为本发明的实施形态22的彩色特性测量方法用的图。

图46是示出实施形态22中的图像文件的数据形式的一例的图。

图47是示出实施形态22中的图像文件的数据形式的一例的图。

图48是示出现有的彩色特性测量装置的构成例的图。

图49是示出图48中示出的彩色特性测量装置的测试图的一例的图。

用于实施发明的最佳形态

以下根据示出其实施形态的附图具体地说明本发明。

实施形态1

在实施形态1中,说明固定摄像装置的自动校正功能来测定该彩色特性的彩色特性测量装置。

图1是示出作为本发明的实施形态1的彩色特性测量装置的一例的外观的图,图2是用与包含虚线AB的测试图1垂直的平面切断图1的彩色特性测量装置时的剖面图。

在这些图中,1是作为被摄物使用的测试图,2是在测试图1内设置的相对于测试图1的面积充分小的孔,3是用黑色涂敷内侧的暗箱,4是从孔2能观察的光输出部,5是具有稳定的色温的照明光源,6是作为测定彩色特性的被检测样机的摄像装置,7是从孔2输入到暗箱3内的照射光。光输出部4在实施形态1中由光源来构成,但也可以是射出来自外部光源的光的射出端。

暗箱3的内壁的反射率足够低,从外部通过孔2入射到暗箱3内的照射光在暗箱3内被吸收而不反射,不会再次从孔2射出。因此,如果在暗箱3内不设置光源4的情况下从外部观察孔2,则可观察到在光学方面接近于完全黑色的状态。因而,通过在从外部经过孔2能观察的位置上设置光源4,可只观察不受照射光7的影响的光源4的输出光。

摄像装置6拍摄包含从孔2微露的光源4的光在内的测试图1。此时,例如如果摄像装置6是数码相机,则通过得到与在使光源4变化时所拍摄的图像上的光源4对应的位置的像素值,可进行摄像装置6的彩色特性的测定。

一般来说,摄像装置6具有自动曝光功能、自动增益校正功能、自动白平衡校正功能等的自动校正功能。因此,在将特性变化的光源光作为被摄物来拍摄时,该自动校正功能工作,曝光条件等变化,难以使用该图像数据测定准确的彩色特性。

因此,在本实施形态中,在彩色特性测量装置中设置了与孔2相比占据摄像装置6的摄影范围的大部分的测试图1。因此,自动校正功能只对测试图1起作用,不受光源4变化的影响,可固定自动校正功能。即,通过固定作为外部环境的测试图1和照射测试图1的照明光源5,可排除自动校正功能。

如果使用这样的彩色特性测量装置,则可使用光源4作为摄像装置的测定对象,由于能固定测定位置,故可不考虑照明不匀或例如如余弦4次幂规则那样的因拍摄区域的位置引起的光量的不均匀性等的摄像装置的光学系统的特性等。特别是,等于虽然具有各种自动校正功能,但没有使该功能无效或固定该功能的功能的民用用途的摄像装置,可在不使这些自动校正功能变化的情况下设定各种特性的被摄物。

实施形态2

在实施形态2中,说明测定摄像装置的灰度特性的彩色特性测量装置。

图3是示出作为本发明的实施形态2的彩色特性测量装置的一构成例的剖面图,在光输出部4的前面安装衰减器9,使光输出部4的输出光成为能以特定的光量间距变化的光。按照该实施形态2,通过调整衰减器9,可从孔2观察任意的光量的光。

因此,如果与实施形态1同样地利用摄像装置6拍摄包含孔2的测试图1,则可测定任意的光量中的摄像装置6的彩色特性。即,利用衰减器9使光输出部4的输出光的光量变化成所希望的值,通过测定此时的摄像装置6的特性,可准确且容易地测定摄像装置6的灰度特性。

再有,作为测定灰度特性时的衰减器9,中性浓度的滤光器等是适合的。此外,在该实施形态2中,示出了在光输出部4的前面设置了衰减器9的情况,但在光输出部4是光的射出端的情况下,即使设置在从光源至射出端之间,也具有同样的效果。此外,利用带有调光功能的光源,即使使光量变化,也能得到同样的效果。

实施形态3

在实施形态3中说明使用分光光源测定摄像装置的光谱灵敏度特性的彩色特性测量装置。

图4是示出作为本发明的实施形态3的彩色特性测量装置的一构成例的剖面图。其结构是在光输出部4处安装分光光源8,射出将光源的输出光分光后的光。按照该实施形态3,通过设定从分光光源8输出的光的波长,可通过孔2观察任意的波长的被分光的光。上述分光光源8一般是由卤素灯等灯和分光器组成的结构。

按照该实施形态3,与实施形态1相同,通过利用摄像装置6对包含孔2在内的测试图1进行拍摄,可在不受各种自动功能的影响的情况下测定对于任意的波长的光的摄像装置6的特性。因此,通过利用分光光源8使从光输出部4输出的光的波长变化,分别测定此时的摄像装置6的特性,可准确且容易地测定摄像装置6的光谱灵敏度特性。再有,这里的波长也可表现为重心波长。

此外,如果能利用分光光源8对于特定的波长范围以特定的波长间距使光输出部4的输出光变化,则可得到实用性更高的摄像装置6的光谱灵敏度特性。

此外,如果将分光光源8的分光波长范围定为可见光,则可得到适合于人的视觉特性的摄像装置6的光谱灵敏度特性。

此外,通过使波长范围成为380nm至780nm,可得到例如能与日本工业标准JIS Z 8722中的第1种分光光度计取得一致的摄像装置6的光谱灵敏度特性。

再者,如果使波长间距与该被分光的光的半宽度相等,即,如图5的波形图中所示,使图中的成为波高A的2分之1的B处的宽度C与波长间距R相等,则由于各波长分量的重叠大致相同,故可得到对于测定波长范围信息的缺失和重复少的光谱灵敏度特性。再有,这里的半宽度也可表现为有效波长宽度。

实施形态4

在实施形态4中说明使用分光滤光器测定摄像装置的光谱灵敏度特性的彩色特性测量装置。

图6是示出作为本发明的实施形态4的彩色特性测量装置的一构成例的剖面图,在光输出部4的前面配置具有特定的分光透射率特性的滤光器10而构成。

能从孔2观察的光只是光输出部4的输出光中的透过了该滤光器10的光,通过更换滤光器10可使该分光透射率特性变化。因而,可将从孔2被观察的光定为所希望的光谱分布特性的光。

实施形态5

在实施形态5中说明使用外部光源的彩色特性测量装置。

图7是示出作为本发明的实施形态5的彩色特性测量装置的一构成例的剖面图。在图中,11是光纤,12是灯罩等的光源装置,示出了使光源装置12与暗箱3分离了的彩色特性测量装置。按照本实施形态5,可利用光纤将处于脱离了本装置之外的位置上的光源装置12的光导入到本装置,将其作为来自光输出部4的输出光来测定。关于光纤11的材料,在测定的目的是400nm以下的波长光的情况下,石英玻璃是适合的。

这样的结构在光源与暗箱3相比是大型的情况下及必须散热的情况下是有效的。在图7中,作为代表性的光导波装置示出了利用光纤的情况,但即使是其它的光导波装置也能起到同样的效果。

实施形态6

在实施形态6中说明利用散射板降低了测定误差的的彩色特性测量装置。

图8是示出作为本发明的实施形态6的彩色特性测量装置的一构成例的剖面图。图中的13是散射板,将其配置在光输出部4的前面,使光散射。

图9是在未配置散射板13的状态下对于由摄像装置6拍摄的图像数据,将光输出部4的部分放大后示出的图。一般来说,在拍摄光源或光纤射出端的彩色特性测量中,由于光轴的变动及光源的微小面积中的光量差等的影响,如图9中所示,在光输出部4的图像数据的像素值中产生不匀,结果,在测定值中包含较多的误差。

但是,由于通过在光输出部4的前面配置散射板13,可使光源4的输出光散射,故通过孔2被观察的光输出部4的光成为排除了上述误差主要原因的图10中示出的那种被平均化的光。即,可将通过孔2被观察的光输出部4作成均匀的面光源,可使测定精度提高。

实施形态7

在实施形态7中说明对光输出部4的输出光量施加偏移来测定摄像装置的光谱灵敏度的彩色特性测量装置。

图11是示出作为本发明的实施形态7的彩色特性测量装置的一构成例的图。该彩色特性测量装置是在将来自分光光源(未图示)的光从光输出部4射出的图2中示出的装置,将光输出部4配置成更靠近于测试图1的孔2,以便照明光源5照射暗箱3内的光输出部4。

暗箱3的内壁的反射率足够低,从照明光源5输入到暗箱3内的照射光7的大部分被暗箱3的内壁吸收而不反射,不会再次从孔2射出。因而,对来自光输出部4的输出光量加上照射光7中的被光输出部4反射的反射光量的部分的偏移。

在图13中示出由该彩色特性测量装置测定的摄像装置6的光谱灵敏度特性。图中的offset A是从照明光源5照射的偏移部分。在得到图13中示出的光谱灵敏度特性之后,通过扣除该偏移部分,如图14中所示,可得到摄像装置6的光谱灵敏度特性。

在图14中示出的光谱灵敏度特性包含负的分量,迄今为止,准确地测定摄像装置的这样的的特性是困难的。通过使用该彩色特性测量装置,将偏移部分加到来自光输出部4的输出光量上来测定,即使对于这样的光谱灵敏度特性中包含的负的分量,也可准确地测定。

在此,在图13中示出的偏移部分offset A,是在不从光输出部4输出光的状态下与通过观察光输出部4而求出的光量对应的值。

图12是示出作为本发明的实施形态7的彩色特性测量装置的另一构成例的图。该彩色特性测量装置是在图2中示出的装置中再重新设置1个或多个照明光源30而构成的装置。

照明光源5与图2的情况相同,将其配置在其照射光不照射光输出部4的位置上,另一方面,将照明光源30配置在其照射光照射光输出部4的位置上,来自照明光源30的照射光在光输出部4中被反射而成为偏移部分。因此,在利用照明光源5控制测试图的照度的同时,可利用照明光源30控制偏移部分,

图15~18是示出作为本发明的实施形态7的彩色特性测量装置的另外的构成例的图。

图15和16中示出的彩色特性测量装置是应用于在光输出部4的前方具备分光滤光器10的图6的装置的例子。在图15中,构成为照明光源5照射分光滤光器10,在图16中,构成为照明光源5不照射分光滤光器10,照明光源30照射分光滤光器10。因此,即使在具备分光滤光器的彩色特性测量装置中,也可测定加上了偏移部分的输出光。

图17和18中示出的彩色特性测量装置是应用于在光输出部4的前方具备散射板13的图8的装置的例子。在图17中,构成为照明光源5照射散射板13,在图18中,构成为照明光源5不照射散射板13,照明光源30照射散射板13。因此,即使在具备散射板的彩色特性测量装置中,也可测定加上了偏移部分的输出光。

实施形态8

在实施形态8中,说明使用灰度级来校正灰度特性的彩色特性测量装置。

图19是示出作为本发明的实施形态8的彩色特性测量装置的主要部分的一例的图,示出了测试图1的正面图。在图19中,在测试图1上配置了并排了多种反射率的比色图的灰度级14。

如在实施形态1中已说明的那样,摄像装置6大多具有自动校正功能。作为自动校正功能,有自动地控制入射光量、蓄积时间、非线性(γ)校正特性、黑提升电平、拐点等的功能,但都对摄像装置6的灰度特性有影响。

因此,在测试图1上配置灰度级14,通过同时拍摄孔2和灰度级14,即使在摄像装置6的自动校正功能中有任何变化的情况下,相对于被拍摄的图像数据中的孔2的区域的数据,也可进行抵消因摄像装置6引起的灰度特性校正功能的影响的处理。

即,在使来自光输出部4的输出光的特性发生各种变化而用摄像装置6进行观察时,通过同时拍摄孔2和灰度级14,从被拍摄的图像数据中的与灰度级14中的反射率不同的各比色图对应的数据来判明在各观察时与摄像装置6具有的灰度特性有关的自动校正功能的特性。

因此,相对于拍摄后的图像数据中的光输出部4的区域的数据,可容易地进行抵消因摄像装置6引起的灰度特性校正功能的影响的校正处理,可进行排除了自动校正功能的影响的准确的测定。

再有,在测试图1上配置了由多种反射率的比色图构成的灰度级14这样的做法能得到更准确的自动校正功能的特性,但即使是配置了一种比色图的情况,也能得到关于灰度特性的自动校正功能的特性。

实施形态9

在实施形态9中,说明使用比色图来校正彩色特性的彩色特性测量装置。

图20是示出作为本发明的实施形态9的彩色特性测量装置的主要部分的一例的图,示出了测试图1的正面图。在图20中,在测试图1上配置了并排了多种色度的比色图的比色图15。

摄像装置6大多具有在实施形态1中已说明的那样的自动校正功能,具备黑平衡校正、白平衡校正、彩色矩阵校正等的与彩色特性有关的自动校正功能。

因此,在测试图1上配置比色图15,通过同时拍摄孔2和比色图15,即使在摄像装置6的自动校正功能中有任何变化的情况下,相对于被拍摄的图像数据中的孔2的区域的数据,也可进行抵消因摄像装置6引起的彩色特性校正功能的影响的处理。

即,在使来自光输出部4的输出光的特性发生各种变化而用摄像装置6进行观察时,通过同时拍摄孔2和比色图15,从被拍摄的图像数据中的与比色图15中的色度不同的各比色图对应的数据来判明在各观察时与摄像装置6具有的彩色特性有关的自动校正功能的特性。

因此,相对于拍摄后的图像数据中的光输出部4的区域的数据,可容易地进行抵消因摄像装置6引起的彩色特性校正功能的影响的校正处理,可进行排除了自动校正功能的影响的准确的测定。

再有,在测试图1上配置了由多种色度的比色图构成的比色图15这样的做法能得到更准确的自动校正功能的特性,但即使是配置了一种比色图的情况,也能得到关于彩色特性的自动校正功能的特性。

实施形态10

在实施形态10中,说明准确地测定低亮度区域的灰度特性用的彩色特性测量装置。

图21是示出作为本发明的实施形态10的彩色特性测量装置的主要部分的一例的图,示出了测试图1的正面图。在图21中,在测试图1上除了上述孔2以外配置了2个孔16。将这些孔16的大小和位置定为:摄像装置6通过孔16观察不到来自光输出部4的输出光、且来自照明光源5的光不通过孔16照射到光输出部4上。

通过设置这样的孔16,可从孔16观察上述暗箱3内的从光学方面看大致完全的黑色部分、即反射率接近于0%的黑色,由此可进行光源4和测试图1上的零电平的校正。此外,通过将孔16作为上述实施形态8中的灰度级的黑的比色图来设置,特别是对于低亮度区域可得到准确的灰度特性。

实施形态11

在实施形态11中,说明准确地测定高亮度区域的灰度特性用的彩色特性测量装置。

图22是示出作为本发明的实施形态11的彩色特性测量装置的主要部分的一例的图,示出了测试图1的正面图。在图22中,在测试图1上,在孔2的附近配置了基准白色比色图17。

在用摄像装置6对测试图1进行拍摄、使光输出部4进行各种变化时,设定测试图1的其它比色图和背景部分的反射率,使得与基准白色比色图17对应的图像数据在摄像装置6的动态范围内大致为最大,如果使光输出部4的输出光变化,以使从孔2观察的光输出部4的区域的图像数据在不超过基准白色的区域的图像数据的范围内为最大,则可实现有效地利用了图像数据相对于高亮度输入不会饱和的摄像装置6的动态范围的分辨率高的测定。

再有,在摄像装置6具有对于多种颜色的信道时,可使光输出部4的输出光变化,以便对于任一个信道都不饱和。

对于不能从外部来设定的类型的摄像装置6,作为设定自动校正功能的状态以使在动态范围内基准白色的区域的图像数据大致为最大的方法,有在测试图1的周围设置白色或黑色的平板、使摄像装置6的拍摄视角变化的方法,但即使对于该方法,在孔2的附近配置基准白色比色图17也是有效的。

此外,作为在测试图1的孔2的附近配置基准白色比色图17的进一步的效果,在测定从孔2被观察的光源4的各种特性时,由于能同时观察在其附近的基准白色的区域的图像数据的变化,故可检测出特别是在高亮度区域中的灰度特性的微小的变化,并可根据该变化来校正上述各种特性。

实施形态12

在实施形态12中,说明使用了上述的彩色特性测量装置的摄像装置的彩色特性测量方法。

首先,为了用摄像装置6来拍摄测试图1,用照明光源5照射测试图1。此时,照明光源5通过孔2也照射到暗箱3内,但该照射光7的照射范围由孔2的大小和照明光源5的位置来确定。因此,如图1那样来配置照明光源5和测试图1,以免照明光源5直接照射从孔观察的光输出部4,包括从孔2被观察的光输出部4的输出光在内,拍摄测试图1。

在摄像装置6是数码相机的情况下,可从拍摄后被输出的图像数据来得到与光输出部4的区域对应的数据。将其定为第1数据。通过观察该第1数据,可进行摄像装置6的彩色特性测量。

此外,例如将摄像装置6与个人计算机等连接,利用应用软件等,将图像数据从摄像装置6取出到个人计算机中,从被取出的图像数据也可得到与光输出部4对应的数据。将其定为第2数据。

一般来说,在取出到个人计算机中的图像数据中,由应用软件等对第1数据进行了灰度特性变换用的运算、所谓空间变换用的运算、或考虑了人的视觉特性使颜色的能见度变得良好用的运算等。因此,通过观察第2数据,可进行包含了应用软件的摄像装置6的彩色特性测量。

摄像装置6的制造者或销售者大多将摄像装置6与应用软件组合起来进行制造、销售。在这样的情况下,不仅可利用第1数据进行摄像装置6本体的彩色特性测量,而且可利用第2数据进行包含了应用软件的摄像装置6的综合的彩色特性测量。

再有,也有将上述应用软件用驱动软件等其它的表现方式来称呼的情况。此外,即使在从摄像装置6取出图像数据的应用软件等和对于被取出的图像数据进行各种变换运算来生成第2数据的应用软件等不是一个整体而是分离的软件的情况下,当然也可起到同样的作用和效果。

实施形态13

在实施形态13中,说明将在测试图1上配置了比色图15的图20的彩色特性测量装置作为摄像装置6的被摄物使用的彩色特性测量方法。由摄像装置6拍摄而得到的图像数据内的测试图15的部分的色彩的变化来校正用上述实施形态12的方法得到的第1数据或第2数据。

按照该方法,即使在因自动校正功能等的影响,彩色特性变化了的情况下,也可得到对其进行了校正的第1数据或第2数据。

实施形态14

在实施形态14中,说明使用上述的彩色特性测量装置测定摄像装置6的准确的灰度特性的彩色特性测量方法。

如果使用上述的彩色特性测量装置,则摄像装置6的自动校正功能只对测试图1起作用,不影响光输出部4的输出光的变化。但是,由于对测试图1进行照明的照明光源5的照度的变动,也有摄像装置6的自动化功能、例如自动曝光控制功能起作用的情况。此外,在摄像装置6是数码相机等的情况下,由于在每次拍摄中在短时间内重复曝光控制动作的情况较多,故在每次拍摄中,光圈、电子快门速度、信号处理的增益等不一定在全部的拍摄中是相同的。

可通过利用稳压电源等向照明光源5供给电源来抑制照明光源5的照度的变动。此外,由于除了孔2的输出光外被摄物是相同的,故因摄像装置6的自动化功能引起的变动也是微小的。但是,为了测定准确的灰度特性,也有必要校正因这些微小的变动引起的影响。

作为一例,考虑使光输出部4的输出光的光量连续地或阶梯状地变换为最大光量的0%~100%的情况。0%的光量可通过使光输出部4不输出光、也不使从孔2入射的光向外部输出来实现。

因此,将光输出部4的输出光量调节成0%~100%的多个光量,在各自情况下利用摄像装置6拍摄测试图1。此时,如图23中所示,在测试图1上设置由反射率各自不同的多个比色图14C构成的灰度级14,摄像装置6与来自光输出部4的输出光同时地也拍摄各比色图14C。

在摄像装置6的自动化功能不变动的情况下,如果依次使光输出部4的输出光量变化,则灰度级14的图像数据值在哪个图像中也成为相同的值。但是,由于某种原因灰度级14的图像数据值发生变动的情况下,由于测定摄像装置6的灰度特性的光输出部4、即孔2的图像数据值也同样地变动,故不能得到准确的灰度特性。

因此,将光输出部4的输出光量定为某个特定的光量(例如,最大光量的50%)的情况作为基准图,将在使输出光量变化的情况下得到的灰度级14的图像数据值与基准图的灰度级14的图像数据值进行比较。其结果,在两者不同的情况下,线性地以灰度级14的图像数据值的差异部分对光输出部4的图像数据值进行校正。

在将光输出部4的输出光量定为某个光量的情况下将拍摄的各比色图14C的图像数据值定为Y0、Y1、…、Y14、Y15,将此时的光输出部4的图像数据值定为Xi,各比色图14C的图像数据值Y0~Y15与图像数据值Xi的关系满足下式(1)。

Y0,Y1……<Yi<Xi<Yi+1……Y14,Y15             (1)

此外,将基准图中的各比色图14C的图像数据值定为Ystd0、Ystd1、…、Ystd14、Ystd15。

此时,如果图像数据值Yi和Yi+1的比色图14C与基准图中的相同的比色图14C的图像数据值Ystd i和Ystd i+1不同(Yi≠Ystd i或Yi+1≠Ystd i+1),则利用下式进行图像数据值Xi的校正。即,利用下式(2)求出校正后的图像数据值X′i。

X′i=(Xi-Yi)(Ystd i+1-Ystd i)/(Yi+1-Yi)+Ystd i   (2)

使用图24说明式(2)中示出的校正。图24是示出了各图像数据值的关系的图。示出了在使光量变化的情况下得到的图像数据值Yi、Xi、Yi+1和基准图的图像数据值Ystd i+1、Ystd i。在基准图的图像数据中,图像数据Xi的真值应位于图24中示出的X′i的位置上。于是可利用上述式(2)计算图像数据Xi的真值。

再有,摄像装置6的输出数据是R、G、B的情况下,如果比色图14C的图像数据值从基准图开始发生变动,则通过对R、G、B各数据施加同样的校正,可得到各图像的图像数据的真值,可测定准确的灰度特性。

此外,如果对于用实施形态12的方法得到的第1数据能进行上述的校正,则能得到摄像装置6的灰度特性,但如果对于第2数据来进行,则能得到包含了应用软件的综合的灰度特性。

实施形态15

在实施形态15中,说明拍摄插入到测试图1的孔2中的比色图、测定摄像装置6的准确的灰度特性的彩色特性测量方法。

与实施形态14的情况相同,摄像装置6的自动校正功能只对测试图1起作用,不影响插入到孔2中的比色图的变化,但有外部干扰的影响及每次拍摄时自动校正功能起作用的情况。因此,为了测定准确的灰度特性,有必要校正这些影响。

作为一例,如图25中所示,将比色图2C的反射率定为0.0%、2.0%、4.0%、8.0%、10.3%、14.7%、19.8%、25.8%、32.5%、39.9%、48.1%、57.0%、66.6%、77.0%、88.1%。在作成0.0%的比色图2C是困难的情况下,在不使光从光输出部4射出、不使从孔2入射的光再次从孔2向外部输出的状态下,可通过不将任何比色图插入到测试图1的孔2中来实现。

所使用的测试图1与图23相同,在孔2中依次配置反射率不同的比色图2C,由摄像装置6进行拍摄。此外,图25是以放入到上述测试图1的孔2中的方式被设置的多个比色图2C,其反射率互不相同。

将上述比色图2C依次放入到测试图1的孔2中,在图2中示出的摄影条件下拍摄测试图1。在所得到的图像中,通过得到比色图2C的像素值,可测定摄像装置6的灰度特性。例如,在摄像装置6的输出数据是R、G、B,各反射率的比色图2C的各输出数据如图26中所示那样而得到时,作为被摄物的摄像装置6的灰度特性可如图27中所示那样来表示。

图28是将反射率为25.8%的比色图2C插入到测试图1中进行拍摄的图像。此外,图29是将反射率为77.0%的比色图2C插入到测试图1中进行拍摄的图像。为了进行摄像装置6的灰度测定,以上述比色图2C的反射率的种类的数目与图28、29中示出的图像同样地进行拍摄。

现在,将图28中示出的图像定为基准图。在图28中的灰度级14中,设置了多个反射率各不相同的比色图14C。灰度级14中的比色图14C可与图25中示出的比色图2C的反射率为相同的值,此外,即使不同也没有问题。

在摄像装置6的自动化功能不变动的情况下,如果依次将反射率不同的比色图2C放入到测试图1的孔2中进行拍摄,则灰度级14的图像数据值在哪个图像中也成为相同的值。但是,由于某种原因,灰度级14的比色图的图像数据值发生变动的情况下,由于测定摄像装置6的灰度特性的比色图2C的的图像数据值也同样地变动,故不能得到准确的灰度特性。

关于灰度级14,在被测定的图像数据值与基准图的图像数据值不同的情况下,线性地以图像数据值的差异部分对比色图2C的图像数据值进行校正。

如图29中所示,在将某个反射率的比色图2C放入到测试图1的孔2中进行拍摄时的灰度级14的比色图14C的图像数据值定为Y0、Y1、…、Y14、Y15,将此时的比色图2C的图像数据值定为Xi。此外,在图29中,比色图2C的图像数据值与灰度级14的各比色图14C的图像数据值的关系满足下式(3)。

Y0,Y1……<Yi<Xi<Yi+1……Y14,Y15             (3)

此外,将图28中示出的基准图中的各比色图14C的图像数据值定为Ystd0、Ystd1、…、Ystd14、Ystd15。

在Yi和Yi+1的比色图14C与基准图中的相同的比色图14C的图像数据值Ystd i和Ystd i+1不同(Yi≠Ystd i或Yi+1≠Ystd i+1)时,利用下式进行图像数据值Xi的校正。即,将校正后的图像数据值设为X′i。

X′i=(Xi-Yi)(Ystd i+1-Ystd i)/(Yi+1-Yi)+Ystd i   (4)

使用图30说明式(4)中示出的校正。图30是示出了各图像数据值的关系的图。图28中示出的图像数据值Yi、Xi、Yi+1的关系图如图30中所示。与此不同,在基准图的Ystd i+1、Ystd I的值为图30中示出的值时,图像数据Xi的真值应位于图30中示出的X′i的位置上。于是可利用上述式(4)计算图像数据Xi的真值。

再有,摄像装置6的输出数据是R、G、B各数据的情况下,通过对R、G、B各数据进行同样的校正处理,可得到各图像中的比色图2C的图像数据的真值,可测定准确的灰度特性。

此外,在本实施形态中将放入反射率为25.8%的比色图2C的图像定为基准图,但即使将其它的比色图2C定为基准,当然也能得到同样的效果。

此外,如果对于用实施形态12的方法得到的第1数据能进行上述的校正则能得到摄像装置6的灰度特性,但如果对于第2数据来进行,则能得到包含了应用软件的综合的灰度特性。

实施形态16

在实施形态16中,说明使用上述的彩色特性测量装置来测定摄像装置6的准确的光谱灵敏度特性的彩色特性测量方法。

在使用了上述的彩色特性测量装置的情况下,摄像装置6的自动校正功能只对于测试图1起作用,不影响光输出部4的变化,但有外部干扰的影响及每次拍摄时自动校正功能起作用的情况。为了测定准确的光谱灵敏度特性,有必要校正这些影响。

在上述的彩色特性测量装置中,从该光输出部4对于特定的波长范围以特定的波长间距变化,由摄像装置6拍摄测试图1。在所得到的图像中可通过对上述每个特定波长得到光输出部4的像素值来测定摄像装置6的光谱灵敏度特性。例如,在摄像装置6的输出数据为R、G、B、各波长中的各输出数据能如图31中所示那样得到时,作为被摄物的摄像装置6的光谱灵敏度特性能如图32中所示那样来表示。

作为一例,将光输出部4的输出光的波长定为380nm、385nm、390nm、…、770nm、775nm、780nm。图33是射出波长为580nm的单色光时的所拍摄的图像。在图33中在孔内拍摄了光输出部4。此外,图34是射出波长为λnm的光时的所拍摄的图像。为了进行摄像装置6的色彩测定,以上述波长的种类的数目与图33、34所示的图像同样地进行拍摄。这样,以每5nm对380nm~780nm的范围进行拍摄的情况下,结果拍摄合计81个图像。

现在,将来自孔2的输出光的波长为580nm时拍摄的图33中示出的图像定为基准图。在图33中的灰度级14中设置了多个反射率不同的比色图14C。

在摄像装置6的自动化功能不变动的情况下,在使来自光输出部4的输出光的波长变化而拍摄的图像中,图像中的灰度级14的比色图14C的图像数据值在哪个图像中也成为相同的值。但是,由于某种原因灰度级14的比色图14C的图像数据值发生变动的情况下,由于测定摄像装置6的光谱灵敏度特性的光输出部4的图像数据值也同样地变动,故不能得到准确的彩色特性。 

这样,在所得到的灰度级14的图像数据值与图像的基准图的灰度级14的图像数据值不同的情况下,线性地以图像数据值的差异部分对光输出部4的图像数据值进行校正。

如图34中所示,将在某个输出光的波长为λ时拍摄的图像的灰度级14的各比色图14C的比色图的图像数据值定为Y0、Y1、…、Y14、Y15。此外,将此时的光输出部4的图像数据值定为Xλ,在图34中,光输出部4的图像数据值与灰度级14的各比色图14C的图像数据值的关系满足下式(5)。

Y0,Y1……<Yi<Xλ<Yi+1……Y14,Y15             (5)

此外,如图33中所示,将基准图中的灰度级14的各比色图14C的图像数据值定为Ystd0、Ystd1、…、Ystd14、Ystd15。

此时,在Yi和Yi+1的比色图与基准图中的相同的比色图的图像数据值Ystd i和Ystd i+1不同(Yi≠Ystd i或Yi+1≠Ystd i+1)时,利用下式(6)进行图像数据值Xλ的校正。校正后的图像数据值定为X′λ。

X′λ=(Xλ-Yi)(Ystd i+1-Ystd i)/(Yi+1-Yi)+Ystd i   (6)

在图35中示出各图像数据值的关系。按照图35说明式(6)中示出的校正。图34中示出的图像数据值Yi、Xλ、Yi+1的关系图如图35中所示。与此不同,在基准图的Ystd i+1、Ystd I的值为图35中示出的值时,图像数据Xλ的真值应位于图35中示出的X′λ的位置上。于是可利用上述式(6)计算图像数据Xλ的真值。

再有,摄像装置6的输出数据是R、G、B的各数据情况下,通过对R、G、B各数据进行同样的校正,可得到各图像中的光输出部4的图像数据的真值,可测定准确的彩色特性。

在本实施形态中将光输出部4的输出光的波长为580nm时拍摄的图像定为基准图,但即使将其它的波长或在实施形态15中示出的任意的反射率的比色图放入测试图1的孔2中所拍摄的图像定为基准图,进行上述式(6)的校正,当然也能得到同样的效果。

此外,如果对于用实施形态12的方法得到的第1数据能进行上述的校正,则能得到摄像装置6的彩色特性,但如果对于第2数据来进行,则能得到包含了应用软件的综合的彩色特性。

实施形态17

在实施形态17中,说明使用上述的彩色特性测量装置、测定排除了摄像装置6的灰度特性的影响的光谱灵敏度特性的彩色特性测量方法。

图36是示出摄像装置的灰度特性的一例的图,用实线表示第1数据,用虚线表示第2数据。如图中的实线示出的那样,摄像装置的灰度特性不是线性的情况也较多,通过用该灰度特性的相反的特性来校正,可得到图中用虚线示出的那种线性特性。

图37是示出该校正例的图,该图示出了光谱灵敏度特性,但在灰度特性不是线性的情况,即,具有图36中用实线示出的那种特性时的光谱灵敏度特性成为图37中用实线示出的那种特性,但通过用上述灰度特性来校正,可得到图37中用虚线示出的线性的光谱灵敏度特性。

再详细地说明该校正。图38是利用在实施形态15中示出的测定方法测定的摄像装置6的灰度特性。此外,图39是利用实施形态16的测定方法测定的摄像装置6的光谱灵敏度特性。摄像装置的输入输出特性是非线性的,在图38中利用虚线D示出已被校正的线性特性。由于光谱灵敏度测定是使用摄像装置6的输出数据来求出的,故受到摄像装置6的灰度特性的影响。因此,为了得到排除了摄像装置6的灰度特性的影响的线性的光谱灵敏度特性,有必要进行以下的校正。

将图38中示出的摄像装置6的灰度特性Yc用下式来表示。

Yc=fc(Li)c:R、G、B              (7)

     fc(Li):图38中用实线示出的折线的函数

     Li    :摄像时的比色图的亮度

此外,如果将图39中测定的光谱灵敏度特性设为Sc(λ),则排除了灰度特性的影响的光谱灵敏度特性S′c(λ)由下式来求出。

S′c(λ)=fc-1(Sc(λ))                (8)

                       c:  R、G、B

于是,如下式(9)中所示,对在实施形态16中得到的各图像数据进行校正。

S′c(λ)=k fc-1(X′λ-X′0)          (9)

k:将Sc(λ)的最大值定为100%用的系数

X′0:在实施形态15中得到的亮度值为最低的比色图的图像数据值

利用由上式(9)进行的校正,可得到线性更好的光谱灵敏度特性S′c(λ)。

在打算将光谱灵敏度特性利用于色空间的变换等彩色管理中时,由于作为其原则以测色学中的加法规则成立为前提,故如上所述可得到线性特性这一点的效果是很大的。

此外,如果对于用实施形态12的方法得到的第1数据能进行上述的校正,则对于摄像装置6能得到线性的光谱灵敏度特性,但如果对于第2数据来进行,则对于包含了应用软件的系统能得到线性的彩色特性。

再有,在本实施形态中,关于将比色图2C放入来测定的灰度特性的情况(实施形态15)进行了说明,但即使是使光输出部4的输出光量变化来测定的灰度特性的情况(实施形态14),也完全是相同的。

此外,为了测定准确的光谱灵敏度特性,被分光的光源的光量必须是恒定的、且摄像装置的灰度特性必须是线性的。因此,与灰度特性的校正一起,通过在对于被分光的光的波长的光量不是恒定的情况下使用对于波长的光量的特性进行同样的校正,可得到准确的光谱灵敏度特性。

实施形态18

使用上述的彩色特性测量装置、利用从实施形态12至17的彩色特性测量方法,可得到摄像装置6的灰度特性和光谱灵敏度特性。

因此,通过对于摄像装置6以1对1的对应关系运用其灰度特性和光谱灵敏度特性,例如如果摄像装置6是随时间变化稳定的装置,则即使在每次拍摄时不测定彩色特性,也能有效地利用上述灰度特性和光谱灵敏度特性。

此外,在将该摄像装置6与其它装置连接来构成系统的情况下,由于上述灰度特性和光谱灵敏度特性是明确的,故可实现该系统中的精度高的彩色管理。

再有,已叙述了对图像数据以1对1的对应关系运用灰度特性和光谱灵敏度特性,但即使例如对于灰度特性,以黑提升电平、非线性校正值、拐点等由灰度特性运算的数据,此外,对于光谱灵敏度特性,以灵敏度为最大的波长、半值波长宽度、XYZ表色系统等变换为一般的色空间用的矩阵系数等由光谱灵敏度特性运算的数据来代替灰度特性和光谱灵敏度特性,或与灰度特性和光谱灵敏度特性一起以1对1关系来运用,在数据量、或摄像装置6接受图像而处理的装置的运算时间方面来看,有时也是有效的,但其主要目的、效果是相同的。

实施形态19

其次,在图41中示出将上述摄像装置6的灰度特性和光谱灵敏度特性附加到摄像装置6的拍摄的图像数据上的数据形式。

在图41中,例1是将灰度特性附加到图像数据上的数据,例2是将光谱灵敏度特性附加到图像数据上的数据,例3是将灰度特性和光谱灵敏度特性附加到图像数据上的数据。

通过使用这样的数据形式,由具有怎样的灰度特性或怎样的光谱灵敏度特性的摄像装置得到的图像数据变得明确,对于每个图像数据可实现精度高的彩色管理。

再有,在实施形态19中,示出了将灰度特性和光谱灵敏度特性附加到图像数据上的数据形式的例子,但如实施形态18中所叙述的那样,即使以由灰度特性运算的数据、由光谱灵敏度特性运算的数据来代替灰度特性和光谱灵敏度特性,或与灰度特性和光谱灵敏度特性一起附加到图像数据上,在数据量、或摄像装置6接受图像而处理的装置的运算时间方面来看,有时也是有效的,但其主要目的、效果是相同的。

此外,在本实施形态19中,示出了在图像数据的最前面附加各特性的数据形式的例子,但不用说即使所附加的特性的位置处于图像数据内的任何位置上,也能得到同样的效果。

实施形态20

图42是示出了作为本发明的实施形态20的彩色特性测量装置的一构成例的框图。在图中,18是在摄像装置6中设置的存储装置。

存储装置18存储使用本色彩测定装置由上述的测定方法得到的灰度特性或光谱灵敏度特性。通过作成这样的结构,不仅上述的实施形态18中的摄像装置6与各特性的对应关系变得更加明确,而且可容易地作成实施形态19中的数据。

再有,即使存储装置18是半导体存储器、磁盘装置、光盘装置等中的任一种装置,都能起到同样的效果。

实施形态21

将对于具有n信道(n是自然数)的摄像装置使用上述的彩色特性测量装置利用上述的测定方法得到的光谱灵敏度特性设为Cn(λ)。图43示出具有RGB这3信道的摄像装置的Cn(λ)(n=1,2,3,分别对应于R、G、B)。此外,将使用该摄像装置拍摄被摄物时的照明光源的光谱分布特性设为图44中示出的L(λ)。

可利用这些光谱灵敏度特性Cn(λ)(n=1,2,3)和照明光源的光谱分布特性L(λ)表示摄像装置6的彩色特性,通过将这些特性数据附加到图像数据上或使图像数据与这些特性数据相对应,可进行使图像数据与在该拍摄中使用的摄像装置的彩色特性1对1地对应的彩色管理。

进而,可利用将上述Cn(λ)与L(λ)相乘而得到的3个信道的分光特性,进行色空间变换等的彩色管理。

再有,在该实施形态21中,对于利用上述分光特性管理色彩的方法进行了叙述,但即使利用该分光特性中的值为最大的波长、半值波长宽度、XYZ表色系统等变换为一般的色空间用的矩阵系数等由分光特性运算的数据来管理色彩,其主要的目的、效果也是同样的。

此外,在该实施形态21中,说明了具有3信道的色信道的摄像装置,但即使色信道的数目改变,也能得到同样的效果。即,在具有n个色信道的摄像装置的情况下,可得到由光谱灵敏度特性C1(λ)~Cn(λ)与照明光源的光谱分布特性L(λ)构成的n+1个特性数据,通过将Cn(λ)与L(λ)相乘,可得到n个特性数据。

实施形态22

在实施形态22中,说明补偿摄像装置的灰度特性和图像输出装置的灰度特性的偏移的方法和图像文件的数据形式。

图45的(a)是示出将由摄像装置6拍摄的图像数据向图像输出装置20输出的系统的构成例的图。此外,(b)、(c)分别是示出图像显示装置20、摄像装置6的γ特性的一例的图。

由摄像装置6拍摄的图像的数据对于每个图像作为图像文件向图像输出装置20传送。利用将摄像装置6与图像输出装置20直接连接起来的电缆21以串行/并行通信进行上述传送,或通过红外线通信22及存储媒体23等来进行上述传送。

摄像装置6的灰度特性可如下式那样用γ系数γc来表示。

Sout=(Lin)1/γc                    (10)

在此,Sout是从摄像装置6输出的信号电平,Lin是被摄物的亮度水平。此外,图像输出装置20的灰度特性可如下式那样用γ系数γD来表示。

Lout=(Sin)γD                      (11)

在此,Lout是发光亮度,Sin是向图像输出装置20的输入信号电平。

为了使被摄物的灰度与图像输出装置20的输出图像的灰度特性一致,即,为了使Lin=Lout成立,摄像装置6的γ系数γc必须与图像输出装置20的γ系数γD相等。因此,在γc≠γD时,如果通过将系数k乘到γc上,使k·γc=γD,则可得到Lin=Lout。将上述系数k添加到由摄像装置6得到的图像数据上。在图46中示出图像文件的数据形式的一例。例1是将上述系数k附加到图像数据的最前面的数据。例2是将摄像装置6的灰度特性和上述系数k附加到图像数据的最前面的数据。通过使用这样的图像数据,例如可在个人计算机上等来补偿摄像装置6的灰度特性与图像输出装置20的灰度特性的偏移。

在图46中示出的数据形式是一例,如果将将上述系数k附加到图像数据的任一部分上,则不用说可得到同样的效果。

此外,在本实施形态中在图45中示出了个人计算机和监视器作为图像输出装置20的一例,但不限于监视器,即使打印机或投影仪等是图像输出装置20的情况下,也是同样的。

此外,可利用在实施形态14、15中已说明的灰度特性的测定方法来求出摄像装置6的灰度特性。通过使用利用在实施形态14或15中所述的方法已测定的灰度特性可计算准确的系数k,可消除摄像装置6的灰度特性与图像输出装置20的灰度特性的偏移。

实施形态23

在实施形态23中,说明补偿色再现误差的方法和图像文件的数据形式。

图45是如上述的实施形态中所示那样利用摄像装置6拍摄被摄物的图。现在,上述摄像装置6具有适合于上述图像输出装置20的色空间的拍摄特性,例如如果图像输出装置20是NTSC监视器,则上述摄像装置6具有NTSC的拍摄特性,如果是具有sRGB空间的图像输出装置20,则在假定具有适合于该图像输出装置20的拍摄特性、预先将作为已知的光谱分布特性ρ(λ)的比色图设置在测试图1上、照明光源5是由上述色空间规定的基准白色的情况下,将由摄像装置6得到上述比色图的信号定为Rs、Gs、Bs。

在光谱分布特性为L(λ)的照明下利用光谱灵敏度特性是R(λ)、G(λ)、B(λ)的摄像装置6得到的上述比色图的信号Rc、Gc、Bc由下式来表示。

Rc=∫ρ(λ)×R(λ)×L(λ)d λ                (12)

Gc=∫ρ(λ)×G(λ)×L(λ)dλ                 (13)

Bc=∫ρ(λ)×B(λ)×L(λ)dλ                 (14)

在被摄物中的全部比色图中,下述的(15)、(16)、(17)成立即可,

Rs=Rc                                        (15)

Gs=Gc                                        (16)

Bs=Bc                                        (17)

但在不成立的情况下,就发生色再现性误差。为了消除该误差,确定下述的(18)式的3×3的矩阵系数即可。 > > >Rs> > >Gs> > >Bs> > >= > >a>11> >a>12> >a>13> > >a>21> >a>22> >a>23> > >a>31> >a>32> >a>33> > > >Rc> > >Gc> > >Bc> > >->->->->>(>18>)>>>s>

可利用至少3种代表性的比色图来求出这些系数。将上述a11~a33这9种矩阵系数添加到由摄像装置6得到的图像数据上。在图47中示出图像文件的数据形式的一例。例1是将上述矩阵系数附加到图像数据的最前面的数据。例2是将摄像装置6的光谱灵敏度特性和上述矩阵系数附加到图像数据的最前面的数据。通过将a11~a33这9种矩阵系数附在图像文件上,可例如在个人计算机上等补偿色再现误差。

图47中示出的数据形式是一例,如果将上述矩阵系数附加到图像数据的任一部分上,则不用说可得到同样的效果。

此外,可利用在实施形态16中记载的测定方法来测定摄像装置6的光谱灵敏度特性。通过使用由实施形态17或18中记载的方法校正的光谱灵敏度特性,可计算准确的校正系数,可消除色再现性的误差。

再有,关于光源的光谱分布特性L(λ),即使是由光源的种类、相关色温等估计的特性,在实用上也没有问题。但是,在这种情况下,与光源的种类对应的标准的光谱分布特性必须明确,通过利用相关色温来校正该标准的光谱分布特性,可得到在实用上没有问题的光谱分布特性。其结果,关于光源的光谱分布特性L(λ),可用较少的信息容易地实现精度高的彩色管理。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号