首页> 中国专利> 核电站主回路的超压保护的控制方法及系统

核电站主回路的超压保护的控制方法及系统

摘要

一种核电站主回路的超压保护的控制方法及系统,该方法包括在实时温度低于第一预设温度T1时,余热排出系统安全阀进入超压保护状态,稳压器安全阀进入第一超压保护状态;实时温度高于第一预设温度T1时,余热排出系统安全阀进入隔离状态,稳压器安全阀自动取消第一超压保护状态并进入第二超压保护状态。稳压器安全阀的第二超压保护状态能够对高温超压进行保护,且其第一超压保护状态与余热排出系统安全阀的超压保护状态共同实现低温时的超压保护,正常情况下系统低温超压保护由余热排出系统安全阀的开启实现,余热排出系统被隔离时,第一超压保护状态对系统的低温超压进行保护,加强了低温工况下的超压保护,显著降低反应堆压力容器脆性断裂风险。

著录项

  • 公开/公告号CN104425043A

    专利类型发明专利

  • 公开/公告日2015-03-18

    原文格式PDF

  • 申请/专利号CN201310379110.9

  • 申请日2013-08-27

  • 分类号G21C17/00;G05D16/20;

  • 代理机构深圳市顺天达专利商标代理有限公司;

  • 代理人蔡晓红

  • 地址 518023 广东省深圳市福田区深南中路69号

  • 入库时间 2023-12-17 04:31:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-19

    授权

    授权

  • 2016-05-11

    实质审查的生效 IPC(主分类):G21C17/00 申请日:20130827

    实质审查的生效

  • 2015-03-18

    公开

    公开

说明书

技术领域

本发明涉及压水堆核电站的设计和建造中的反应堆压力容器的保护,尤其 涉及一种在余热排出系统因为事故被隔离的情况下,实现简单、有效的主回路 冷态超压防护的核电站主回路的超压保护的控制方法及系统。

背景技术

反应堆压力容器的材料为不锈钢,在低温工况下存在冷脆现象,尤其是经 过长期辐照后,材料断裂韧性会进一步降低。因此,低温工况下,反应堆压力 容器脆性断裂风险高,参见图2是主回路压力容器的温度-极限承受压力曲线 示意图,曲线C1表示压力容器在随着温度变化所能承受的极限压力,曲线 C1的上方区域即为压力容器脆性断裂风险高的情况,反应堆冷却剂系统运行 压力必须被限制在可接受的水平。

反应堆冷却剂系统设置了稳压器安全阀,用于执行功率运行期间主回路的 超压保护功能,但由于其开启压力较高,不能用作低温工况下的超压保护。

在启、停堆期间,当系统温度较低时,通常由余热排出系统安全阀(开启 压力定值:P1)来防止主回路超压。参照图2,余热排出系统安全阀投入保护 状态的条件是主回路温度低于温度T1,在这种低温状态下,一旦主回路压力 到达压力P1,余热排出系统安全阀自动开启进行卸压。一旦余热排出系统出 现破口,该系统将被隔离,主回路只能依靠稳压器上的安全阀(开启压力定值: P3)来执行超压保护,由于稳压器安全阀的自动开启压力太高,在温度低于 T1的情况下不能保护压力容器。

因此现有技术的上述低温超压保护完全依赖于余热排出系统,导致主回路 的低温超压保护比较脆弱。

发明内容

本发明要解决的技术问题在于,针对现有技术的上述低温超压保护完全依 赖于余热排出系统的保护脆弱的缺陷,提供一种在余热排出系统因为事故被隔 离的情况下,实现简单、有效的主回路冷态超压防护的核电站主回路的超压保 护的控制方法及系统。

本发明解决其技术问题所采用的技术方案是:构造一种核电站主回路的超 压保护的控制方法,所述方法包括以下步骤:

S1、检测主回路的实时温度和实时压力并判断主回路的实时温度是否低 于第一预设温度T1,如果是,转步骤S2,否则,转步骤S3;

S2、余热排出系统安全阀进入超压保护状态,稳压器安全阀进入第一超 压保护状态;

S3、所述余热排出系统安全阀进入隔离状态,所述稳压器安全阀自动取 消所述第一超压保护状态并进入第二超压保护状态。

在本发明所述的核电站主回路的超压保护的控制方法中,所述步骤S2具 体包括:

在所述余热排出系统安全阀处于正常状态时,当所述主回路的压力达到第 一开启压力P1,所述余热排出系统安全阀自动开启,实现降低所述主回路的 压力;

在所述余热排出系统安全阀失效时,当所述主回路的压力达到第二开启压 力P2,控制所述稳压器安全阀的电磁阀自动带电,以强制打开所述稳压器安 全阀,实现降低所述主回路的压力。

在本发明所述的核电站主回路的超压保护的控制方法中,所述步骤S3中, 当所述主回路的压力达到第三开启压力P3,所述稳压器安全阀自动开启,实 现降低所述主回路的压力。

在本发明所述的核电站主回路的超压保护的控制方法中,所述第二开启压 力P2大于所述第一开启压力P1。

在本发明所述的核电站主回路的超压保护的控制方法中,所述第三开启压 力P3大于所述第二开启压力P2。

在本发明所述的核电站主回路的超压保护的控制方法中,所述步骤S2中 的所述稳压器安全阀投入第一超压保护状态必须由操作人员手动确认生效。

在本发明所述的核电站主回路的超压保护的控制方法中,操作人员手动确 认生效的条件是所述主回路的温度小于所述第二预设温度T2且所述主回路的 压力小于预设压力P4。

在本发明所述的核电站主回路的超压保护的控制方法中,所述预设压力 P4小于所述第一开启压力P1,所述第二预设温度T2大于所述第一预设温度 T1。

本发明还公开了一种核电站主回路的超压保护的控制系统,所述系统包括 主控系统、检测系统、余热排出系统和主回路系统;

所述主控系统分别与所述检测系统、余热排出系统和主回路系统相连接, 所述检测系统还分别与所述余热排出系统和主回路系统相连接;

所述检测系统用于检测主回路的实时温度和实时压力并将结果输送至所 述主控系统;

所述主控系统用于判断所述实时温度是否低于第一预设温度T1,并在所 述实时温度低于第一预设温度T1时控制所述余热排出系统的余热排出系统安 全阀进入超压保护状态以及主回路系统的稳压器安全阀进入第一超压保护状 态,所述主控系统还用于在所述实时温度不低于所述第一预设温度T1时,控 制所述余热排出系统的余热排出系统安全阀进入隔离状态以及所述主回路系 统的所述稳压器安全阀自动取消所述第一超压保护状态并进入第二超压保护 状态。

在本发明所述的核电站主回路的超压保护的控制系统中,所述主控系统用 于在所述余热排出系统安全阀失效且所述主回路的压力达到第二开启压力P2 时,控制所述稳压器安全阀的电磁阀自动带电,以强制打开所述稳压器安全阀, 进而实现降低所述主回路的压力。

实施本发明的核电站主回路的超压保护的控制方法及系统,具有以下有益 效果:本发明将稳压器安全阀设置为可以处于第一超压保护状态和第二超压保 护状态,其中第一超压保护状态与余热排出系统安全阀的超压保护状态共同实 现低温时的超压保护,正常情况下系统的低温超压保护首先由余热排出系统安 全阀的开启进行保护,由于稳压器安全阀完全独立于余热排出系统,因此在余 热排出系统出现状况被隔离时,系统依赖于稳压器安全阀的第一超压保护状 态,第一超压保护状态同样可以对系统的低温超压进行保护,且在高温超压时, 稳压器安全阀又可投入第二超压保护状态,第二超压保护状态用于系统高温时 的超压保护,如此本发明在不影响原有的主回路超压保护功能的前提下,加强 了低温工况下的主回路超压保护,可以显著降低反应堆压力容器的脆性断裂风 险,而且本发明在不必增加额外的保护系统,实施成本低。

附图说明

下面将结合附图及实施例对本发明作进一步说明,附图中:

图1是本发明核电站主回路的超压保护的控制系统的结构示意图;

图2是主回路压力容器的温度-极限承受压力曲线示意图;

图3是本发明核电站主回路的超压保护的控制方法的流程图。

具体实施方式

为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详 细说明本发明的具体实施方式。

为了解决现有技术的低温超压保护完全依赖于余热排出系统的保护脆弱 的缺陷,本发明提供一种在余热排出系统因为事故被隔离的情况下,实现简单、 有效的主回路冷态超压防护的核电站主回路的超压保护的控制方法及系统。

参考图1是本发明核电站主回路的超压保护的控制系统的结构示意图;

核电站主回路的超压保护的控制系统包括主控系统100、检测系统200、 余热排出系统300和主回路系统400;

主控系统100分别与检测系统200、余热排出系统300和主回路系统400 相连接,检测系统200还分别与余热排出系统300和主回路系统400相连接;

检测系统200用于检测主回路的实时温度和实时压力并将结果输送至主 控系统100;

主控系统100用于判断实时温度是否低于第一预设温度T1,并在实时温 度低于第一预设温度T1时控制余热排出系统300的余热排出系统安全阀进入 超压保护状态以及主回路系统400的稳压器安全阀进入第一超压保护状态,主 控系统100还用于在实时温度不低于第一预设温度T1时,控制余热排出系统 300的余热排出系统安全阀进入隔离状态以及主回路系统400的稳压器安全阀 自动取消第一超压保护状态并进入第二超压保护状态。

在余热排出系统安全阀处于正常状态时,当检测系统200检测到的主回路 的压力达到第一开启压力P1,余热排出系统300内的余热排出系统安全阀自 动开启,实现降低主回路的压力;

在余热排出系统安全阀失效时,当检测系统200检测到的主回路的压力达 到第二开启压力P2,主控系统100控制稳压器安全阀的电磁阀自动带电,以 强制打开稳压器安全阀,实现降低主回路的压力。

参考图3是本发明核电站主回路的超压保护的控制方法的流程图。

S1、检测主回路的实时温度和实时压力;判断主回路的实时温度是否低 于第一预设温度T1,是,转步骤S2,否则转步骤S3;

其中,步骤S2为针对主回路处于低温时的超压保护,步骤S3为针对主 回路处于高温时的超压保护。

S2、余热排出系统安全阀进入超压保护状态,稳压器安全阀进入第一超 压保护状态,具体执行步骤S21至S24;

本实施例中T1优选的180摄氏度。

S21、如果主回路的反应堆压力容器内的实时压力没有到达第一开启压力 P1,则转步骤S1继续检测实时温度和实时压力;如果达到,转步骤S22;

S22、若余热排出系统安全阀处于正常状态未被隔离,则余热排出系统安 全阀自动开启,实现降低主回路的压力,在系统压力降低到安全范围内时,关 闭余热排出系统安全阀,转步骤S1,继续系统的超压保护;若余热排出系统 安全阀被隔离,则转S23;

S23、如果检测到的反应堆压力容器内的实时压力没有到达第二开启压力 P2,转步骤S1继续检测实时温度和实时压力;如果达到,转步骤S24;

S24、稳压器安全阀开启,此处的开启并不是依靠稳压器安全阀感受压力 实现的自动开启,而是控制稳压器安全阀的电磁阀自动带电,以强制打开稳压 器安全阀,实现主回路卸压。由于主回路可能是满水状态,一旦发生冷态超压 事故,压力上升非常快,为了有效保护压力容器,稳压器安全阀的开启必须是 自动的,在系统压力降低到安全范围内时,关闭稳压器安全阀,转步骤S1, 继续系统的超压保护。

S3、余热排出系统进入隔离状态,稳压器安全阀进入第二超压保护状态, 第一超压保护状态自动失效。具体执行步骤S31至S32;

S31、如果主回路的实时压力没有到达第三开启压力P3,转步骤S1继续 检测实时温度和实时压力;如果到达,转步骤S32;

S32、稳压器安全阀自动开启,实现降低主回路的压力。此时稳压器安全 阀的开启是完全通过感受压力实现的自动开启,在系统压力降低到安全范围内 时,关闭稳压器安全阀,转步骤S1,继续系统的超压保护。

关于上述第一超压保护状态和第二超压保护状态:在主回路的温度高于第 一预设温度T1时,稳压器安全阀自动进入第二超压保护状态后,第一超压保 护自动自动取消;在主回路的温度低于第一预设温度T1时,稳压器安全阀自 动进入第一超压保护状态后,第二超压保护不用控制其是否取消,因为如背景 技术中已经提到,正是因为第二超压保护的开启压力很高,所以不能用于低温 时的超压保护。

其中,第二开启压力P2是依据压力容器脆性断裂风险来确定,且新增的 第一超压保护状态投入后,为了不影响稳压器安全阀现有的功率运行期间的超 压保护功能,第二开启压力P2应大于第一开启压力P1,这样在原有的余热排 出系统正常工作时,低温时的超压保护依旧由余热排出系统安全阀的开启实现 卸压,只有在余热排出系统出现状况被隔离时,才由稳压器安全阀执行低温时 的超压保护,且第二开启压力P2与第一开启压力P1不能太接近,否则会导 致在压力变化太快时余热排出系统安全阀和稳压器安全阀都开启。

另外,第三开启压力P3大于第二开启压力P2。高温时的超压值比低温时 的超压值高很多。

优选的,为了不影响稳压器安全阀现有的功率运行期间的超压保护功能, 新增的第一超压保护状态是否能够投入使用是需要由操作员手动确认生效的。 且考虑到反应堆压力容器内压力的上升是非常快的,因此手动确认生效时主回 路的压力小于预设压力P4,且为了避免影响高温时稳压器安全阀的工作,手 动确认生效时主回路的温度应低于第二预设温度T2。

关于上述第二预设温度T2和预设压力P4:由于稳压器安全阀增加的第一 超压保护状态就是为了在余热排出系统被隔离时对反应堆压力容器的超压进 行保护,因此,在可能出现低温时超压的状况之前必须手动确认稳压器安全阀 增加的第一超压保护生效,且同样的因为反应堆压力容器的压力变化太快,确 认生效的操作要尽可能的提前,因此预设压力P4应小于第一开启压力P1,同 样的温度方面,第二预设温度T2应高于第一预设温度T1。

参考图2,例如,用虚线C2表示反应堆启堆或者停堆的过程,用虚线C3 表示温度低于T1时的系统超压过程。在温度低于第二预设温度T2且压力小 于预设压力P4的时候,操作人员手动确认稳压器的第一保护状态可以生效。

关于低温时的超压保护,下面举例以停堆的过程中的低温超压保护进行详 细阐述:停堆的过程中,温度逐渐降低,当温度低于第一预设温度T1时,余 热排出系统安全阀进入超压保护状态,同时稳压器安全阀自动启动第一超压保 护状态。进入超压保护状态的余热排出系统安全阀的开启压力为第一开启压力 P1,进入第一超压保护状态的稳压器安全阀的开启压力为第二开启压力P2, 随着压力的不断增加,一旦压力到达第一开启压力P1,余热排出系统安全阀 自动开启,实现主回路卸压;如果余热排出系统出现状况,被隔离失效了,此 时系统压力得不到释放继续增加,当压力到达第二开启压力P2时,控制稳压 器安全阀的电磁阀自动带电,以强制打开稳压器安全阀,实现主回路卸压。如 此实现低温时的双重超压保护。

关于高温时的超压保护,下面举例以启堆的过程中的高温超压保护进行详 细阐述:在启堆的过程中,温度逐渐升高,当温度高于第一预设温度T1时, 余热排出系统安全阀进入隔离状态,同时稳压器安全阀的第一超压保护状态自 动取消并启动第二超压保护状态。进入第二超压保护状态的稳压器安全阀的开 启压力为第三开启压力P3,随着压力的不断增加,一旦压力到达第三开启压 力P3,稳压器安全阀自动开启,实现主回路卸压。如此实现高温时的双重超 压保护。

上述仅仅是就低温和高温时的超压保护选择两种情况进行阐述,并非限于 上述情况,无论是启堆还是停堆,实际上都涉及到上述低温时的超压保护和高 温时的超压保护。

本发明将稳压器安全阀设定为可以处于两种状态:第一超压保护状态和第 二超压保护状态,其中第一超压保护状态与余热排出系统安全阀的超压保护状 态共同实现低温时的超压保护,正常情况下系统的低温超压保护首先由余热排 出系统安全阀的开启进行保护,由于稳压器安全阀完全独立于余热排出系统, 因此在余热排出系统出现状况被隔离时,系统依赖于稳压器安全阀的第一超压 保护状态,第一超压保护状态同样可以对系统的低温超压进行保护,且在高温 超压时,稳压器安全阀又可转入第二超压保护状态,第二超压保护状态其实就 是用于系统高温时的超压保护,如此本发明在不影响原有的主回路超压保护功 能的前提下,加强了低温工况下的主回路超压保护,可以显著降低反应堆压力 容器的脆性断裂风险,而且本发明在不必增加额外的保护系统,实施成本低。

上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述 的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本 领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保 护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号