首页> 中国专利> 楔焊用金合金丝材及其在楔焊中的应用

楔焊用金合金丝材及其在楔焊中的应用

摘要

楔焊用的一种金合金丝材,包含每百万份重量中占1~100份的Ca,其余的是金和不可避免的杂质,该金合金丝材的抗拉强度不低于33.0kg/mm

著录项

  • 公开/公告号CN1172349A

    专利类型发明专利

  • 公开/公告日1998-02-04

    原文格式PDF

  • 申请/专利权人 田中电子工业株式会社;

    申请/专利号CN97115374.4

  • 发明设计人 菊池照夫;石井光吉;

    申请日1997-07-31

  • 分类号H01L23/48;H01L23/50;H01L21/60;

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人徐汝巽

  • 地址 日本东京

  • 入库时间 2023-12-17 13:04:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-10-01

    未缴年费专利权终止 IPC(主分类):H01L23/48 授权公告日:20040616 终止日期:20130731 申请日:19970731

    专利权的终止

  • 2004-06-16

    授权

    授权

  • 1998-05-13

    实质审查请求的生效

    实质审查请求的生效

  • 1998-02-04

    公开

    公开

说明书

本发明涉及楔焊用的一种金合金丝材以及该金合金丝材在楔焊中的一种应用。

丝材焊接方法就是通过丝材将集成电路块的电极与外部终端连接起来。丝材焊接方法包括超声波热压焊接和超声波焊接,以上是由丝材与集成电路块电极的焊接方法来进行分类的。

一种典型的超声波热压焊接是钉头式焊接法。图1A到图1D说明了钉头式焊接法。

参照图1A,安排丝材2通过毛细管1,焊枪3面对丝材2的尖端,焊枪3与丝材2间放电,以加热并熔化丝材2的尖端,因而形成球4。

参照图1B,放低毛细管1,将球4压至集成电路块6的铝电极上。此时,通过毛细管1将超声波加到球4上,用加热装置加热集成电路块6,以使球4热压并焊接到电极5上,成为一个焊接的球4′。

参照图1C,通过一特定的路线(丝材2′),朝着外部接头8之上移动毛细管1,然后放低到外部接头8上。那时,通过毛细管1将超声波加到丝材2上,用加热装置加热外部接头,以热压丝材边部并使其焊接到接头8上。

参照图1D,夹持器7夹住丝材2提升,以切断丝材2,因此,完成了丝材的焊接。

另一方面,一种典型的超声波焊接方法是利用楔焊工具的楔焊方法。

参照图2A,安排丝材12通过楔焊工具11的下端,移动集成电路块16的铝电极15到楔焊工具11的下面。

参照图2B,放低楔焊工具11,室温下,即未加热状态,施加超声波到楔焊工具11、压制的丝材12上,以将丝材12焊接到集成电路块16的铝电极15上。

参照图2C,夹持器17松开丝材12,通过特定的路线(丝材12′),朝着外部接头18之上移动楔焊工具11,然后放低到外部接头18上。那时,再次在室温下通过楔焊工具11施加超声波到丝材12上,以将丝材12焊接到外部接头18上。

参照图2D,夹持器17夹住丝材12提升,以切断丝材12,因而,完成丝材的焊接。

上述钉头式焊接法因其效率极好,所以优先选用,但是,它用于与金合金丝材的连接,因为包含热,不适合加热时很容易氧化的铝合金丝材。

此外,正如图3A所示,球4′直径L1比丝材2′的直径D大3到4倍,这不利于灵敏的电路。

铝合金丝材利用楔焊,因为能在室温下进行,尽管其效率不高。然而,楔焊有一优点,正如图3B所示,经变形的丝材14′的宽度L2仅是丝材12′的直径的1.5到2.5倍。

但是,作为电路材料,金合金丝材是最可取的材料,因为它在半导体装置腐蚀环境中安全,相比其它电路材料,金合金丝材的抗腐蚀性更优异。

另一方面,最新的半导体装置需要密集的电路。为此,要求降低金合金丝材与集成电路块电极的焊接部分的宽度(此处的宽度是指垂直于丝材长度方向的长度)。

在这点上,钉头式焊接法已尝试着利用金合金丝材来降低焊接球的宽度或直径,但有一定的限度。

考虑到以上问题和要求,本发明人试着将已被利用或建议用于钉头式焊接法的金合金丝材楔焊到集成电路电极上。结果显示出,与钉头式焊接相比,尽管可以减小丝材焊接部分的宽度,但是,丝材焊接部分高温下的结合强度(在下文称为“高温结合强度”)低了,实际的半导体装置在其运行过程中,高温结合强度是必要的,因而半导体装置的可靠性降低了。

因此,本发明的目的是提供一种金合金丝材,能用该合金丝材楔焊到集成电路块电极上,以减小电路中焊接部分的宽度,因而适合于高密度的电路,高温结合强度得以改善,因而,提高了半导体装置的可靠性。

在深入调查研究之后,本发明人发现,通过将预定量的Ca加入到高纯度金并保持预定的金纯度,或者另外加入预定量的Pd、Ag和Pt中的至少一种,以及相比传统钉头式焊接法的金合金丝材,降低延伸率和提高抗拉强度,通过上述成分和丝材力学性能的综合作用,作为结果而产生的金合金丝材能达到上述目的。

更精确地说,本发明广泛提供了楔焊用的一种金合金丝材,每百万份重量中含1~100份的钙(Ca),其余的是金(Au),该金合金丝材的抗拉强度不低于33.0Kg/mm2,延伸率为1~3%。

在优选实施方案中,提供以下两种实施方案。

(1)第一种实施方案是楔焊用的一种金合金丝材,每百万份重量中含1~100份的钙(Ca),其余的是金(Au),该金合金丝材的金纯度至少是99.9wt.%(重量百分比),该金合金丝材的抗拉强度不低于33.0Kg/mm2,延伸率为1~3%。

该金合金丝材可另外包含从由镁(Mg)、钇(Y)、镧(La)、铕(Eu)、锗(Ge)、银(Ag)和铂(Pt)组成的组中选择的至少一种元素,其重量为每百万份中占1~100份和/或每百万份重量中占1~20份的Be。

(2)第二种实施方案是一种楔焊用金合金丝材,其含有每百万份重量中占1~100份的钙(Ca)和0.2~5.0wt.%的从由钯(Pd)、银(Ag)和铂(Pt)组成的组中选择的至少一种元素,其余的是金(Au)和不可避免的杂质,该金合金丝材的抗拉强度不低于33.0Kg/mm2,延伸率为1~3%。

该金合金丝材可另外包含从由镁(Mg)、钇(Y)、镧(La)、铕(Eu)、锗(Ge)和铍(Be)组成的组中选择的至少一种元素,其重量为每百万重量份中占1~100份。

本发明的金合金丝材用于楔焊,因此,根据本发明的另一方面,也提供了上述金合金丝材在楔焊中的应用。

楔焊可包括以下步骤:用楔焊工具将上述金合金丝材的末端压焊到半导体集成电路块的一个电极上,用楔焊工具将金合金丝材的另一末端压焊到接头或另一电极上;更精确地说,包括以下步骤:将金合金丝材的一部分放在楔焊工具下,用该楔焊工具将上述金合金丝材的上述部分压到半导体集成电路块的电极上,以将上述金合金丝材的上述部分焊接到上述电极上,经过上述半导体集成电路块的上述电极之上,朝着接头或另一电极之上的位置相对移动上述楔焊工具和上述金合金丝材,从上述电极到上述接头或另一电极,形成一定形状的金合金丝材,所述金合金丝材的另一部分存在于上述楔焊工具之下,并且用上述楔焊工具将上述金合金丝材的上述另一部分压到上述接头或另一电极上,以将上述金合金丝材的另一部分焊接到上述接头或另一电极上。

因此,也提供了一种半导体装置,在该装置中,半导体集成电路块的电极和外部接头或其它电极通过金丝材连接起来,丝材是用楔焊焊接到电极和外部接头或其它电极上的。

图1A到图1D说明了一个典型的钉头式焊接过程。

图2A到图2D说明了一个典型的楔焊过程;并且

图3A到图3B显示了丝材焊接部分的宽度与焊接方法间的关系。

根据本发明,将预定量的Ca加入到高纯度金中,并且延伸率降低了,抗拉强度提高了。而且,丝材的金纯度保持不低于99.9%(第一种实施方案),或者另外加入预定量的Pd、Ag和Pt中的至少一种(第二种实施方案)。

在本发明中,通过上述预定量的Ca成分和一定的金纯度或预定量的Pd、Ag和Pt中的至少一种,以及上述力学性能的综合作用,提高了高温结合强度。

本发明中开始使用的高纯金更可取地是提纯到至少99.99wt.%的纯度,更好地是至少99.995wt.%,最好地是至少99.999wt.%。

如果Ca含量低于1ppm(重量百分比),相比不低于1ppm(重量百分比)的Ca的情况,高温结合强度降低了。如果Ca含量大于100ppm(重量百分比),集成电路块就会有裂纹,为了防止这些裂纹,可进行不充分的焊接,以使高温结合强度再次降低。因此,在预定的延伸率和抗拉强度,以及预定的金纯度或预定量的Pd、Ag和Pt中的至少一种的情况下,Ca含量应在1~100ppm(重量百分比)范围内,最好1~50ppm(重量百分比)

在本发明的第一种实施方案中,预定量的Ca和金纯度保持在一预定水平,延伸率降低且抗拉强度提高。

在这个实施方案中,通过将延伸率和抗拉强度设置于预定的范围内,以及加入预定量的Ca和保持丝材预定的金纯度,提高了高温结合强度。

当然,第一种实施方案中,金合金丝材的成分可能包含预定量的Ca,其余的仅是金和不可避免的杂质。

在这里,例如将1~2wt.%的Cu加入到丝材中,而加入预定量的Ca并产生了预定的延伸率和抗拉强度,高温结合强度就降低了,并且,如果试图获得高的结合强度,与丝材焊接处的集成电路块就会出现裂纹。为了避免这类问题,丝材的金纯度应不低于99.9%。当然,更可取地是不低于99.97%,更好地是不低于99.979%。

这一点可以通过使用高纯度的金原料和添加料来达到。使用的添加料纯度不低于99.99wt.%,更好地是不低于99.999wt.%。因此,丝材的杂质总含量可减少到低于0.1%,更可取地是低于0.03%,更好地是低于0.021%,最好低于0.005%。

然而,当加入预定量的Ca,且丝材具有预定的延伸率和抗拉强度时,只要丝材的金纯度保持不低于99.9%,即使除Ca之外另外加入任何添加料,本发明的上述效果,更准确地说第一实施方案的上述效果也能获得。

特别地是,除了1~100ppm(重量百分比)的Ca以外,加入1~100ppm(重量百分比)的Mg、Y、La、Eu、Ge、Ag和Pt中的至少一种,和/或1~20ppm(重量百分比)的Be时,能进一步提高高温结合强度。

如果加入预定量的Mg、Y、La、Eu、Ge、Ag和Pt中的至少一种,但未加入预定量的Ca,即使保持预定的金纯度以及预定的延伸率和抗拉强度,高温结合强度也会降低。

在本发明的第二种实施方案中,预定量的Ca和预定量的Pd、Ag和Pt中的至少一种加入到高纯金中,延伸率降低,抗拉强度提高。

在这个实施方案中,通过将延伸率和抗拉强度设置于预定的范围内,以及加入预定量的Ca和预定量的Pd、Ag和Pt中的至少一种的综合作用,提高了高温结合强度。

如果Pd、Ag和Pt中的至少一种的含量低于0.2wt.%,相比加入Pd、Ag和Pt中的至少一种的含量不低于0.2wt.%的情况,高温结合强度降低了。如果Pd、Ag和Pt中的至少一种的含量高于5.0wt.%,集成电路就会有裂纹,为了避免这些裂纹,应采用不充分的焊接,以使高温结合强度再次降低。因此,在预定的延伸率和抗拉强度的条件下,Pd、Ag和Pt中的至少一种的含量应在0.2~5.0wt.%范围内,最好是1.0~3.0wt.%。

如果加入预定量的Pd、Ag和Pt中的至少一种,但未加入预定量的Ca,即使产生预定的延伸率和抗拉强度,高温结合强度也会降低。

当然,在第二种实施方案中,金合金丝材的成分可能包含预定量的Ca和预定量的Pd、Ag和Pt中的至少一种,其余的仅是金和不可避免的杂质。

然而,当另外加入1~100ppm(重量百分比)的Mg、Y、La、Eu、Ge和Be中的至少一种,只要加入预定量的Ca和预定量的Pd、Ag和Pt中的至少一种,且丝材具有预定的延伸率和抗拉强度,也能达到上述作用,甚至进一步提高。

在这里,第二种实施方案中,如同第一种实施方案一样,将丝材杂质总量控制在同样方式内是可取的,除了0.2~5.0wt.%的金用Pd、Ag和Pt中的至少一种代替。通过控制原料的杂质(不低于99.99%,更好地是不低于99.999%),丝材的杂质总量更可取地是低于100ppm,更好地是低于20ppm。

在包含第一和第二种实施方案的本发明中,通过将延伸率和抗拉强度设置于预定的范围内,以及加入预定量的Ca和保持预定的金纯度或另外加入预定量的Pd、Ag和Pt中的至少一种的综合作用,提高了高温结合强度。

如果延伸率大于3%,即使加入预定量的Ca,保持预定的金纯度,或者也加入预定量的Pd、Ag和Pt中的至少一种,并且抗拉强度设置在预定的范围内,高温结合强度也会降低。如果延伸率小于1%,就得不到希望的高温结合强度的改善。因此,将延伸率设置在1~3%范围内,更可取地是2~3%范围内。

在这里,用一拉伸测试装置在室温下测量延伸率(%),该装置中,用100mm的间隔夹住金合金丝材,以10mm/min.的速率拉伸。确定了断裂时的伸长(长度)值,用以下公式计算延伸率(%):伸长量最好用作为上述测量得到的施加载荷与伸长量的函数曲线图来确定。

如果抗拉强度低于33.0Kg/mm2,相比不低于33.0Kg/mm2的情况,即使加入预定量的Ca,保持预定的金纯度,或者加入预定量的Pd、Ag和Pt中的至少一种,并且将延伸率设置在预定的范围内,高温结合强度也会降低。因此,应将抗拉强度设置在不低于33.0Kg/mm2的范围内,更可取地是33.0~70.0Kg/mm2,更好地是33.0~63.0Kg/mm2,最好是39.1~63.0Kg/mm2

下面描述了本发明的金合金丝材的制备方法。

加入高纯金连同预定量的一种元素(或多种),在真空炉内熔化,浇注成铸锭。铸锭经冷加工,用有空心槽的轧辊和拉丝机,中间退火,以得到原始的丝材;然后经最后的冷加工,得到直径10~100μm的细丝材;然后最终退火。

就本发明的合金成分来说,有一个温度区间,在这个区间内,提高最终退火温度,当延伸率在1~3%范围内保持不变时,抗拉强度逐渐降低。而且,丝材的抗拉强度会依赖于最终冷加工的程度而变化。因此,可通过控制最终冷加工的程度和最终退火的温度来调整延伸率和抗拉强度。

因此,在一个温度范围内进行最终退火,在此范围内,延伸率保持在1~3%,抗拉强度不低于33.0Kg/mm2,最好33.0~70.0Kg/mm2。如果进一步提高退火温度,延伸率会大于3%,且抗拉强度降低。

用于钉头式焊接法的金合金丝材其延伸率为4%或更大。相反,在本发明中,为了得到预定的抗拉强度,且延伸率为1~3%,考虑合金成分时,需调整最终冷加工的程度,同时降低最终退火温度。

当本发明中的金合金丝材楔焊到集成电路块的电极上时,高温结合强度极好,不清楚其原因。然而,认为Ca的添加,调整的杂质含量,或Pd、Ag和Pt中的至少一种的加入,用超声波楔焊过程中,由于小的延伸率和高的抗拉强度,材料不必要变形的避免,使得形成的Au-Al金属间化合物热稳定。

本发明中的金合金丝材适合于楔焊。楔焊意味着在集成电路块的Al电极和外部接头或另一电极间焊接电路,在这过程中,借助于楔焊工具,压-焊丝材的边部到外部接头或另一电极,而进行丝材与电极和接头或另一电极间的焊接,在第一步和第二步焊接时,不形成球。通过楔焊工具,随意地将超声波施加到丝材的焊接部分。

实施例

(实施例1)

将预定量的Ca加入到99.999wt.%的高纯度金中,混合物在真空炉内熔化,浇注成金铸锭,其成分如表1所示,即,纯度99.988wt.%或更高的金和1ppm(重量百分比)的Ca。用带空心槽的轧辊和拉丝机冷加工金铸锭,然后中间退火,以得到晶粒直径25μm的丝材。丝材经最终退火,以使金合金丝材的抗拉强度为40.8Kg/mm2,延伸率为2~3%。

利用楔焊设备(Shikawa SWB-FA-US30),用图2A到图2D所示的方法,施加超声波,将金合金丝材焊接到集成电路块的A1电极上和外部接头上。集成电路块边部的焊接条件为,焊接载荷45g,焊接时间30ms,焊接功率0.64W。

以上获得的10个试样,在200℃炉内保温100小时。从炉子移出试样,在外部接头的边部切断丝材,以测定集成电路块边部的高温结合强度。即,用一夹具固定集成电路块,提升丝材,确定断裂时的载荷。表1中所示的高温结合强度值是测量的10个试样的平均值。

(实施例2到实施例71和对比例1到对比例11)

重复了实施例1,但是,如表1到表4所示,改变了金和金合金丝材的成分、延伸率和抗拉强度。从得到的丝材上测定的高温结合强度示于表1到表5。

                                               表1

 Ex.No                                             成分           力学强度  评价                               (wt  ppm)    (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%)  高温结合  强度(g)  Ca    Mg    Y    La   Eu  Ge  Ag  Pt  Be      Au  Ex.1  Ex.2  Ex.3  Ex.4  Ex.5  1  10  50  100  10    -    -    -    -    1    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -  -  -  -  -  -   -   -   -   -   -  -  -  -  -  -  -  -  -  -  -    ≥99.9989    ≥99.998    ≥99.994    ≥99.989    ≥99.9979    40.8    39.5    41.4    39.3    40.4    2-3    2-3    2-3    2-3    2-3    3.2    3.3    3.3    3.0    4.7  Ex.6  Ex.7  Ex.8  Ex.9  Ex.10  10  10  1  100  10    50    100    50    50    -    -    -    -    -    1    -    -    -    -    -    -    -    -    -    -  -  -  -  -  -   -   -   -   -   -  -  -  -  -  -  -  -  -  -  -    ≥99.993    ≥99.988    ≥99.9939    ≥99.984    ≥99.9979    39.3    39.8    40.2    39.7    40.1    2-3    2-3    2-3    2-3    2-3    4.6    4.5    4.5    4.3    4.8  Ex.11  Ex.12  Ex.13  Ex.14  Ex.15  10  10  1  100  10    -    -    -    -    -    50    100    50    50    -    -    -    -    -    1    -    -    -    -    -  -  -  -  -  -   -   -   -   -   -  -  -  -  -  -  -  -  -  -  -    ≥99.993    ≥99.988    ≥99.9939    ≥99.984    ≥99.9979    41.2    40.2    40.1    40.5    39.7    2-3    2-3    2-3    2-3    2-3    4.7    4.6    4.6    4.2    4.6  Ex.16  Ex.17  Ex.18  Ex.19  Ex.20  10  10  10  10  10    -    -    -    -    -    -    -    -    -    -    50    100    -    -    -    -    -    1    50    100  -  -  -  -  -   -   -   -   -   -  -  -  -  -  -  -  -  -  -  -    ≥99.993    ≥99.988    ≥99.9979    ≥99.993    ≥99.988    39.5    41.3    39.1    40.4    40.7    2-3    2-3    2-3    2-3    2-3    4.9    4.7    4.7    5.0    4.8

                                             表2

 Ex.No                                               成分    力学强度  评价                                        (wt  ppm)     (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%) 高温结合  强度(g)  Ca    Mg    Y    La    Eu    Ge    Ag    Pt    Be       Au Ex.21 Ex.22 Ex.23 Ex.24 Ex.25  10  10  10  10  10    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    1    50    100    -    -    -    -    -    50    -    -    -    -    -    50    -    -    -    -    -    ≥99.9979    ≥99.993    ≥99.988    ≥99.993    ≥99.993    41.5    40.6    39.2    41.4    41.2    2-3    2-3    2-3    2-3    2-3    4.6    5.0    4.9    4.8    4.9 Ex.26 Ex.27 Ex.28 Ex.29 Ex.30  10  10  10  10  10    25    25    25    -    -    25    -    -    25    25    -    -    -    25    -    -    25    -    -    -    -    -    -    -    25    -    -    25    -    -    -    -    -    -    -    -    -    -    -    -    ≥99.993    ≥99.993    ≥99.993    ≥99.993    ≥99.993    41.3    39.6    39.4    40.6    41.1    2-3    2-3    2-3    2-3    2-3    4.8    4.9    4.6    4.9    5.0 Ex.31 Ex.32 Ex.33 Ex.34 Ex.35  10  10  10  100  1    -    -    -    -    -    25    -    -    -    -    -    25    25    -    -    -    25    -    25    25    -    -    -    25    -    -    -    25    -    -    25    -    -    -    25    -    -    -    -    -    ≥99.993    ≥99.993    ≥99.993    ≥99.993    ≥99.993    39.5    39.4    41.4    40.1    41.6    2-3    2-3    2-3    2-3    2-3    4.8    4.9    4.9    5.1    4.8 Ex.36 Ex.37 Ex.38 Ex.39 Ex.40  10  10  10  10  10    -    -    20    20    20    -    -    20    20    20    -    -    20    -    -    -    -    -    -    -    25    -    -    20    -    25    25    -    -    -    -    25    -    -    20    -    -    -    -    -    ≥99.993    ≥99.993    ≥99.992    ≥99.992    ≥99.992    41.2    40.0    40.4    41.3    39.5    3-3    2-3    2-3    2-3    2-3    4.6    4.8    4.9    5.1    5.0

                                                    表3

 Ex.No                                           成分         力学强度   评价                                             (wt  ppm)      (wt%)  抗拉强度  (Kg/mm2)  延伸率    (%) 高温结合  强度(g) Ca    Mg    Y    La    Eu    Ge    Ag    Pt    Be        Au Ex.41 Ex.42 Ex.43 Ex.44 Ex.45 10 10 10 10 50    -    -    -    10    30    -    -    10    10    20    -    -    10    10    10    20    20    10    10    10    20    20    10    10    10    20    -    -    10    10    -    20    -    10    10    -    -    -    -    -    ≥99.992    ≥99.992    ≥99.994    ≥99.991    ≥99.984    39.6    41.3    40.8    40.3    40.5    2-3    2-3    2-3    2-3    1-2    4.9    4.8    5.0    4.6    4.8 Ex.46 Ex.47 Ex.48 Ex.49 Ex.50 10 10 10 10 10    -    -    50    50    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    50    -    -    -    -    -    -    -    -    -    -    1    10    1    10    1    ≥99.9979    ≥99.997    ≥99.9929    ≥99.992    ≥99.9929    39.0    40.8    39.3    41.5    40.2    2-3    2-3    2-3    2-3    2-3    4.6    4.9    4.5    5.0    4.5 Ex.51 Ex.52 Ex.53 Ex.54 Ex.55 10 10 10 10 10    -    25    25    -    -    -    25    25    10    10    -    -    -    10    10    -    -    -    10    10    50    -    -    10    10    -    -    -    -    -    -    -    -    -    -    10    1    10    1    10    ≥99.992    ≥99.9929    ≥99.992    ≥99.9939    ≥99.993    39.8    40.4    41.6    39.7    40.8    2-3    2-3    2-3    2-3    2-3    4.7    4.6    4.9    4.8    5.0 Ex.56 Ex.57 Ex.58 Ex.59 Ex.60 10 10 10 10 10    -    -    -    -    -    -    -    50    50    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    50    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    ≥99.998    ≥99.998    ≥99.993    ≥99.993    ≥99.993    33.0    59.8    33.1    60.1    33.2    3-3    2-3    2-3    2-3    2-3    3.2    3.5    3.9    4.6    3.9

                                                                   表4

 Ex.No    成分    力学强度  评价    (wt  ppm)     (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%) 高温结合  强度(g) Ca    Mg    Y    La  Eu    Ge    Ag    Pt  Be       Au Ex.61 Ex.62 Ex.63 Ex.64 Ex.65 10 10 10 10 10    -    25    25    -    -    -    25    25    -    -    -    -    -    -    -   -   -   -   -   -    50    -    -    25    25    -    -    -    25    25    -    -    -    -    -  -  -  -  -  -    ≥99.993    ≥99.993    ≥99.993    ≥99.993    ≥99.993    59.8    33.0    60.1    33.3    60.3    2-3    2-3    2-3    2-3    2-3    5.1    3.8    4.9    3.9    4.6 Ex.66 Ex.67 Ex.68 Ex.69 10 10 10 10    -    -    -    -    -    -    10    10    -    -    10    10   20   20   10   10    20    20    10    10    -    -    -    -    20    20    -    -  -  -  -  -    ≥99.992    ≥99.992    ≥99.994    ≥99.994    33.1    60.2    33.1    59.8    2-3    2-3    2-3    2-3    3.9    4.8    3.8    5.1

                                                                           表5

    Ex.No    成分    力学强度    评价    (wt ppm)    (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%)  高温结合   强度(g)    Ca  Mg    Y  La    Eu    Ge    Ag    Cu    Au    Ex.1    Ex.2    Ex.3    Ex.4    Ex.5    -    -    -    10    200    -    50    -    -    -    -    -    50    -    -  -  -  -  -  -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    -    2.0    -  ≥99.999  ≥99.994  ≥99.994  ≥99.998  ≥99.979    16.2    40.1    40.9    59.3    40.4    2-3    2-3    2-3    2-3    2-3    0.6    2.7    2.5    0.5    1.2    Ex.6    Ex.7    Ex.8    Ex.9    Ex.10    Ex.11    10    10    10    10    10    30    -    50    -    -    -    -    -    -    -    -    50    20  -  -  -  -  -  -    -    -    -    -    -    50    -    -    25    -    -    -    -    -    25    -    -    -    -    -    -    -    -  ≥99.998  ≥99.993  ≥99.993  ≥99.998  ≥99.993  ≥99.989    30.1    29.8    30.4    23.2    22.8    37.0    2-3    2-3    2-3    4    4    4    2.5    2.8    2.8    2.2    2.2    2.4

(考虑实施例1到实施例71和对比例1到对比例11的结果)

(1)在仅将1~100ppm(重量百分比)的Ca加入到高纯度金的实施例1到实施例4中,作为结果而得到的金合金丝材的金纯度高于99.9wt.%,延伸率2~3%,抗拉强度39.3~41.4Kg/mm2,丝材的高温结合强度极好,为3.0~3.3g。

其中,更可取地是Ca添加1~50ppm(重量百分比),因为丝材的高温结合强度为3.2~3.3g。

(2)在将1~100ppm(重量百分比)的Ca以及1~100ppm(重量百分比)的Mg、Y、La、Eu、Ge、Ag、Pt和Be中的至少一种加入到高纯度金的实施例5到实施例55中,作为结果而得到的金合金丝材的金纯度高于99.9wt.%,延伸率1~3%,抗拉强度39.3~41.6Kg/mm2,丝材的高温结合强度为4.2~5.1g,这比只加入Ca时更优异。

(3)在成分和延伸率与实施例2、11、22、26、36、42、43和45中的一样的实施例56到实施例71中,抗拉强度为33.0~60.0Kg/mm2,丝材的高温结合强度极好,为3.2~5.1g。

(4)实施例中丝材最好的高温结合强度为4.2~5.1g,这是在除了Ca以外,加入Mg、Y、La、Eu、Ge、Ag、Pt和Be中的至少一种时得到的结果,丝材的延伸率为1~3%,抗拉强度39.1~63.0Kg/mm2

(5)在Ca以及Mg、Y、La、Eu、Ge、Ag、Pt和Be中的至少一种均未加入的对比例1中,丝材的高温结合强度低,为0.6g。

(6)在不包含Ca而包含50ppm(重量百分比)的Mg或Y的对比例2到对比例3中,丝材的高温结合强度低,为2.5~2.7g。

(7)在加入10ppm(重量百分比)的Ca,而产生预定的延伸率和抗拉强度,但是包含2wt.%的Cu的对比例4中,丝材的高温结合强度低,为0.5g。

(8)在包含200ppm(重量百分比)的Ca的对比例5中,丝材的高温结合强度低,为1.2g。

(9)在包含预定量的Ca,或者预定量的Ca以及预定量的Mg、Ge或Ag的对比例6到对比例8中,且丝材具有预定的金纯度和预定的延伸率,但是,其抗拉强度低于33.4Kg/mm2,丝材的高温结合强度低,为2.5~2.8g。

(10)在包含预定量的Ca,或者预定量的Ca以及预定量的Mg、Ge或Ag的对比例9到对比例11中,且丝材具有预定的金纯度,但是其延伸率在3%以上,丝材的高温结合强度低,为2.2~2.4g。

(实施例101)

重复了实施例1,除了不仅将1ppm(重量百分比)的Ca而且将1.0wt.%的Pd加入到纯度99.999%的原始高纯金中,最终退火后得到的丝材的抗拉强度为39.8Kg/mm2,延伸率2~3%。得到的金合金丝材的成分和力学性能示于表6。

以与实施例1中的同样方式测定丝材的高温结合强度,并示于表6中。

(实施例102到实施例150和对比例101到对比例126)

重复了实施例101,但是,如表5到表9所示,改变了金和金合金丝材的成分,延伸率和抗拉强度。从得到的丝材上测定的高温结合强度示于表6到表10。

                                                                       表6

 Ex.No    成  分    力学强度  评价    (wt     ppm)    (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%)  高温结合  强度(g) Ca  Mg Y  La  Eu  Ge  Be    Pd    Ag   Pt  杂质   Au Ex.101 Ex.102 Ex.103 Ex.104 Ex.105 1 10 50 100 50  -  -  -  -  - - - - - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -    1.0    1.0    1.0    1.0    0.2    -    -    -    -    -    -    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    39.8    40.2    39.1    40.7    40.2    2-3    2-3    2-3    2-3    2-3    4.3    4.5    4.8    3.5    4.6 Ex.106 Ex.107 Ex.108 Ex.109 Ex.110 50 1 10 50 100  -  -  -  -  - - - - - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -    5.0    -    -    -    -    -    1.0    1.0    1.0    1.0    -    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    41.5    39.8    40.1    40.0    40.4    2-3    2-3    2-3    2-3    2-3    4.1    4.4    4.5    4.8    3.6 Ex.111 Ex.112 Ex.113 Ex.114 Ex.115 50 50 1 10 50  -  -  -  -  - - - - - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -    -    -    -    -    -    0.2    5.0    -    -    -    -    -    1.0    1.0    1.0  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    41.1    39.7    40.7    40.2    41.3    2-3    2-3    2-3    2-3    2-3    4.5    4.1    4.6    5.0    5.0 Ex.116 Ex.117 Ex.118 Ex.119 Ex.120 100 50 50 50 50  -  -  -  -  - - - - - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -    -    -    -    1.0    1.0    -    -    -    1.0    -    1.0    0.2    5.0    -    1.0  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    39.2    40.3    39.9    40.8    39.6    2-3    2-3    2-3    2-3    2-3    3.5    4.6    4.2    4.4    4.9

                                                                 表7

 Ex.No    成分    力学强度    评价    (wt  ppm)    (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%) 高温结合  强度(g) Ca    Mg    Y  La  Eu  Ge    Be  Pd   Ag    Pt  杂质  Au Ex.121 Ex.122 Ex.123 Ex.124 Ex.125 50 50 50 50 50    -    -    -    1    50    -    -    -    -    -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -    -    -    -    -    -  -  1.0  1.0  1.0  1.0   1.0   1.0   -   -   -   1.0   1.0    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    39.8    40.2    39.8    40.2    39.8    2-3    2-3    2-3    2-3    2-3    4.2    5.1    4.8    4.7    4.9 Ex.126 Ex.127 Ex.128 Ex.129 Ex.130 50 50 50 50 50    100    -    -    -    -    -    1    50    100    -  -  -  -  -  50  -  -  -  -  -  -  -  -  -  -    -    -    -    -    -  1.0  1.0  1.0  1.0  1.0   -   -   -   -   -    -    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    41.5    40.1    41.1    40.5    39.7    23    2-3    2-3    2-3    2-3    4.9    4.8    5.1    5.0    4.9 Ex.131 Ex.132 Ex.133 Ex.134 Ex.135 50 50 50 50 50    -    -    -    25    -    -    -    -    25    -  -  -  -  -  -  50  -  -  -  25  -  50  -  -  -    -    -    50    -    -  1.0  1.0  1.0  1.0  1.0   -   -   -   -   -    -    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    41.3    40.4    40.5    41.2    40.1    2-3    2-3    2-3    2-3    2-3    4.8    5.0    4.6    4.9    5.0 Ex.136 Ex.137 Ex.138 Ex.139 Ex.140 50 50 50 50 50    -    10    25    25    25    10    10    25    25    -  10  10  -  -  -  10  10  -  -  -  10  10  -  -  -    -    10    -    -    -  1.0  1.0  -  -  1.0   -   -   1.0   -   1.0    -    -    -    1.0    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  余量  余量  余量  余量  余量    39.7    39.2    41.1    39.6    40.4    2-3    2-3    2-3    2-3    2-3    4.7    4.9    4.8    4.5    4.4

                                                                      表8

 Ex.No    成分    力学强度  评价    (wt ppm)    (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%) 高温结合  强度(g) Ca    Mg Y  La  Eu  Ge Be  Pd Ag    Pt  杂质    Au Ex.141 Ex.142 Ex.143 Ex.144 Ex.145 50 50 50 50 50    25    25    -    -    - - - - - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  1.0  1.0  1.0  1.0  -    -    1.0    -    -    1.0    1.0    1.0    -    -    -    ≤0.002    ≤0.002    ≤0.002    ≤0.002    ≤0.002    余量    余量    余量    余量    余量    39.6    41.1    33.2    60.4    33.1    2-3    2-3    2-3    2-3    2-3    4.3    4.8    3.8    4.4    3.9 Ex.146 Ex.147 Ex.148 Ex.149 Ex.150 50 50 50 50 50    -    -    -    50    50 - - - - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  1.0  1.0    1.0    -    -    -    -    -    1.0    1.0    -    -    ≤0.002    ≤0.002    ≤0.002    ≤0.002    ≤0.002    余量    余量    余量    余量    余量    59.8    33.0    59.7    33.1    60.6    2-3    2-3    2-3    2-3    2-3    4.2    3.8    4.0    3.9    4.3 Ex.151 50    30 30  10  10  10  10  1.0    -    -    ≤0.002    余量    39.5    1-2    4.7

                                                                            表9

  对比 例序号    成    分    力学强度  评价  (wt  ppm)    (wt%)   抗拉强度  (Kg/mm2)  延伸率   (%)  高温结合  强度(g)   Ca    Mg    Pd    Ag    Pt    Cu    杂质 Au No.101 No.102 No.103 No.104 No.105  -  *  -  *  -  *  -  *  -  *    -    -    -    -    50   - *   1.0   -   -   1.0    -    -    1.0    -    -    -    -    -    1.0    -    -    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002余量余量余量余量余量    16.2    40.2    40.3    39.7    40.9    2-3    2-3    2-3    2-3    2-3    0.6    2.7    2.8    2.5    2.8 No.106 No.107 No.108 No.109 No.110   50  200*  200*  200*  200*    -    -    -    -    50   -   1.0   -   -   1.0    -    -    1.0    -    -    -    -    -    1.0    -    2.0*    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002余量余量余量余量余量    58.6    39.8    40.0    40.3    39.6    2-3    2-3    2-3    2-3    2-3    0.5    1.0    1.3    1.1    1.4 No.111 No.112 No.113 No.114 No.115   50   50   50   50   50    -    -    -    50    -   0.11*   -   -   0.11*   6.0*    -    0.11*    -    -    -    -    -    0.11*    -    -    -    -    -    -    -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002余量余量余量余量余量    40.2    39.7    39.9    40.4    40.7    2-3    2-3    2-3    2-3    2-3    3.3    3.2    3.2    3.3    1.6

                                                                 表10

 对比 例序号    成    分    力学强度  评价  (wt  ppm)    (wt%)  抗拉强度  (Kg/mm2)  延伸率   (%)  高温结合  强度(g)  Ca    Mg    Pd    Ag    Pt  Cu    杂质 Au No.116 No.117 No.118 No.119 No.120  50  50  50  5 0  50    -    -    50    -    -    -    -    6.0*    1.0    -    6.0*    -    -    -    1.0    6.0*    -    -    -    -  -  -  -  -  -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002余量余量余量余量余量    40.1    40.6    40.5    30.3*    29.9*    2-3    2-3    2-3    2-3    2-3    1.4    1.4    1.2    2.8    2.6 No.121 No.122 No.123 No.124 No.125 No.126  50  50  50  50  50  50    -    50    -    -    -    50    -    1.0    1.0    -    -    1.0    -    -    -    1.0    -    -    1.0    -    -    -    1.0    -  -  -  -  -  -  -  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002  ≤0.002余量余量余量余量余量余量    30.1*    30.6*    40.8    39.4    40.8    40.2    2-3    2-3    4*    4*    4*    4*    2.6    2.9    2.3    2.1    2.0    2.4

(考虑实施例101到实施例150和对比例101到对比例126的结果)

(1)在将1~100ppm(重量百分比)的Ca和0.2~5.0wt.%的Pd、Ag和Pt中的至少一种加入到高纯度金的实施例101到实施例123中,作为结果而得到的金合金丝材的延伸率为2~3%,抗拉强度39.1~41.5Kg/mm2,丝材的高温结合强度极好,为3.5~5.1g。

其中,更可取地是Ca添加1~50ppm(重量百分比),因为丝材的高温结合强度为4.1~5.1g。

(2)除了预定量的Ca和Pd、Ag和Pt中的至少一种外,另外将1~100ppm(重量百分比)的Mg、Y、La、Eu、Ge和Be中的至少一种加入到高纯金的实施例124到实施例142中,作为结果而得到的金合金丝材的延伸率为2~3%,抗拉强度39.2~41.5Kg/mm2,丝材的高温结合强度为4.3~5.1g,这结果同样极好。

(3)在成分和延伸率与实施例103、109、115和125中的一样的实施例143到实施例150中,抗拉强度为33.0~60.0Kg/mm2,丝材的高温结合强度极好,为3.8~4.4g。

(4)在与Ca以及Pa、Ag和Pt中的至少一种均未加入的对比例1相同的对比例101中,丝材的高温结合强度低,为0.6g。

(5)在不包含Ca而包含预定量的Pd、Ag和Pt中的至少一种的对比例102到对比例105中,丝材的高温结合强度低,为2.5~2.8g。

(6)在加入50ppm(重量百分比)的Ca,但是包含2wt.%的Cu代替Pd、Ag和Pt中的至少一种的对比例106中,丝材的高温结合强度低,为0.5g。

(7)在包含预定量的Pd、Ag和Pt中的至少一种,但是包含200ppm(重量百分比)的Ca的对比例107到对比例110中,丝材的高温结合强度低,为1.0~1.4g。

(8)在包含预定量的Ca,但是包含0.11wt.%的Pd、Ag和Pt中的至少一种的对比例111到对比例114中,丝材的高温结合强度低,为3.2~3.3g。

(9)在包含预定量的Ca,但是包含6.0wt.%的Pd、Ag和Pt中的至少一种的对比例115到对比例118中,丝材的高温结合强度低,为1.2~1.6g。

(10)在包含预定量的Ca和预定量的Pd、Ag和Pt中的至少一种的对比例119到对比例122中,且丝材具有预定的延伸率,但是其抗拉强度低于33.0Kg/mm2,丝材的高温结合强度低,为2.6~2.9g。

(11)在包含预定量的Ca和预定量的Pd、Ag和Pt中的至少一种的对比例123到对比例126中,且丝材具有预定的抗拉强度,但是其延伸率在3%以上,丝材的高温结合强度低,为2.0~2.4g。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号