首页> 中国专利> 一种托桂型菊花花器性状关联分子标记筛选方法及应用

一种托桂型菊花花器性状关联分子标记筛选方法及应用

摘要

本发明属于生物技术领域,提供一种托桂型菊花花器特性QTL分子标记筛选方法,该种方法可用于托桂型菊花花器性状优良基因的定位和克隆及托桂型菊花新品种的培育。包括:1.试验材料及其表型数据的获得;2.菊花连锁图谱构建;3.结合表型数据和分子遗传图谱,进行托桂型菊花花器性状的QTL分析;4.托桂型菊花花器性状关联分子标记的确定。本发明以托桂型秋菊品种“QX-053”为母本和非托桂型秋菊品种“南农惊艳”为父本杂交获得的160株F1分离群体为试材,获得了多个与托桂型菊花花器性状显著关联的分子标记。托桂型菊花花器性状关联分子标记的获得,可用于托桂型菊花花器性状的优良基因的精细定位和克隆,大大提高选择效率,从而加快托桂型菊花育种进程。

著录项

  • 公开/公告号CN104313155A

    专利类型发明专利

  • 公开/公告日2015-01-28

    原文格式PDF

  • 申请/专利权人 南京农业大学;

    申请/专利号CN201410581350.1

  • 申请日2014-10-27

  • 分类号C12Q1/68(20060101);

  • 代理机构32218 南京天华专利代理有限责任公司;

  • 代理人徐冬涛

  • 地址 211225 江苏省南京市溧水区白马镇国家农业科技园南京农业大学基地

  • 入库时间 2023-12-17 03:36:34

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-26

    授权

    授权

  • 2015-02-25

    实质审查的生效 IPC(主分类):C12Q1/68 申请日:20141027

    实质审查的生效

  • 2015-01-28

    公开

    公开

说明书

技术领域

本发明属于生物技术领域,涉及一种托桂型菊花花器特性QTL分子标记筛 选方法,该种方法可用于托桂型菊花花器性状优良基因的定位和克隆及托桂型菊 花新品种的培育。

背景技术

菊花(Chrysanthemum morifolium)原产我国,是我国十大传统名花和世界 四大切花之一。菊花花型、花色、株型等极其丰富,是盆栽、切花和园林地被应 用的重要花卉种类,具有很高的观赏和应用价值,在花卉生产中占有十分重要的 地位。菊花根据花序直径可分为小菊和大菊,小菊按花型又分为单瓣、复瓣、蜂 窝和托桂型。托桂型小菊舌状花中平瓣、匙瓣、管瓣皆有,中央盘状花发达,所 有管状小花全部伸长,顶端花冠筒开裂犹如托起的桂花,因此托桂花型菊花的管 状花又被称为桂瓣,其像舌状花一样有着丰富多彩的颜色。

花器是菊花观赏性状中最直观的外在表现。之前国内关于菊花花器性状的遗 传研究主要集中在对杂交后代群体数据平均值的经验性总结。而国外的菊花相关 报道也主要是围绕花器性状在不同资源之间的遗传变异进行遗传研究。这些研究 在一定程度上推动了菊花遗传育种的进程。然而由于菊花育种目标多为数量性 状,所以需要借助QTL定位来明确表现型与基因型的对应关系,这将对提高目 标数量性状的遗传能力具有极为重要的意义。

近年来,数量性状基因定位(QTL)基于PCR的分子标记方法正在不断增 加,其中SRAP(sequence-related amplified polymorphism,基于序列扩增多态性) 和SSR(simple sequence repeat,微卫星又称简单重复序列)标记,由于多态性高、 成本较低、操作简单、结果稳定、分布均匀、共显性等优点,目前已经成为非常 适用的分子标记,在辅助育种、构建连锁遗传图谱、基因定位、基因克隆等研究 中广泛使用。迄今为止,已有关于SRAP和SSR在观赏植物中的研究报道,其 中SRAP最早是在芸苔属植物中被开发利用,现在已广泛应用于各种观赏植物 中。而SSR标记,目前主要应用在粮食作物(水稻、玉米、小麦)、果树(苹果、 李)等植物中,而在观赏植物中应用较少。

随着分子标记技术的发展,连锁遗传图谱构建与数量性状基因定位 (quantitative trait loci,QTL)研究已经在月季、杜鹃、百合、康乃馨等许多观 赏植物中陆续展开。而菊花作为世界著名观赏植物之一。目前,因其基因组构成 复杂以及高度杂合性、高度自交不亲和性与近交衰退现象,致使其性状的遗传改 良进展比较缓慢。目前,“双-假测交”作图策略不仅在很多观赏植物中有相关报 道,而且还在很多高度杂合的林木、果树和草坪中广泛应用。因此,对于具有高 度杂合性的菊花来说,“双-假测交”作图策略应用前景广阔。目前,关于菊花观 赏性状相关的分子标记位点也有相关报道,然而国内外尚无关于托桂型菊花花器 性状基因定位的报道。

发明内容

本发明的目的是针对目前托桂型菊花花器性状优异基因定位和克隆的研究 在国内外研究薄弱这一现状,提供了一种托桂型菊花花器性状关联分子标记的筛 选方法。筛选出一个或多个与托桂型菊花花器性状基因紧密关联的分子标记,建 立托桂型菊花花器性状分子标记辅助选择体系,为托桂型菊花新品种选育奠定基 础。

本发明的目的通过以下技术方案实现:

1.本发明提供一种托桂型菊花花器性状关联分子标记的筛选方法,该方法 包括如下步骤:

2)试验材料及其表型数据的获得:

试验材料为保存于南京农业大学“中国菊花种质资源保存中心”的菊花品种; 第一年选择花器表型差异明显的托桂型和非托桂型秋菊品种进行人工杂交,获得 F1杂交种子,次年3月初经穴盘点播,连同亲本扦插苗于4月中下旬各株系标 号后定植于菊花圃地,常规管理同大田;分别于第二年和第三年秋季生殖生长初 期调查双亲与F1代植株的花器相关性状,每个株系5个单株重复,每个单株调 查1个花序,并计算两年性状调查的平均值;利用Microsoft Excel 2007软件和 SPSS 18.0软件对两个年份的花器相关性状的表型数据分别进行基本描述性数统 计分析;

2)菊花连锁图谱构建:

①提取亲本及其F1杂交后代基因组DNA;

②利用亲本和8—10个杂交F1代单株对SRAP和SSR引物组合进行多态性 筛选,将筛选出的多态性引物组合用于F1代作图群体的多态性扩增并统计扩增 后的多态性条带数据;

③采用Joinmap 3.0软件的‘CP作图模型’,设置LOD≥3.0,分别对双亲的分 离位点进行连锁分析,将重组率转换成遗传距离,获得双亲的分子标记连锁群, 根据连锁分析结果制作连锁遗传图谱;

3)托桂型菊花花器性状的QTL定位:

结合表型数据和连锁遗传图谱,运用复合区间作图法进行托桂型菊花花器性 状的QTL分析,绘制QTL分布图,并估算各QTL的加性效应及其对表型变异 的贡献率;

4)菊花花器性状关联分子标记的确定:

根据步骤3)所得的主效QTL所在的标记区间即可确定与托桂型菊花花器 性状紧密关联的分子标记。

2.上述1提供的一种托桂型菊花花器性状关联分子标记的获得方法,其中, 步骤1)中所述的所选择的杂交亲本间的花器表型性状要存在足够大的差异,主 要表现在:杂交亲本一个是托桂花型,一个是非托桂花型,这样QTL位点才有 可能在分离群体中被检测到,这种选择不仅局限在表型上的差异,更重要的是遗 传上的差异。

3.上述1提供的托桂型菊花花器性状关联分子标记的筛选方法,其中,步 骤2)中所述的所采用的分子标记是显性标记SRAP和共显性标记SSR相结合。

4.上述1提供的托桂型菊花花器性状关联分子标记的筛选方法,其中,步 骤3)中所述的主效QTL是至少2年重复出现并且对表型变异的贡献率大于10% 的QTL。

5.上述1提供的托桂型菊花花器性状关联分子标记的筛选方法,其中,步 骤2)扩增后的多态性条带数据统计方法:按照“有”记为“1”,“无”记为“0”的原 则对清晰易辨的多态性SSR和SRAP扩增位点进行统计;

分子标记的命名方式:以引物名称作为多态性位点的名称,如果同一个引物 扩增出多个多态性位点,则在引物或引物组合名称加上该条标记的分子量大小, 分子量大小由软件Quantity one估算;根据“双-假测交”作图策略,将多态性标记 位点按照其分离类型分为两大类,即出现在杂交母本和父本中的多态性标记位点 分别为“Q+QN”和“N+QN”两种类型。

6.上述1提供的托桂型菊花花器性状关联分子标记的筛选方法,其中,连 锁遗传图谱的绘制方法:对该两种类型的分子标记数据:“Q+QN”和“N+QN”采 用Joinmap v3.0软件,选用‘CP作图模型’,设置LOD≥3.0,采用Kosambi法将 重组率转换成遗传距离,以cM表示距离,分别进行连锁分析,根据连锁分析结 果采用MapChart v2.2软件制作遗传图谱。

7.上述1提供的托桂型菊花花器性状关联分子标记的筛选方法,其中,QTL 定位方法:以菊花连锁遗传图谱为基础,运用WinQTL5.0软件及复合区间作图 法对菊花花器性状的观测数据进行QTL检测,利用MapChart v2.2软件绘制QTL 分布图,并估算各QTL的加性效应及其对表型变异的贡献率等遗传参数;相关 运行参数如下:Walk speed=2cM;Window size=10.00;Model=6,取LOD阈 值为2.5,当LOD峰值大于2.5时即可确定该处存在一个显著QTL位点,置信 区间根据LOD值的峰值两侧各下降1个LOD值来确定;

QTL命名:首字母大写的性状英文缩写名称+以E1,E2代表不同环境+连 锁群的序号或者首字母大写的性状英文缩写名称+以E1,E2代表不同环境+连 锁群的序号+QTL的序号。

8.权利要求1所述的托桂型菊花花器性状关联分子标记的筛选方法,其特 征在于:根据步骤4)获得的托桂型菊花花器性状关联分子标记,两年间共计检 测到4对受环境影响较小贡献率较大的主效QTL,分别为控制心花直径的 CfdE1Q1-1(CfdE2Q1),关联分子标记为SSR34-255;控制心花直径的另一个 QTL:CfdE1Q2(CfdE2Q2),关联分子标记为M20E17-88;控制管状花长的TflE1Q1 (TflE2Q1),关联分子标记为SSR35-77;以及控制管状花宽的TfwE1Q1-1 (TfwE2Q1),关联分子标记为SSR34-255,其对表型变异的贡献率均在10%以 上,是较稳定的主效基因。此外,还检测到27个受环境影响的贡献率均在10% 以上QTLs和1个受环境影响较大的微效多基因

9.本发明还提供上述2-8任一项提供的筛选方法在托桂型菊花新品种培育 上的应用。

10.本发明还提供2-8任一项所述的筛选方法获得的托桂型菊花花器性状关 联分子标记在托桂型菊花新品种培育上的应用。

本发明的有益效果:

本发明以托桂型菊花品种‘QX-053’和非托桂型菊花品种‘南农惊艳’及其160 个F1代单株作为作图群体,同时利用SRAP和SSR标记构建连锁遗传图谱,对 10个花器性状进行QTL分析,获得与托桂型菊花花器性状相关的QTL及与其 紧密关联的分子标记。与目前技术相比,其优点是:

(1)SSR标记为共显性标记,多态性好,重复性高,覆盖整个基因组,具 有多等位基因的特性,是构建遗传连锁图谱较理想的分子标记。SRAP标记的正 反引物分别针对基因组的内含子和外显子区域设计,与SSR标记的扩增区域互 补,可以作为SSR标记补充标记,有效地增加图谱的密度和基因组覆盖率,其 多态性和效价比(产生多态性的效率/成本)都很高。

(2)分子标记辅助育种,克服托桂型菊花花器性状优良基因型鉴定时期晚的 问题。选择范围更广,强度更大。菊花的常规选育方法周期长,费时又费力。通 过本发明构建了托桂型菊花的遗传连锁图谱,实现了托桂型菊花花器性状的QTL 定位。

花器是菊花观赏性状中最直观的外在表现,也是菊花育种的主要目标之一。 进一步理解托桂型菊花花器性状的遗传基础,检测与托桂型菊花花器性状相关的 QTL,为托桂型菊花花器性状的分子标记辅助育种的深入研究创造条件。本发明 将获得的与托桂型菊花花器性状相关联的分子标记,为托桂型菊花新品种选育、 托桂型菊花花器相关基因的精确定位和克隆奠定理论基础。

附图说明

图1托桂型菊花‘QX-053’和非托桂型菊花‘南农惊艳’的花部形态。A: ‘QX-053’的花序形态;B:‘QX-053’的舌状花形态,高度管状化;C:‘QX-053’ 的管状花形态,桂瓣;D:‘QX-053’的花柱形态;E:‘南农惊艳’的花序形态;F: ‘南农惊艳’的舌状花形态;G:‘南农惊艳’的管状花形态;H:‘南农惊艳’的花柱 形态。标尺:A和E:20mm;B、C和F:5mm;D、G和H:1mm。

图2基于SRAP和SSR测交标记位点的菊花品种‘QX-053’的连锁遗传图 谱。Q1-Q43:母本‘QX-053’的第1个至第43个连锁群。

图3基于SRAP和SSR测交标记位点的菊花品种‘南农惊艳’的连锁遗传图 谱。N1-N50:父本‘南农惊艳’的第1个至第50个连锁群。

图4与托桂型菊花主要花器性状显著相关联的QTL。Q1-Q3:母本‘QX-053’ 的第1至第3个连锁群;N1-N11:父本“南农惊艳”的第1至11个连锁群。连锁 群所标记的实心方框代表2012年(E1)表型数据在连锁群上检测到的关于各个 花器表型性状的QTL;虚心方框代表2013年(E2)表型数据在连锁群上检测到 的关于各个花器表型性状的QTL。

具体实施方式

下面结合实施例对本发明做进一步说明,下列实施例中未注明具体条件的实 验方法,通常按照本领域的公知手段。

实施例1

(一)试验材料及其表型数据的获得

试验材料为保存于南京农业大学“中国菊花种质资源保存中心”的托桂型秋 菊品种‘QX-053’(作母本)和非托桂型秋菊品种‘南农惊艳’(作父本),如果其 他同行需要,南京农业大学“中国菊花种质资源保存中心”可向国内单位提供这些 种质资源。经多年无性繁殖栽培鉴定,性状表现稳定,且两品种的花器表型差异 明显。2011年秋进行杂交试验,选取母本‘QX-053’发育良好的花蕾,在舌状花 刚露色时去雄,用硫酸纸袋套袋,同时将父本‘南农惊艳’的花序套袋。待母本柱 头伸出并开叉呈‘Y’状和分泌黏液时,收集已套袋父本的新鲜花粉,用毛笔对母 本进行授粉、套袋,次日重复授粉。当花梗变黄枯萎时采集授粉花序,脱粒,获 得160粒F1杂交种子,次年3月初经穴盘点播,连同亲本扦插苗分别于2012 和2013年4月中下旬各株系标号定植于菊花圃地,常规管理同大田。

于2012和2013年秋季生殖生长初期调查双亲与F1代植株的花器相关性 状,包括花径、心花直径、舌状花数、舌状花长、舌状花宽、管状花数、管状花 长、管状花宽、最深齿裂长和花柱长10个性状,每个株系5个单株重复,每个 单株调查1个花序,并计算两年性状调查的平均值。具体测量方法参照李鸿渐 (《中国菊花》,1993)的方法。利用Microsoft Excel 2007软件和SPSS 18.0软件 对两个年份的托桂型菊花花器性状的表型数据分别进行基本描述性统计分析(见 表1)。

表1 菊花品种‘QX-053’,‘南农惊艳’及其F1群体花器性状在2012、2013年度描 述性数据

(二)菊花连锁图谱构建

1)参照改良后的CTAB微量法(Murray and Thompson,1980),取菊花幼 嫩叶片提取亲本及其F1杂交后代基因组DNA,Lambda DNA 1.0%琼脂糖凝胶电 泳检测DNA质量和浓度,并用ddH2O稀释至50ng·μL-1

2)利用杂交亲本‘QX-053’和‘南农惊艳’,以及8—10个杂交F1代单株对425 对SRAP引物组合(由25个SRAP正向引物和17个SRAP反向引物构成,见 表2)和350对SSR引物组合(引物序列见表3)进行多态性筛选,将筛选后的 多态性引物组合(72对SRAP和56对SSR),用于作图群体的多态性扩增并统 计扩增后的多态性条带数据。

表2 用于菊花作图群体进行多态性分析的SRAP引物名称及其序列

表3 用于菊花作图群体进行多态性分析的SSR引物名称及其序列

按照“有”记为“1”,“无”记为“0”的原则对清晰易辨的多态性SSR和SRAP 扩增位点进行统计。以引物名称作为多态性位点的名称,如果同一个引物扩增出 多个多态性位点,则在引物或引物组合名称加上该条标记的分子量大小,分子量 大小由软件Quantity one估算。根据“双-假测交”作图策略(Grattapaglia and  Sederoff,1994),将多态性标记位点按照其分离类型分为两大类,即出现在母本 和父本中的多态性标记位点分别为“Q+QN”和“N+QN”两种类型。对只存在于亲 本之一(Testcross marker,测交标记位点)和同时存在于双亲中(Intercross marker, 交叉标记位点)的多态性标记位点,分别按照1:1和3:1孟德尔分离比例在0.05 显著水平进行卡方检验。最后所得标记数据见表4、表5。

表4 多态性SRAP分子标记在菊花作图群体中的分离分析

表5 多态性SSR分子标记在菊花作图群体中的分离分析

SRAP-PCR反应体系与反应程序:SRAP-PCR反应混合液总体积为10μl,其 中包括10×PCR Buffer 1.0ul,3mM Mg2+,200μM dNTP,0.5U Taq DNA聚合酶, 10μM SRAP引物和25ng模板DNA。SRAP-PCR反应程序:预变性94℃/5 min;5个循环(变性94℃/1min,退火复性35℃/1min,延伸72℃/1min); 35个循环(变性94℃/1min,,退火复性50℃/1min,延伸72℃/1min);延 伸72℃/7min;结束反应,4℃保存。SRAP-PCR产物采用8%非变性聚丙烯 酰胺凝胶电泳,银染后拍照保存。SSR-PCR反应体系与反应程序:SSR-PCR反 应混合液总体积为25μl,其中包括10×PCR buffer 2.5μL,25μM Mg2+1.5μL, 2.5μM dNTP 2μL,0.5U Taq DNA聚合酶2μL,SSR引物各2μL和模板DNA 1 μL。反应程序为:预变性94℃/3min;35个循环(变性94℃/40s,退火复性 56℃/30s,延伸72℃/50s);延伸72℃/5min;结束反应,4℃保存。扩增 产物经8%变性聚丙烯酰胺凝胶电泳。

实验用的Lambda DNA、Taq DNA聚合酶、dNTPs以及2000bp DNA marker、 SRAP引物、SSR引物等,均由上海捷瑞生物工程有限公司提供;实验中使用的 主要仪器有Eppendorf 5810R型高速冷冻离心机、DYY-6C型电泳仪、北京君意 JY-SC26型垂直电泳槽、PTC-100TM型PCR仪、JS-380型凝胶成像分析仪。

3)对该两种类型的分子标记数据分别进行连锁分析,进而产生双亲的两张 连锁遗传图谱。连锁分析采用Joinmap v3.0软件,选用‘CP作图模型’,设置 LOD≥3.0,采用Kosambi法将重组率转换成遗传距离(cM)。根据连锁分析结果 采用MapChart v2.2软件制作遗传图谱。其中,母本‘QX-053’的遗传图由43个 连锁群组成(图2),父本‘南农惊艳’的遗传图由50个连锁群组成(图3)。

(三)托桂型菊花花器性状的QTL定位:

以基于步骤(二)构建的菊花连锁遗传图谱为基础,运用WinQTL5.0软件 及复合区间作图法对菊花花器性状在2012和2013年的观测数据分别进行QTL 检测,分别利用‘QX-053’和‘南农惊艳’两份遗传图谱进行全基因组扫描。利用 MapChart v2.2软件绘制QTL分布图(图4),并估算各QTL的加性效应及其对 表型变异的贡献率等遗传参数(见表6)。相关运行参数如下:Walk speed=2cM; Window size=10.00;Model=6。取LOD阈值为2.5,当LOD峰值大于2.5时 即可确定该处存在一个显著QTL位点,置信区间根据LOD值的峰值两侧各下降 1个LOD值来确定。

QTL命名基本遵照改良后的McCouch et al.(1997)方法。性状英文缩写名 称(首字母大写)+环境(E1,E2)+连锁群的序号{+QTL的序号}。例如, “CfdE1Q1-1”表示利用2012年(E1)表型数据在连锁群Q1上检测到的第一个关 于心花直径(Cfd)性状QTL。“LllE2N5”表示利用2013年(E2)表型数据在连 锁群N5上检测到关于最深齿裂长(Lll)性状的QTL。

表6 菊花主要花器性状在2012和2013两个年度的QTL定位分析

注:*P<0.05;**P<0.01。

针对花径,共检测到2个QTLs,且全分布在‘南农惊艳’遗传图谱上。在2012 年检测到的位于N5连锁群上N-M20E5-150和N-M20E5-259*标记区间的 FldE1N5对花径表型变异的贡献率为14.00%,其加性效应值为1.32;在2013年 检测到的位于N3连锁群上QN-M20E17-218和N-M20E17-596标记区间的 FldE2N3对花径表型变异的贡献率为24.80%,其加性效应值为-1.92。由此可见, FldE1N5与FldE2N3均属主效基因。

针对心花直径,共检测到7个QTLs,主要分布在‘南农惊艳’遗传图的N2和 N3连锁群以及‘QX-053’遗传图的Q1和Q2连锁群上,LOD值范围为2.53~4.69, 单个QTL对心花直径表型变异的贡献率范围为9.00%~21.50%。其中,在2012 年检测到‘南农惊艳’遗传图的N2和N3连锁群上CfdE1N2、CfdE1N3对心花直径 表型变异的贡献率分别为21.50%、12.80%。在两年间检测到的CfdE1Q1-1与 CfdE2Q1两个QTL位点同在Q1连锁群上的QN-SSR35-77*和QN-SSR34-255** 标记区间,推测这两个QTL位点应该是同一个QTL,受环境的影响较小,对心 花直径表型变异的贡献率均在10%以上,应为主效基因。另外,在两年度间检测 到的CfdE1Q2与CfdE2Q2可能是同一个QTL,受环境影响也较小,因为两个 QTL位点同在Q2连锁群上的QN-M20E17-88、QN-M20E17-143标记区间,两 者对心花直径表型变异的贡献率均在16%以上,应属主效基因。位于‘QX-053’ 遗传图Q1连锁群上的CfdE1Q1-2仅在2012年环境中检测到,其对心花直径表 型变异的贡献率为9.00%,说明该QTL为受环境影响较大的微效多基因。

针对舌状花数,仅在2013年检测到位于‘QX-053’遗传图Q2连锁群上 QN-M20E17-218和QN-SSR34-286**标记区间的RfnE2Q2,该QTL对舌状花数 表型变异的贡献率为13.70%,属主效基因,其加性效应值为-1.66。

针对舌状花长,共检测到4个QTLs,主要分布在‘南农惊艳’遗传图的N3和 N5连锁群上,LOD值介于2.86~3.38之间,单个QTL可以解释舌状花长表型 变异的贡献率范围为14.70%~25.90%。其中,在2012年检测到的位于‘南农惊 艳’遗传图N5连锁群上N-M20E5-150和N-M20E5-259*标记区间的RflE1N5对舌 状花宽表型变异的贡献率为14.70%,其加性效应值为3.38;而在2013年检测到 位于N3连锁群QN-M20E17-218和QN-M20E17-412标记区间的RflE2N3-1、 RflE2N3-2与RflE2N3-3三对QTL所处的区域相近,但非同一个QTL位点,但 其对舌状花长表型变异的贡献率均在25%以上,说明这三对QTLs应为主效基因。

针对舌状花宽,共检测到6个QTLs,且全部位于‘南农惊艳’遗传图谱上。 在2012年检测到的5个QTLs,即分别位于遗传图N4、N6、N7、N8、N9连锁 群上的RfwE1N4、RfwE1N6、RfwE1N7、RfwE1N8、RfwE1N9,对舌状花宽表型 变异的贡献率为15.00%左右,其加性效应值为3.20左右;在2013年检测到的位 于遗传图N10连锁群上N-M23E1-181和N-M25E5-134标记区间的RfwE2N10对 舌状花宽表型变异的贡献率为14.80%,其加性效应值为3.79。由此可见,6个 QTLs均为主效多基因。

针对管状花数,两年间共检测到1个QTL,即在2013年检测到的TfnE2Q1, 位于‘QX-053’遗传图Q1连锁群上的QN-SSR73-338和QN-SSR262-342标记区 间,其LOD值为2.65,贡献率为29.90%。

针对管状花长,共检测到4个QTLs,主要分布在‘南农惊艳’遗传图的N3和 ‘QX-053’遗传图的Q1与Q2连锁群上,LOD值介于2.83~4.68之间,单个QTL 可以解释管状花长表型变异的贡献率范围为12.40%~19.20%。其中,在2012年 检测到的位于‘南农惊艳’遗传图N3连锁群上QN-M20E17-269和QN-M20E17-88 标记区间的TflE1N3对管状花长表型变异的贡献率为12.4%,其加性效应值为 2.83;而在2012年检测到位于‘QX-053’遗传图的Q2连锁群QN-M20E17-88和 QN-M20E17-143标记区间的TflE1Q2对管状花长表型变异的贡献率为16.6%, 其加性效应值为3.05;2012年检测到的TflE1Q1与2013年检测到的TflE2Q1均 位于Q1连锁群上的QN-SSR35-77*和QN-SSR34-255**标记区间,应属同一个 QTL位点,该位点贡献率分别为16.20%和19.20%,说明该QTL为受环境因素 影响较小的主效基因,其加性效应值分别为-4.10和-2.97。

针对管状花宽,共检测到4个QTLs,分别位于‘南农惊艳’遗传图N1连锁群 和‘QX-053’遗传图Q1连锁群上,LOD值介于3.10~3.92之间,单个QTL可以 解释管状花宽表型变异的贡献率范围为11.90%~22.40%。在2012和2013年检 测到在Q1连锁群QN-SSR35-77*和QN-SSR34-255**标记之间存在同一QTL位 点TfwE1Q1-1(TfwE2Q1),其对管状花宽表型变异的贡献率为11.90%(18.70%), 由此可见,该QTL为受环境因素影响较小的主效基因;在2012年检测到的位于 ‘南农惊艳’遗传图N1连锁群QN-SSR34-334*和QN-SSR60-141标记区间的 TfwE1N1对管状花宽表型变异的贡献率为16.50%,其加性效应值为-0.41;在2012 年检测到的位于‘QX-053’遗传图Q1连锁群QN-SSR34-311和QN-SSR149-242标 记区间的TfwE1Q1-2对管状花宽表型变异的贡献率为22.40%,其加性效应值为 -0.70。

针对最深齿裂长,共检测到2个QTL。2012年检测到的LllE1N2位于‘南农 惊艳’遗传图N2连锁群上的N-SSR109-492和QN-SSR55-160标记区间,其LOD 值为5.83,贡献率为23.70%,其加性效应值为-4.25。2013年检测到的LllE2N5 位于‘南农惊艳’遗传图N5连锁群上的N-M20E5-139和N-M20E5-126*标记区间, 其LOD值为4.38,贡献率为27.20%。因此,2个QTLs均为主效多基因。

针对花柱长,共检测到5个QTLs,主要分布在‘南农惊艳’遗传图的N2、N5、 N8和N11连锁群以及‘QX-053’遗传图的Q3连锁群,LOD值介于3.39~5.85之 间,单个QTL对心花直径表型变异的贡献率范围为13.80%~22.00%。其中,2012 年检测到的SllE1N2、SllE1N5、SllE1N8、SllE1N11分别位于‘南农惊艳’遗传图 N2、N5、N8和N11连锁群上;其贡献率分别为22.00%、13.80%、21.30%、21.40%, 其加性效应值分别为-2.90、0.43、-2.86、-2.90。2012年检测到的SllE1Q3位于 ‘QX-053’遗传图Q3连锁群上的QN-M23E1-209和QN-M23E1-233标记区间,其 LOD值为3.19,贡献率为15.00%,其加性效应值为0.44。因此,5个QTLs均 为主效多基因。

(四)托桂型菊花花器性状关联分子标记的确定

根据步骤(三)所得的主效QTL所在标记区间即可确定与托桂型菊花花器 性状紧密关联的分子标记(见表6,图4)。

在杂交双亲2012和2013年的两个不同环境间共检测到36个QTL与10个 目标花器性状显著相关,主要分布在亲本‘QX-053’遗传图的Q1、Q2和Q3共计 3个连锁群和亲本‘南农惊艳’遗传图的N1、N2、N3、N4、N5、N6、N7、N8、 N9、N10和N11共计11个连锁群上,LOD值介于2.52~5.85之间,单个QTL 对表型变异的贡献率范围为9.00%~34.80%,以贡献率>10%可作为主效基因的 标准。

在两年间共计检测到4对受环境影响较小贡献率较大的主效QTL,分别为 控制心花直径的CfdE1Q1-1(CfdE2Q1),关联分子标记为SSR34-255;控制心花 直径的另一个主效QTL:CfdE1Q2(CfdE2Q2),关联分子标记为M20E17-88;控 制管状花长的TflE1Q1(TflE2Q1),关联分子标记为SSR35-77;以及控制管状花 宽的TfwE1Q1-1(TfwE2Q1),关联分子标记为SSR34-255。其对表型变异的贡 献率均在10%以上,是较稳定的主效基因,这些主效QTL将为今后分子标记辅 助育种技术在菊花中的应用奠定了重要基础。此外,还检测到27个受环境影响 的贡献率均在10%以上QTLs和1个受环境影响较大的微效多基因

可以知道,上述实施例仅为了说明发明原理而采用的示例性实施方式,然而 本发明不仅限于此,本领域技术人员在不脱离本发明实质情况下,可以做出各种 改进和变更,这些改进和变更也属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号