首页> 中国专利> 制备类金刚石碳膜(DLC)的方法、由此制备的DLC膜、该膜的用途、场致发射体阵列以及场致发射体阴极

制备类金刚石碳膜(DLC)的方法、由此制备的DLC膜、该膜的用途、场致发射体阵列以及场致发射体阴极

摘要

本发明涉及一种用于形成基本不含氢的DLC层的方法,其中将厚度约为1-100纳米的DLC层沉积在样品基底或场致发射体阵列的整个表面上,随后将其暴露在含氟气体的蚀刻等离子体中,其中在后一步骤中,含在基底中的氢通过与氟的化学蚀刻反应而被去除,其中重复形成该不含氢的DLC层的步骤,以得到预定厚度的DLC膜。

著录项

  • 公开/公告号CN1166864A

    专利类型发明专利

  • 公开/公告日1997-12-03

    原文格式PDF

  • 申请/专利权人 奥里翁电气株式会社;

    申请/专利号CN96191316.9

  • 发明设计人 张震;朴奎昶;

    申请日1996-11-02

  • 分类号C23C16/26;

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人甘玲

  • 地址 韩国庆尚北道

  • 入库时间 2023-12-17 13:00:39

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2005-02-23

    专利权的终止未缴年费专利权终止

    专利权的终止未缴年费专利权终止

  • 2001-01-31

    授权

    授权

  • 1997-12-10

    实质审查请求的生效

    实质审查请求的生效

  • 1997-12-03

    公开

    公开

说明书

技术领域

本发明涉及一种形成类金刚石碳(Diamond-Like Carbon,“DLC”)膜的方法,特别是基本不含氢的DLC膜,所述方法使用等离子体增强化学汽相沉积(“PECVD”)法,还涉及由此制得的DLC膜。本发明还涉及该DLC膜作为场致发射显示器(field emission display)的场致发射阴极的用途以及涉及涂有该DLC膜的场致发射体阵列(field emitter array)和包括该DLC膜的场致发射体阴极。

背景技术

一般来说,不含氢的DLC使人们更感兴趣,这是因为与含氢的DLC相比,不含氢的DLC具有更高的sp3份数,例如,参见V.S.Veerasamy等人,固体电子(Solid-State Elec.)37,319(1994);D.R.Mckenzie等人,固态薄膜(Thin SolidFilm)206,198(1991);以及K.K.Chan等人,固态薄膜212,232(1992)。具有负电子亲合力(“NEA”)特性的DLC膜在真空微电子学中的电子发射体领域具有很大的潜在应用价值,因此吸引人们对此进行了深入的研究,例如,参见M.W.Geis等人IEEE ED Lett.12,456(1991);N.S.Xu等人《电子通迅(Electron.Lett.)》29,1596(1993)。DLC膜作为发射材料之所以使人感兴趣是因为它具有独特的发射性能、低-场致冷发射和发射稳定性。另外,DLC膜优异的热传导性可以促进从该DLC膜涂覆的发射体获得高的最大电流。如同可从这些参考文献得知的,DLC膜一般地用作场致发射显示器(“FED”)的场致发射体材料。一般地,FED包括发射阴极和玻璃面板,所述玻璃面板在透明的导电氧化物上涂有荧光物质。在操作过程中,该面板保持在高正电压下。当一色素被选定,由冷阴极阵列发出的电子轰击相应的荧光物质单元,以与常规电视显像管相同的方式产生亮光。目前,金刚石、DLC以及晶态Si、金属如Mo是最常用的FED电极头(tip)材料。然而,使用金属或Si作电极头材料具有下列问题如低耐久性、高驱动电压,这是因为与DLC或金刚石相比具有高的逸出功。还有,电子和颗粒的分散使得难以保持低于10-7乇的高真空,并且使电极头氧化。DLC的化学惰性、硬度、以及特别是低的逸出功使其成为优异的用于FED的电子发射材料。

也广泛地讨论了通过将金刚石膜沉积在Si电极头、Mo电极头或W电极头上而得到的冷阴极电子发射体。用于电子发射所需的场强已降至小于3×104V/cm,这显著低于在常规金属电极头场致发射阵列(“FEA”)所需的场强(如>1×106V/cm)。

迄今为止,用PECVD法沉积的DLC膜具有较高的氢含量,一般高于20at%,参见A.Dekempeneer等人固体薄膜217,56(1992)。所含的氢降低了膜中的sp3份数,结果降低了膜的硬度。用过滤的真空弧沉积或离子束沉积可得到无氢DLC。例如参见S.Aisenberg等人《应用物理(Appl.Phys.)》42,2953(1971)。Mckenzie等人用过滤的真空弧沉积法沉积的无氢DLC具有大于85%sp3份数,参见Mckenzie等人物理评论通讯(Phys.Rev.Lett.)67,773(1991)。典型的过滤的真空弧放电方法的特征是通过给由弧放电形成的碳离子施加磁场和电场而沉积所述碳离子。然而,用该方法不易得到大面积均匀沉积。

图1说明了用PECVD方法制造DLC层的现有技术方法。沉积等离子体包括甲烷(其它碳氢化物气体也可使用),在该方法中使用氢和氦。然而,在该方法中,在包含于沉积等离子体中的甲烷分解过程中形成含氢的基团,因此使所得样品不可避免地含氢。

发明的公开

因此,本发明的一个目的是提供一种在大面积内形成均匀的基本不含氢的DLC沉积膜的方法。

在本发明中,通过沉积一DLC薄层并随后将其表面暴露在蚀刻等离子体中从而形成基本不含氢的DLC层。这种方法在下文中称作叠层(layer-by-layer)沉积法。

根据本发明,首先将厚度为约1-100纳米的DLC层沉积在样品基底整个表面上。然后将所述的DLC层的表面暴露在蚀刻等离子体中,在后一步骤中,含在该基底中的氢通过化学退火(或蚀刻)而被去除。这就制得了基本无氢的DLC层。该DLC层的特性可以通过改变其在蚀刻等离子体中的暴露时间而方便地得到改变。

任何具有化学蚀刻反应的等子体可用作该蚀刻等电子体。该蚀刻等离子体优选地含有氟,更优选地为氟化碳。

依据本发明的另一方面,该DLC层形成在金属电极头表面上。

附图的简要说明

对于本领域熟练人员来说,参照附图会更清楚地理解本发明的目的和优点,在附图中:

图1A-1B说明了现有技术中用PECVD法制备DLC层的方法;

图2A-2I说明了根据本发明的制备DLC层的方法;

图3表明了沉积的DLC膜的傅里叶变换-红外吸收谱;

图4表明了由Tauc氏图得到的该DLC膜的光波段范围;

图5表明了DLC膜的温度-暗电导率的关系;

图6表明了该DLC膜的I-E(电流-电场)特性;

图7表明了具有不同暴露时间的DLC膜的特性的变化;

图8是DLC层涂覆的MoFEA的顶视SEM照片;

图9是该DLC层涂覆的Mo电极头的横截的SEM照片;

图10表明了该DLC层涂覆的Mo电极头和Mo电极头FEA的I-V特性;

图11表明了该DLC层涂覆的Mo电极头和Mo电极头FEA的富勒-诺德哈姆(F-N)曲线;

图12表明了纯Mo FEA和DLC层涂覆的Mo FEA的发射电流波动。

实施本发明的最佳方式

图2A表明了暴露于沉积等离子体中且用DLC层涂覆的基底。图2B表明了由所述沉积形成的DLC层(11)。图2C表明了在沉积DLC层后将DLC层(11)暴露于含氟化物气体的蚀刻等离子体中。在该步骤中通过改变暴露于蚀刻等离子体中的时间而方便地改变该样品基底的特性。图2D表明了由所述方法制备的基本不含氢的第一层(12)。随后,生长厚度约为1-100纳米的另一层常规DLC(图2E和图2F)。将该样品基底暴露在蚀刻等离子体10中以得到第二层基本不含氢的DLC层的步骤示于图2G中。由此得到第二DLC层(图2H)。图2I表示DLC层的第十层处于蚀刻等离子体中。重复这些步骤以得到预定数量的DLC层,这些所有的DLC层构成一DLC膜。

在一个使用含CF4等离子体用作蚀刻等离子体的实施例中,使用本发明的叠层沉积方法来沉积基本上不含氢的a-Si:H和微晶Si膜。在这种情况下,将含氢的沉积等离子体暴露在薄a-Si:H层上进行化学退火。然后,将CF4等离子体暴露在薄DLC层上以去除弱键,主要是C-Hn键和石墨C-C键。使用常规的PECVD法,在该方法中将rf电源加到基底夹持器上。分别引入CH4/H2/He和CF4/He,用于沉积DLC层和表面处理。

下表说明了该实施例的叠层条件。

    条件    沉积    等离子体蚀刻    RF功率(W)    100       100

    压力(mbar)    0.4    0.45    流速(sccm)       He       H2       CH4       CF4    50    5    1    0    50    0    0    30    时间(秒)    100    0-200

用于蚀刻等离子体处理的He和CF4的流速分别固定在50sccm和30sccm。为了得到高质量的DLC层,每层DLC的厚度和CF4等离子体暴露时间是两个最重要的参数。在该实施例中,每一层的厚度固定在5nm,而CF4等离子体暴露时间从0-200秒变化。在固定的100W rf功率下测得的该实施例的自偏电压为-120V。该自偏电压强烈地依赖于气体压力和rf功率。

图3表明了DLC膜的FT-IR透射系数谱。在2870cm-1、2925cm-1和2960cm-1处的吸收峰分别相应于在常规DLC层的FT-IR谱中出现的sp3 CH3(对称的)、sp3 CH2(不对称的)和sp3 CH3(不对称的)模式。当CF4等离子体暴露时间为200秒时,C-Hn振动强度完全消失。这证实,通过用本发明的叠层沉积方法的PECVD方法可以沉积基本不含氢的DLC层。

图4表明了由Tauc氏图得到的该DLC膜光波段范围(Egopt)。随着CF4等离子体暴露时间的增加,该光波段范围从1.2eV增加到1.4eV。光波段范围的增加是当暴露于CF4等离子体中时由在DLC层中的石墨相优先蚀刻而造成的。应注意的是C-C sp3键的键能(8.68eV)高于C-C sp2键的键能(6.33eV)。因此,C-C sp2的键合和反键态位于C-C sp3的内侧。因此,去除sp2键会扩展DLC的波段范围。

图5表明了该DLC膜的温度-暗电导率的关系。DLC膜的电导率表明了一种活化的形式,随着CF4等离子体暴露时间增长至200秒,该活化能从0.25eV增大至0.55eV。这意味着在CF4等离子体暴露后费米能级朝向中间范围移动,这是因为基本不含氢的DLC层的光波段范围为1.4eV,这比电导性活化能的2倍还高。常规的DLC层具有p-型性能特性,并且电导性的活化能在0.2eV左右。本发明的DLC膜具有相对高的活化能值(0.55eV)。

图6表明了DLC膜的I-E特性。该DLC膜的面积和厚度分别为0.9cm和100nm。常规DLC膜具有高至22V/μm的非发射性。然而,叠层沉积的DLC膜具有有效的电子发射性:用于发射的开始场(onset field)为18V/μm,并且发射电流由Fowler-Nordheim(F-N)公式计算。

由F-N曲线的斜率计算得出该基本不含氢的DLC的电子发射的势垒能是0.06eV。这说明该DLC膜具有低的电子发射势垒能。

在不同的沉积和蚀刻等离子体暴露条件下进行叠层沉积。用于DLC沉积的CH4和H2的流速分别为6sccm和3sccm,用于蚀刻等离子体处理的CF4的流速固定为20sccm。

图7表明了具有不同的CF4等离子体暴露时间的本发明的DLC膜的I-E特征。在该实施例中的DLC膜的面积固定为0.3cm2。DLC膜的发射电流随CF4等离子体暴露时间的增长而增加,且与发射阈值场一起降低。用本发明方法通过使DLC生长进一步最佳化可使开始场降低。

在另一实施例中,用本发明的叠层方法在Mo电极头场致发射体阵列(FEA)上涂覆DLC。这些电极头是用电子束蒸发器沉积在Si基片上,成相距10μm中心间距的1.5μm直径的孔,这包括随后生长的SiO2、Mo和Al层。该电级头相对于栅极的高度由孔的直径和绝缘层的厚度决定。在DLC层沉积期间,在20毫乇压力下将基底温度调至室温。生长出约5nm厚的薄DLC层,然后将该表面暴露在CF4等离子体中。重复DLC沉积和CF4等离子体暴露以得到20nm厚的基本无氢的DLC层。特别地,可用叠层沉积法生产该基本无氢的DLC层,即沉积5nm DLC层随后将每个5nm DLC层在CF4等离子体中暴露200秒。

用三极管结构测量该电极头的电子发射特性。将阳极板置于栅极上方1mm处并置以300V偏压。在1×10-8乇真空环境下测量阳极和栅极电流随栅极相对阴极偏压的变化。可用计算机控制电流-电压和电流变动试验。对于所有试验,该设备设计成通用的发射体结构,即具有接地的发射体、置于正电压上的阳极和以正向驱动的栅极以使该器件启动。

基本上不含氢的DLC涂覆的Mo电极头的结构示于图8中。示于图9中的基本上不含氢的DLC涂覆的Mo电极头的截面图表明该电极头是典型的高1.8μm而栅极孔是1.5μm宽。热SiO2介电层约为1.6μm厚,而涂覆在Mo电极头上的基本上不含氢的DLC的厚度约为20nm。

图10表明了涂覆在900电极头的Mo电极头FEA和Mo电极头FEA上的DLC的发射电流电压特性。所测的Mo电极头EFA的起始电压为80V,而DLC涂覆的Mo电极头FEA为65V。除了起始电压降低外,可得到的最大阳极电流也从140μa增加至320μa。在DLC涂覆的Mo电极头FEA中在87V得到每个发射体约0.1μA的阳极电流,而在Mo电极头FEA中在107V得到相同的电流值。这表明仅通过采用这种DLC涂覆在Mo电极头上的制造方法就可显著地降低操作电压。通过对比,栅极电流伴随所加栅压而单调地增加,并且没有因为DLC涂层而明显地变化。应指出的是这些Mo和DLC涂覆的Mo电极头是在相同条件下在相同晶片上生长的。因此,对电流-电压性能的改进完全是由于采用基本不含氢的DLC涂层使电子发射性能提高而造成的。

图11表明了该DLC层涂覆的Mo电极头FEA和Mo电极头FEA的富勒-诺德哈姆曲线。用F-N方程进一步计算该电极头的电子发射特性,方程为

log(I/V2)=logA-B×(1000/V)其中I是发射电流,V是栅板相对阴极的电压,logA是与纵轴的交叉点,B是与φ3/2成正比的F-N曲线的斜率。该有效逸出功(Φ)和起始电压分别由F-N曲线斜率和该曲线与横轴的截距计算得出。通过将由该Mo电极头F-N曲线斜率计算出的Φ值与报道的Mo金属的逸出功(4.5ev)相比,首先得到这些电极头的场致增强因子。由此计算出的DLC涂覆电极头的有效Φ值是2.60eV。这些明显地说明基本不含氢的DLC涂层对降低发射电子所需的逸出功有显著的作用。

图12A和图12B分别示出了Mo电极头FEA和基本不含氢的DLC涂覆的Mo电极头FEA的发射电流伴随可变栅压的波动。在中间电流波动的测量中,证明了基本不含氢的DLC涂覆的Mo电极头FEA的发射电流比常规的纯Mo电极头FEA的发射电流更稳定。所以该DLC涂覆的Mo电极头FEA的性能比Mo电极头FEA的性能更好。

用三极结构检测了Mo电极头和基本不含氢的DLC涂覆的Mo电极头FEA的电子发射特性,观察到DLC涂层明显增强电子发射。由于DLC涂覆在Mo电极头上,开始电压从80V降至65V,而最大阳极电流从140增加到320μA。而且基本不含氢的DLC涂覆的Mo电极头的发射电流比常规的纯Mo电极头FEA的发射电流更稳定。

考虑到上述内容,本发明方法制备的基本不含氢的DLC膜提供了一种有前途的特别适用于FED的阴极材料,这是由于其具有硬度、化学惰性、优异的热导性、大面积能力、低场冷发射和发射稳定性等特性。

明显地,根据上述教导可对本发明作出多种修正和变化。因此,应理解地是,本发明也适用除了本文所特定说明之外的情况。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号