首页> 中国专利> 网络环境下大规模图像与视频数据高效处理的方法

网络环境下大规模图像与视频数据高效处理的方法

摘要

一种网络环境下大规模图像与视频高效数据处理的方法,包括一下步骤分析采集的海量图像或视频序列的数据特征,提出有效的大规模数据约简方法;提出特征图像聚类方法、模糊分类方法,实施海量图像的分类;利用图像或数据特征对图像进行编码、表示、分类,对图像进行压缩处理,实施数据建模和传输;提取网络环境下目标的多维有效特征参数。本发明为提高信息处理实时性和准确性提供一种思路方法,对不确定条件下的信息处理提供有价值的参考,具有重要的理论借鉴和现实意义。本发明能节约资源、降低开支、减少不必要的损坏或损伤等,将对军事、民事、公安系统、道路交通等所有基于视频系统的目标识别与跟踪的发展起到重要的借鉴和参考作用。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-02-24

    授权

    授权

  • 2015-07-22

    著录事项变更 IPC(主分类):G06K9/00 变更前: 变更后: 申请日:20140930

    著录事项变更

  • 2015-02-04

    实质审查的生效 IPC(主分类):G06K9/00 申请日:20140930

    实质审查的生效

  • 2015-01-07

    公开

    公开

说明书

技术领域

本发明属于图像信息处理技术领域,具体涉及一种网络环境下大规模图像与 视频数据高效处理的方法。

背景技术

近年来,随着各种成像技术的完善,以及相应的数据收集能力的持续增加, 获得了越来越多的变化数据,当海量的模糊图像应用于军事目标的监测时,当 收集的大规模的图像数据应用于实际目标的监测时,应用传统的图像判读方式已 经不能满足信息获取的实际需求,迫切需要开展大规模图像特征自动提取的研 究。

在有些场合如红外制导中,需要能够尽快地截获并锁定跟踪目标。那么实 施大规模图像与视频数据的高效处理,对在军事、民事等各个领域的应用显得越 来越重要,也越来越急迫。

目前对网络环境下大规模航空图像的快速、准确的筛选、有效数据的存储、 传输和提取等问题的处理缺乏解决方法,这些问题已成为图像处理领域的一个热 点问题,这也是现在许多部门棘手且亟待解决的问题。

但目前对大规模图像特征的多维参数提取问题的处理缺乏解决方法,这也是 现在许多部门棘手且亟待解决的问题。由此,多维参数提取工作已变得越来越重 要也越来越困难。

发明内容

本发明要解决的技术问题是提供一种网络环境下大规模图像与视频数据高 效处理的方法,为提高信息处理实时性和准确性提供一种思路,对不确定条件下 的信息处理具有重要的理论借鉴和现实意义,有助于目标识别与图像处理人员了 解检测目标的运动规律、活跃程度及其对其他目标的影响,从而给出相应的决策, 寻求抑制或消除不良因素对其或其他重要目标的影响都是非常必要的;对军事、 民事、公安系统、道路交通等所有基于视频系统的目标识别与跟踪的发展起到重 要的借鉴和参考作用。

为了达到上述目的,本发明的技术方案是:一种网络环境下大规模图像与视 频数据高效处理方法,其步骤包括:

步骤一,分析采集的海量图像或视频序列的数据特征,提出有效的大规模数 据约简方法;

步骤二,提出特征图像聚类方法、模糊分类方法,对约简后提取的有效数据 实施海量图像的分类;

步骤三,利用图像或数据特征对聚类或分类后后的图像进行编码、表示、分 类,对图像进行压缩处理,实施数据建模和传输;

步骤四,提取网络环境下目标的多维有效特征参数。

所述大规模数据约简方法包括:

①按照约简的定义实现对大规模数据的约简算法

即条件属性C相对于决策属性De的约简问题,从条件属性集合C中发现部分 必要的条件属性,使得根据这部分条件属性形成的相对于决策属性的分类和所有 条件属性所形成的相对于决策属性的分类一致,即和所有条件属性相对于决策属 性De有相同的分类能力,具体算法如下:

输入:条件属性集合C={a1,a2,…,an},决策属性集合De={de};

输出:一个属性约简集合RED(A),这里A是属性全集;

步骤1:计算决策属性集合De的条件属性集合C正域POSC(De);

步骤2:对属性ai∈C,去除它所得到的条件属性子集C\{ai},计算决策属 性集合De的C\{ai}正域

步骤3:如果则说明属性ai对于决策属性De是 不必要的,即C=C\{ai},转步骤2;否则,输出属性约简集合RED(A)=C。

②区分矩阵约简算法

首先构造区分矩阵,在区分矩阵的基础上得到区分函数,然后应用吸收律对 区分函数进行化简,使之成为析取范式,则每个主蕴涵式均为约简的;具体算法 为:

对信息系统S=(U,A=C∪De),其中U为待研究的对象集合,C为条件属 性集合,De为决策属性集合,假设决策属性中决策类的个数为k个,该信息系 统的区分矩阵是一个对称|U|×|U|矩阵,矩阵的每一项cij定义为

其中,xi∈U,xj∈U是研究的对象,a是属性,a(xi)表示对象xi的属性, De(xi)表示xi的决策属性;如果De(xi)≠De(xj),cij代表了可以将xi和xj区分 开的属性集合;

区分函数可以从区分矩阵中构造,方法是把cij的每个属性“或”起来,然后 再“与”所有的cij,其中i,j=1,…,|U|,则区分函数f(S)为

因为cij代表了区分两个对象的属性集合,所以区分函数就代表了可以区分开 所有对象的属性集合,再使用吸收律化简区分函数成标准式,即

f(S)=∨(∧am)   (3)

则所有的质蕴涵式∧am包含的属性就确定了信息系统的所有约简集合。

③基于属性重要性的启发式约简算法

使用核作为计算约简的出发点,计算一个最好的或者用户指定的最小约简, 将属性的重要性作为启发规则,首先按照属性的重要程度从大到小逐个加入属 性,直至待处理的数据集合是一个约简为止,然后检查数据集合中的每个属性, 即移走的属性是否会改变数据集合对决策属性的依赖度,如果不影响,则将其删 除,具体实施为:

初始化候选集Red为核属性:Red=Core;

计算整个条件属性集合C的依赖程度fmax,即计算决策属性集合De对去除 属性ai∈C所得到的条件属性子集C\{ai}的正域

max=0;

当max<fmax时,循环过程:在候选集Red中加入新属性,计算使Red集依赖 系数最大的属性i,Red=Red∪{i},max=Red的依赖程度,对于Red的每个非核 属性,去掉是否影响依赖系数,若否,则可删除;

返回Red,结束。

所述特征图像聚类方法和模糊分类方法的具体实现方法为:按图像或视频中 的目标关联性、特征属性对约简后提取的有效数据进行分类,把N个样本共分 成n个类别(1<n<N),这n个类别分别为w1,w2,…,wn的样本集合,每类有标明 类别的样本Ni个,i=1,2,…,n,设样本的属性有q个,则样本点的指标将可以构 成一个q维特征空间,所有的样本点在这个q维特征空间里都有惟一的点相对 应;则对任何一个待分类的样本x=<a1(x),a2(x),…,aq(x)>,其中as(x)表示样 本x的第s个属性;对一待分类的实例z,在训练样本数据集中按照定义距离选 出最接近z的k个实例,用z1,z2,…,zk表示,设k1,k2,…,kn分别是k个近邻中属于 类w1,w2,…,wn的样本数,若ki最大,实例z就属于wi类,其中定义距离为:设 样本x=<a1(x),a2(x),…,aq(x)>和样本y=<a1(y),a2(y),…,aq(y)>,距离定义为:

dxy=Σj=1q|aj(x)-aj(y)|---(4).

待识别目标具体的分类实施方法为:首先对待分类的样本进行分类,分类准 则要求属于某一个类别的实例到类内中心的距离越小越好,到类间中心距离越大 越好;根据每类别的属性,求出平均值作为类别中心oi,i=1,2,…,n;设ξik是第 k个样本对第i类的隶属度函数,0≤ξik≤1且Ψ={ξik};设 dik=||xk-oi||是样本xk和第i类中心oi的距离,m>1是模糊加权指数;通过定义 类内距离和类间距离,使其满足类内距离越小越好,类间距离越大越好;定义类 内距离为

Jm(Ψi,oi)=Σj=1Niξijmdij2---(5)

定义类间距离

Jm(Ψ\{Ψi},oi)=Σi=1nΣj=1N-Niξijmdij2---(6)

综合式(5)和(6),定义目标函数Jm(Ψ,n)为

Jm(Ψ,n)=Σi=1nΣj=1Nξijmdij2---(7)

在式(5)-(7)中,Ψi={ξij}是对固定的i的集合,Ψ={ξij}是对所有的i的 集合;

由于一个目标最终需要按隶属度的原则归属为一类问题,则目标函数满足一 定的约束为:

Σi=1nξij=1,1jN---(8)

由式(7)知,要求1)定义的ξij应与dij为反比关系,即ξij关于dij是单调减 函数;2)ξij关于模糊加权指数m是单调增函数;3)隶属度ξij:0≤ξij≤1,且 又要求各类别中必须至少包含一个样本,但样本不可能同属于一个类别,则 成立;4)同时ξij满足式(8);根据1)-4),可定义ξij为:

ξij={Σk=1n(dijdkj)2m-1}-1---(9)

可证明式(9)满足条件1)-4);

在约束式(8)下通过反复迭代求目标函数式(7)的极小值,确定最终ξij;由ξij, 求各类别的中心oi如下:

oi=Σj=1N(ξij)mxjΣj=1N(ξij)m---(10).

所述图像压缩、编码和解码处理方法包括加密编码算法和解密译码算法,所 述加密编码算法如下:设当前输入的图像或视频中目标特征为u(l),并设此前输 入的m个特征为u(l-1),…,u(l-m),经过加密算法,得出当前输出信息为v(l), 那么有

v(l)=f(u(l),u(l-1),…,u(l-m)),l=0,1,2,…   (11)

式(11)中,f为二元线性卷积码运算,即v(l)=f(u(l),G(l-h))=u(l-h)·Gh, Gh为k×n的二元矩阵,h=0,1,2,…,m;若记u的长度恒为k比特,v的长度恒 为n比特,均称为一段。

因此,对于消息段序列u=(u(0),u(1),…,u(m),u(m+1),…),相应的输出段 序列为v=(v(0),v(1),…,v(m),v(m+1),…),并且满足

v(l)=u(l-m)Gm+u(l-m+1)Gm-1+...+u(l-1)G1+u(l)G0=Σh=0mu(l-h)·Gh,l=0,1,2,...u(l)=0,l<0---(12)

式(12)是卷积编码模型。

所述解密译码算法如下:设对应于发送码字或路径的接收段序列为 r=(r(0),r(1),…,r(l),…),且各个码字为等概率发送,则卷积的最大概率译码 是寻找一条路径p=(p(0),p(1),…,p(l),…),使概率P(|r|/|p|)或对数概率 logP(|r|/|p|)最大,其中,|·|表示路径的信息量大小。

对于无记忆信道和有限L段接收序列,在l=L时刻,收到l=0,1,2,…,L-1共 L段接收序列后,最大概率译码是寻求一条路径使得

logP(|r|/|p^|)=maxp{logP(|r|/|p|)}=maxp(0,L-1){Σl=0L-1logP(|r(l)|/|p(l)|)}---(13)

其中,p(0,L-1)表示一条段记号从0到L-1的共L段长路径。

卷积码在l=L时刻的最大概率译码是在l=L时刻求解一条最优路径,而求 解l时刻的最优路径等价于求解当前时刻的最优分支和l-1时刻的另一条最优路 径,从而卷积码的最大概率译码过程是一个不断求取最优路径的过程,即:

Γ(σi(l))=maxp(0,l-1){Σl=0l-1logP(|r(l)|/|p(l)|)}=maxp(l-1){maxp(0,l-2){Σl=0l-2logP(|r(l)|/|p(l)|)}+logP(|r(l-1)|/|p(l-1)|)}=maxp(l-1){Γ(σ(l-1))+γ(p(l-1))=maxj=1,2,...,2k{Γj(l-1)+γj(l)}=Γd(l-1)+γd(l),i=1,2,...,2M,l=0,1,2...---(14)

其中,σ(l)表示第l时刻的连接路径状态,γ(l)表示第l时刻连接至状态σ(l)的 分支p(l-1)的分支度量值是该分支的概率,即γ(l)=logP(|r(l-1)|/|p(l-1)|), p′(l-1)表示连接至σ(l)的可能连入分支,σ′(l-1)表示与σ(l)存在连接关系的 状态,Γj(l-1)是对应σ′(l-1)的最优路径值,Γ(σ(l))或Γ(l)是连接至σ(l)的 路径的分支度量值之和的最大值。

所述提取网络环境下目标的多维有效特征参数的提取方法包括构建特征树 和剪枝,实现方法为:

①构建特征树

定义由属性进行划分的度量,计算出当前数据子集最佳的划分属性;当选定 了计算结点代价的模糊度函数,特征树的生长过程中,每次试图找一个最优分叉 值,来划分结点中的样本,使得代价减小最大;模糊度函数φ(De)是用来表示特 征树结点t的模糊度或误差分割指标的,即为:

E(t)=φ(De)=-Σildeidel=1-Σi=1cdei2---(15)

这里,De={de1,de2,…,dec}是一个决策集合,c是该决策集中决策类的个数, dei≥0是第i个决策类在决策属性集合De中的比例,且E(t)是结点t 的模糊度;

在构造的特征树中,由于分叉而导致模糊度的改变量定义为:

ΔE(t)=E(t)-delE(tl)-derE(tr)   (16)

这里,t是正在分叉的结点;E(tl)和E(tr)分别是结点t左右分支结点的模糊度; del和der分别是结点t中左右分叉样本的百分比;对于每个内结点t的分叉,取结 点t所有分叉可能方式中模糊度改变量最大的一个,对于其他结点重复同样的搜 索过程。

②剪枝

基于最小代价复杂性原理修剪特征树,修剪如下:

特征树T剪枝的指标定义为:

E(T)=ΣtTE(t)---(17)

其中,T表示一棵特征树,t为根节点,表示特征树T中的终结点集。

由可剪枝的指标,给出剪枝代价复杂性测度:

Eα(T)=E(T)+α|T|---(18)

其中,α是一个由于特征树的复杂性带来的代价的复杂度参数,为特征树T的 终结点个数。

求特征树T的下一棵最小树:对于特征树T的每个内结点t,求出下一棵特 征树T-Tt误分的惩罚因子,即复杂度参数α的值,记为αt,这个值为当前特征 树剪枝前后误差指标的变化量与终结点数目改变的比率:

αt=E(t)-E(Tt)|Tt|-1---(19)

其中,Tt表示根节点为t的子特征树,T-Tt表示剪枝后的特征树,并有为T的子集,E(Tt)表示子特征树Tt的复杂性测度。

选择有最小αt的内结点,因此,整个特征树的剪枝过程就是计算αt,然后, 求最小αt,进而选择T-Tt为下次剪枝对象。

对每一个给定的α值,根据对应的其代价复杂性测度,总可以找到一个最小 子特征树T(α):

Eα(T(α))=minTTmaxEα(T)---(20)

当α值增大时,T(α)一直保持最小,直到到达一个跳跃点α′,此时树T(α′) 成为新的最小特征树。

确定好最小特征树T(α)后,可求得其高度为h=n(tf)-n(t0)+1,这里,n(tf) 是最终叶结点的层数,n(t0)是根结点的层数,那么,可获得网络环境下目标的 多维有效特征为此最小特征树T(α)的各叶结点。

本发明针对网络环境下的大规模图像与视频数据高效处理问题,通过分析采 集的海量图像或视频序列数据特征,提出了有效的大规模数据约简方法;给出了 特征图像聚类算法、模糊分类方法,实施海量图像的分类;利用图像或数据特征 对图像进行编码、表示、分类,对图像进行压缩处理,实施数据建模和传输;对 网络环境下目标的多种特征,提出了多维有效特征参数提取方法。本发明为提高 信息处理实时性和准确性提供一种思路方法,对不确定条件下的信息处理提供有 价值的参考,具有重要的理论借鉴和现实意义。本发明能节约资源、降低开支、 减少不必要的损坏或损伤等,将对军事、民事、公安系统、道路交通等所有基于 视频系统的目标识别与跟踪的发展起到重要的借鉴和参考作用。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施 例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅 用以解释本发明,并不用于限定发明。

一种网络环境下大规模图像与视频数据高效处理方法,其步骤包括:

步骤一,分析采集的海量图像或视频序列的数据特征,提出有效的大规模数 据约简方法。

大规模数据约简方法包括:按照约简的定义实现对大规模数据的约简算法, 区分矩阵约简算法和基于属性重要性的启发式简约算法。

①按照约简的定义实现对大规模数据的约简算法

该算法按照约简的定义实现,是条件属性C相对于决策属性De的约简问题, 即从条件属性集合C中发现部分必要的条件属性,使得根据这部分条件属性形成 的相对于决策属性的分类和所有条件属性所形成的相对于决策属性的分类一致, 即和所有条件属性相对于决策属性De有相同的分类能力,具体算法如下:

输入:条件属性集合C={a1,a2,…,an},决策属性集合De={de};

输出:一个属性约简集合RED(A),这里A是属性全集;

步骤1:计算决策属性集合De的条件属性集合C正域POSC(De);

步骤2:对属性ai∈C,去除它所得到的条件属性子集C\{ai},计算决策属 性集合De的C\{ai}正域

步骤3:如果则说明属性ai对于决策属性De是 不必要的,即C=C\{ai},转步骤2;否则,输出属性约简集合RED(A)=C。

②区分矩阵约简算法

首先构造区分矩阵,在区分矩阵的基础上得到区分函数,然后应用吸收律对 区分函数进行化简,使之成为析取范式,则每个主蕴涵式均为约简的;具体算法 为:

对信息系统S=(U,A=C∪De),其中U为待研究的对象集合,C为条件属 性集合,De为决策属性集合,假设决策属性中决策类的个数为k个,该信息系 统的区分矩阵是一个对称|U|×|U|矩阵,矩阵的每一项cij定义为

其中,xi∈U,xj∈U是研究的对象,a是属性,a(xi)表示对象xi的属性, De(xi)表示xi的决策属性;如果De(xi)≠De(xj),cij代表了可以将xi和xj区分 开的属性集合;

区分函数可以从区分矩阵中构造,方法是把cij的每个属性“或”起来,然后 再“与”所有的cij,其中i,j=1,…,|U|,则区分函数f(S)为

因为cij代表了区分两个对象的属性集合,所以区分函数就代表了可以区分开 所有对象的属性集合,再使用吸收律化简区分函数成标准式,即

f(S)=∨(∧am)   (3)

则所有的质蕴涵式∧am包含的属性就确定了信息系统的所有约简集合;

③基于属性重要性的启发式简约算法

使用核作为计算约简的出发点,计算一个最好的或者用户指定的最小约简, 该算法将属性的重要性作为启发规则,首先按照属性的重要程度从大到小逐个加 入属性,直至待处理的数据集合是一个约简为止,然后检查数据集合中的每个属 性,即移走的属性是否会改变数据集合对决策属性的依赖度,如果不影响,则将 其删除,具体实施为:

初始化候选集Red为核属性:Red=Core;

计算整个条件属性集合C的依赖程度fmax,即计算决策属性集合De对去除 属性ai∈C所得到的条件属性子集C\{ai}的正域

max=0;

当max<fmax时,循环过程:在候选集Red中加入新属性,计算使Red集依赖 系数最大的属性i,Red=Red∪{i},max=Red的依赖程度,对于Red的每个非核 属性,去掉是否影响依赖系数,若否,则可删除;

返回Red,结束。

可利用三种约简算法将待处理的图像或视频数据进行预处理,即按照约简的 定义实现对大规模数据的约简算法,区分矩阵约简算法和基于属性重要性的启发 式简约算法,这三种算法均可以对待处理的网络环境下的大规模图像或视频进行 约简,得到约简集合Red,以便于下一步的处理。其中,按照约简的定义的约简 算法是对不完整性数据比较多的情况实施最有效;区分矩阵约简算法可以求出所 有的约简,但是必须知道条件属性集合C和决策属性集合De,还必须给定合适 的区分函数,所以适用相对较小的数据集;基于属性重要性的启发式简约算法的 最坏复杂度在O((k+|C|)|C||U|),循环的执行次数最多为|C|,求属性间的依赖程 度的复杂度和计算正域相同,所以这种算法适合的范围广泛,但必须首先给出合 适的属性重要度的定义。

步骤二,提出特征图像聚类方法、模糊分类方法,实施海量图像的分类;

由约简后提取的有效数据集Red,实施Red图像的聚类与分类。图像聚类与 分类算法具体为:按图像或视频中的目标关联性、特征属性对目标进行分类,把 N个样本共分成n个类别(1<n<N),这n个类别分别为w1,w2,…,wn的样本集 合,每类有标明类别的样本Ni个,i=1,2,…,n,设样本的属性有q个,例如,飞 机的机翼、机身、水平尾翼、垂直尾翼、起落架、涡轮螺旋桨发动机等特征,则 样本点的指标将可以构成一个q维特征空间,所有的样本点在这个q维特征空间 里都有惟一的点相对应。则对任何一个待分类的样本 x=<a1(x),a2(x),…,aq(x)>,其中as(x)表示样本x的第s个属性;对一待分类的 实例z,在训练样本数据集中按照定义距离选出最接近z的k个实例,并用 z1,z2,…,zk表示,设k1,k2,…,kn分别是k个近邻中属于类w1,w2,…,wn的样本数, 若ki最大,实例z就属于wi类,其中定义距离为:设样本 x=<a1(x),a2(x),…,aq(x)>和样本y=<a1(y),a2(y),…,aq(y)>,距离定义为:

dxy=Σj=1q|aj(x)-aj(y)|---(4).

待识别目标具体的分类实施方法为:首先对待分类的样本进行分类,分类准 则要求属于某一个类别的实例到类内中心的距离越小越好,到类间中心距离越大 越好;根据每类别的属性,求出平均值作为类别中心oi,i=1,2,…,n;设ξik是第 k个样本对第i类的隶属度函数,0≤ξik≤1且Ψ={ξik};设 dik=||xk-oi||是样本xk和第i类中心oi的距离,m>1是模糊加权指数;通过定义 类内距离和类间距离,使其满足类内距离越小越好,类间距离越大越好;定义类 内距离为

Jm(Ψi,oi)=Σj=1Niξijmdij2---(5)

定义类间距离

Jm(Ψ\{Ψi},oi)=Σi=1nΣj=1N-Niξijmdij2---(6)

综合式(5)和(6),定义目标函数Jm(Ψ,n)为

Jm(Ψ,n)=Σi=1nΣj=1Nξijmdij2---(7)

在式(5)-(7)中,Ψi={ξij}是对固定的i的集合,Ψ={ξij}是对所有的i的 集合;

由于一个目标最终需要按隶属度的原则归属为一类问题,则目标函数满足一 定的约束为:

Σi=1nξij=1,1jN---(8)

由式(7)知,要求1)定义的ξij应与dij为反比关系,即ξij关于dij是单调减 函数;2)ξij关于模糊加权指数m是单调增函数;3)隶属度ξij:0≤ξij≤1,且 又要求各类别中必须至少包含一个样本,但样本不可能同属于一个类别,则 成立;4)同时ξij满足式(8);根据1)-4),可定义ξij为:

ξij={Σk=1n(dijdkj)2m-1}-1---(9)

可证明式(9)满足条件1)-4)。

在约束式(8)下通过反复迭代求目标函数式(7)的极小值,确定最终ξij;由ξij, 求各类别的中心oi如下:

oi=Σj=1N(ξij)mxjΣj=1N(ξij)m---(10)

步骤三,利用图像或数据特征对图像进行编码、表示、分类,对图像进行压 缩处理,实施数据建模和传输。

为了使聚类或分类好的图像数据进行实时有效的传输、存储和接收,所以需 要对图像数据实施压缩、编码和解码处理。经约简和分类处理后的数据在传输、 存储时仍需要较大的储存空间,为了快速、有效的实现数据的建模和传输,需要 利用图像或数据特征对图像进行编码、表示、分类和压缩处理。对图像压缩和传 输处理的方法是对图像或视频中的目标特征信息加密编码和相应的解密译码,具 体处理方法包括加密编码算法和解密译码算法。

加密编码算法如下:经简约和分类后的图像或视频中的目标特征为u(l),并 设此前输入的m个特征为u(l-1),…,u(l-m),经过加密算法,得出当前输出信 息为v(l),那么有

v(l)=f(u(l),u(l-1),…,u(l-m)),l=0,1,2,…   (11)

式(11)中,f为二元线性卷积码运算,即v(l)=f(u(l),G(l-h))=u(l-h)·Gh, Gh为k×n的二元矩阵,h=0,1,2,…,m;若记u的长度恒为k比特,v的长度恒 为n比特,均称为一段。

因此,对于消息段序列u=(u(0),u(1),…,u(m),u(m+1),…),相应的输出段 序列为v=(v(0),v(1),…,v(m),v(m+1),…),并且满足

v(l)=u(l-m)Gm+u(l-m+1)Gm-1+...+u(l-1)G1+u(l)G0=Σh=0mu(l-h)·Gh,l=0,1,2,...u(l)=0,l<0---(12)

式(12)是卷积编码模型。

解密译码算法如下:经加密编码后输出v=(v(0),v(1),…,v(m),v(m+1),…), 经传输,发送码字或路径的接收段序列为r=(r(0),r(1),…,r(l),…),且各个码 字为等概率发送,则卷积的最大概率译码是寻找一条路径 p=(p(0),p(1),…,p(l),…),使概率P(|r|/|p|)或对数概率logP(|r|/|p|)最大,其 中,|·|表示路径的信息量大小。

对于无记忆信道和有限L段接收序列,在l=L时刻,收到l=0,1,2,…,L-1共 L段接收序列后,最大概率译码是寻求一条路径使得

logP(|r|/|p^|)=maxp{logP(|r|/|p|)}=maxp(0,L-1){Σl=0L-1logP(|r(l)|/|p(l)|)}---(13)

其中,p(0,L-1)表示一条段记号从0到L-1的共L段长路径。

卷积码在l=L时刻的最大概率译码是在l=L时刻求解一条最优路径,而求 解l时刻的最优路径等价于求解当前时刻的最优分支和l-1时刻的另一条最优路 径,从而卷积码的最大概率译码过程是一个不断求取最优路径的过程,即:

Γ(σi(l))=maxp(0,l-1){Σl=0l-1logP(|r(l)|/|p(l)|)}=maxp(l-1){maxp(0,l-2){Σl=0l-2logP(|r(l)|/|p(l)|)}+logP(|r(l-1)|/|p(l-1)|)}=maxp(l-1){Γ(σ(l-1))+γ(p(l-1))=maxj=1,2,...,2k{Γj(l-1)+γj(l)}=Γd(l-1)+γd(l),i=1,2,...,2M,l=0,1,2...---(14)

其中,σ(l)表示第l时刻的连接路径状态,γ(l)表示第l时刻连接至状态σ(l)的 分支p(l-1)的分支度量值是该分支的概率,即γ(l)=logP(|r(l-1)|/|p(l-1)|), p′(l-1)表示连接至σ(l)的可能连入分支,σ′(l-1)表示与σ(l)存在连接关系的 状态,Γj(l-1)是对应σ′(l-1)的最优路径值,Γ(σ(l))或Γ(l)是连接至σ(l)的 路径的分支度量值之和的最大值。

步骤四,提取网络环境下目标的多维有效特征参数,通过构建特征树和剪枝 的方法来实现。

通过对接收到的图像数据解密后,需要实施对有效的图像目标特征提取。利 用基于在线学习的自适应神经网络竞争活动单元,挖掘目标的各特征参数,如颜 色、纹理、灰度、形状、边缘特征等;找出各特征参数的特征点,如纹理的旋转 方向、长度、宽度、深度、纹理间距离等,边缘的连续点、间断点、端点与分叉 点等;由这些多维参数的挖掘过程,给出多维特征参数提取的一个有效方法。基 于多维特征参数观测目标在每一帧中出现的概率,以目标的观测概率小于某一阈 值判断旧目标的消失。对每一帧图像目标特征参数单独建立一个粒子滤波器,实 现多帧目标的跟踪。使该算法能在较简单场景下自动判断新目标的出现与旧目标 的消失、处理目标被遮挡、跟踪丢失及背景变化。

要实施网络环境下目标的多维特征参数提取,一种具体的手段是构建大小合 适的类别树,分类、分级的进行特征提取。构建的类别树必须大小合适,如果构 建的类别树太小,那么它的误差率会比较高。如果树太大,尽管用学习集检验获 得的视误差率很小,但它的真误差率可能还是比较大。因此,我们需要构建一颗 大小适当的树,使其真误差率为最小。具体实现方法为:

①构建特征树

定义由属性进行划分的度量,计算出当前数据子集最佳的划分属性;当选定 了计算结点代价的模糊度函数,特征树的生长过程中,每次试图找一个最优分叉 值,来划分结点中的样本,使得代价减小最大;模糊度函数φ(De)是用来表示特 征树结点t的模糊度或误差分割指标的,即为:

E(t)=φ(De)=-Σildeidel=1-Σi=1cdei2---(15)

这里,De={de1,de2,…,dec}是一个决策集合,c是该决策集中决策类的个数, dei≥0是第i个决策类在决策属性集合De中的比例,且E(t)是结点t 的模糊度;

在构造的特征树中,由于分叉而导致模糊度的改变量定义为:

ΔE(t)=E(t)-delE(tl)-derE(tr)   (16)

这里,t是正在分叉的结点;E(tl)和E(tr)分别是结点t左右分支结点的模糊度; del和der分别是结点t中左右分叉样本的百分比;对于每个内结点t的分叉,取结 点t所有分叉可能方式中模糊度改变量最大的一个,对于其他结点重复同样的搜 索过程。

②剪枝

基于最小代价复杂性原理修剪特征树,修剪如下:

特征树T可剪枝的指标定义为:

E(T)=ΣtTE(t)---(17)

其中,T表示一棵特征树,t为根节点,表示特征树T中的终结点集。E(t)为 式(16)中的特征树结点t的模糊度指标或特征树结点t的拟合结点数据集的平 方误差,误差指标为模糊度函数E(t)。

由可剪枝的指标,给出剪枝代价复杂性测度:

Eα(T)=E(T)+α|T|---(18)

其中,α是一个由于特征树的复杂性带来的代价的复杂度参数,为特征树T的 终结点个数。剪枝代价复杂性Eα(T)为特征树T的剪枝指标代价E(T)和特征树 的复杂度的线性组合。

求特征树T的下一棵最小树:对于特征树T的每个内结点t,求出下一棵特 征树T-Tt误分的惩罚因子,即复杂度参数α的值,记为αt,这个值为当前特征 树剪枝前后误差指标的变化量与终结点数目改变的比率:

αt=E(t)-E(Tt)|Tt|-1---(19)

其中,Tt表示根节点为t的子特征树,T-Tt表示剪枝后的特征树,并有为T的子集,E(Tt)表示子特征树Tt的复杂性测度。

选择有最小αt的内结点,因此,整个特征树的剪枝过程就是计算αt,然后, 求最小αt,进而选择T-Tt为下次剪枝对象。

对每一个给定的α值,根据对应的其代价复杂性测度,总可以找到一个最小 子特征树T(α):

Eα(T(α))=minTTmaxEα(T)---(20)

当α值增大时,T(α)一直保持最小,直到到达一个跳跃点α′,此时树T(α′) 成为新的最小特征树。

确定好最小特征树T(α)后,可求得其高度为h=n(tf)-n(t0)+1,这里,n(tf) 是最终叶结点的层数,n(t0)是根结点的层数,那么,可获得网络环境下目标的 多维有效特征为此最小特征树T(α)的各叶结点。

本发明的创新点如下:

随着网络环境下视频监控系统及其他成像技术的完善,相应的数据收集能力 的持续增加,获得了越来越多的变化数据。图像数据的快速存储与特征提取是一 个重要且亟待解决的难题。本发明步骤一中提出的三种数据约简方法对这些海量 数据进行有效筛选,有效的解决了数据快速存储和特征提取的关键问题。

在网络环境下大规模图像与视频数据传输、存储等过程中,首先遇到海量图 像数据的编码、表示等问题,并且网络环境下的海量图像数据的有效压缩、建模 等问题直接决定监控系统的作用距离及监控性能,海量图像的数据分类、压缩等 高效处理方法解决了该问题,对提高监控系统性能具有非常重要的实际意义。

本发明利用多帧图像自身的特性,给出网络环境下目标的多维特征参数有效 提取。利用基于在线学习的自适应神经网络竞争活动单元,挖掘目标的各特征参 数,如颜色、纹理、灰度、形状、边缘特征等;找出各特征参数的特征点,如纹 理的旋转方向、长度、宽度、深度、纹理间距离等,边缘的连续点、间断点、端 点与分叉点等;由多维参数的挖掘过程,给出多维特征参数提取的一个特征树构 建的有效方法。基于多维特征参数观测目标在每一帧中出现的概率,以目标的观 测概率小于某一阈值判断旧目标的消失。对每一帧图像目标特征参数单独建立一 个粒子滤波器,实现多帧目标的跟踪,使该算法能在较简单场景下自动判断新目 标的出现与旧目标的消失、处理目标被遮挡、跟踪丢失及背景变化。

仿真300次时,本发明方法与目前运用较多的Canny特征参数提取方法和 Gauss特征参数提取方法两种目标特征参数提取方法进行比较,结果如表1所示。

表1不同目标的特征参数提取方法的综合比较

算法 正确提取率均值 提取速度 存储空间要求 Canny方法 0.8861 0.66s Gauss方法 0.9054 0.37s 较低 本发明的方法 0.9122 0.325s

由表1可知,本发明的正确平均提取率为91.22%,高于现有的算法;且其提 取速度较快、存储空间要求较低。因此,本发明的方法为提高信息处理实时性和 准确性提供一种思路方法,将对军事、民事、公安系统、道路交通等所有基于视 频系统的目标识别与跟踪的发展起到重要的借鉴和参考作用。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应 该以权利要求书的保护范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号