首页> 中国专利> 一种节能煤化工废水深度处理系统及其处理方法

一种节能煤化工废水深度处理系统及其处理方法

摘要

一种节能煤化工废水处理系统及其处理方法,该系统包括正渗透膜浓缩装置和多效蒸发器,正渗透膜浓缩装置包括FO膜密闭交换箱、汲取液回收利用装置和清水回收装置,FO膜密闭交换箱至少设置一级,汲取液回收利用装置与各级FO膜密闭交换箱分别通过电动阀门连接,清水回收装置与汲取液回收利用装置连接,各级FO膜密闭交换箱依次通过排液电动阀门连接,且均通过超越电动阀门与母液焚烧炉连接。该方法针对煤化工废水的高渗透压特性,通过配制依数性更高的汲取液,利用溶液的依数性差异带来的渗透压差,使煤化工废水得到高效浓缩的同时回收循环利用水资源,产生电能;运行过程实现自动联锁控制,可根据不同进水条件调整运行方式。

著录项

  • 公开/公告号CN104402160A

    专利类型发明专利

  • 公开/公告日2015-03-11

    原文格式PDF

  • 申请/专利权人 山东省环科院环境工程有限公司;

    申请/专利号CN201410713950.9

  • 申请日2014-11-28

  • 分类号C02F9/10;F23G7/04;

  • 代理机构济南日新专利代理事务所;

  • 代理人王书刚

  • 地址 250013 山东省济南市历下区历山路50号

  • 入库时间 2023-12-17 03:31:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-07-06

    授权

    授权

  • 2015-04-08

    实质审查的生效 IPC(主分类):C02F9/10 申请日:20141128

    实质审查的生效

  • 2015-03-11

    公开

    公开

说明书

技术领域

本发明涉及一种用于煤化工废水的深度处理系统及其方法,属于废水治理技术领域。

背景技术

所谓煤化工是以煤为原料,通过一系列化学工艺的反应,将其转化为气体、液体、固体 燃料及生产出各种化学化工品的工业。

我国富煤、贫油、少气的能源结构决定了煤化工产业的迅速发展,尤其是新型煤化工产 业。传统煤化工泛指煤的气化、液化、焦化及焦油加工、电石乙炔化工等,也包括以煤为原 料制取碳素材料和煤基高分子材料等。新型煤化工以煤气化为龙头,包括煤制甲醇、乙酸、 二甲醚等。煤化工行业在迅速发展的同时带来了较大环境问题。

煤化工主要包括煤的一次化学加工、二次化学加工和深度化学加工,煤的气化、液化和 焦化过程,煤的合成气化工、焦油化工和电石乙炔化工等。基于生产工艺与产出产品的差异, 煤化工过程大致可分为煤焦化、煤电石、煤气化和煤液化等,而煤化工废水就主要来源于这4 条生产链。

煤化工废水的特点主要表现为:组分复杂,含大量固体悬浮颗粒、挥发酚、稠环芳烃、 吡咯、呋喃、咪唑、萘、含氮、氧、硫的杂环化合物、氰、油、氨氮及硫化物等有毒、有害 物质,COD值和色度都很高。虽然由于原煤组成和生产工艺条件的不同,废水中污染物含量 和种类不尽相同,但总体来说,煤化工废水的COD值一般在2000~5000mg/L,pH在7.0~ 10.0,氨氮在200~600mg/L,挥发酚在300~500mg/L,氰化物在10~30mg/L。由于该废水 水质成分复杂且氨氮、挥发酚、氰化物等污染物浓度高,加之有吡啶、咔唑、联苯等多种十 分难降解的有机污染物存在,为处理达标带来较大的困难。

煤化工废水的治理及回用技术逐步成为煤化工行业迅速发展的瓶颈,寻求经济有效的废 水处理方法具有十分重要意义。

煤化工废水是一类污染物种类多、成分复杂的高浓度有机废水,单靠传统的物理和化学 方法处理,往往难以达到排放标准。对于该废水的处理,通常可分为一级处理、二级处理和 深度处理。

一级处理即预处理,主要包括混凝,化学沉淀,气浮等方法,以除去部分灰渣及油类, 并对废水中的酚类及氨氮等有价物质进行回收处理;

二级处理主要为生化处理,主要包括A/O、A2/O、SBR、UASB等及一些新兴工艺;

深度处理方法主要有活性炭吸附法、臭氧氧化法、湿式催化氧化法以及近年来备受关注 的Fenton试剂氧化法,纳米TiO2光催化氧化法及超声空化效应等。

尽管近年来针对不同行业废水的处理,涌现出许多行之有效的,前沿性的新技术,有的 已应用到实际生产中。但不难发现,有些方法由于自身存在的弊端,其应用性受到了一定的 限制。例如:物理法并未彻底降解污染物,而只是将其由一相转移到另一相;化学法由于需 要投入大量化学药剂,使得运行成本较高,难以大规模推广,同时,还可能产生二次污染。 生物法处理比较廉价,是目前被广泛采用的一种水处理方法,然而它的局限性在于:1)降解 速度较慢;2)细菌作用的选择性较强;3)降解不彻底,可能形成有毒的中间产物;4)部分芳 香族化合物难以被降解。AogatePR研究指出,一些深度氧化法其单个方法的处理效果并不理 想,即使效果理想,价格也比较昂贵,很难推广。

中国专利文献CN102211839A公开的《一种煤化工废水处理方法》、CN103880242A公开 的《一种煤化工废水深度处理工艺》、CN103466903A公开的《利用微生物处理煤化工废水的 方法》、CN103833175A公开的《煤化工废水处理成套装置》、CN101560045公开的《一种煤 化工废水处理工艺》、CN102674634B公开的《煤化工废水处理工艺》以及CN101503267B公 开的《一种煤化工废水处理方法》,大都是对常规方法的改进,处理效果有待提高。

为此,有必要重新分析煤化工废水的特性,在生化处理的基础上,开发节能、高效的煤 化工废水深度处理技术。

渗透作用是两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过 的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。其发生 的条件有两个:一是有半透膜,二是半透膜两侧有物质的量浓度差。

渗透作用又可分为正渗透(FO)、反渗透(RO)和压力阻尼渗透(PRO)。

正渗透(FO)过程是以半透膜两侧的渗透压差为驱动力,溶液中的水分子从高水化学势 区(低离子浓度溶液)通过半透膜向低水化学势区(高离子浓度溶液)传递,而溶质分子或 离子被阻挡的一种渗透过程。

反渗透(RO)过程,是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因 为它和正渗透的方向相反,故称反渗透。可以利用不同物料的渗透压差异,使用大于渗透压 的反渗透压力,达到分离、提取、纯化和浓缩的目的。

压力阻尼渗透(PRO)是介于正渗透和反渗透过程的中间过程,是指在渗透压差的反方 向上施加压力,与反渗透过程相似,然而水分子仍然是扩散到高离子浓度一侧,与正渗透 过程相似。

稀溶液(包含煤化工废水)的依数性是指稀溶液中溶剂的蒸气压下降、凝固点降低、沸 点升高和渗透压的数值,只与溶液中溶质的量有关,与溶质的本性无关,溶液的依数性为开 发特种汲取液提供了理论依据,即只要配置一定依数性的汲取液,使其渗透压高于待处理煤 化工废水,利用渗透作用,就可以将煤化工废水进一步浓缩。

为此,亟需在生化处理的基础上,开发节能的煤化工废水深度处理系统,利用渗透作用 尤其是正渗透(FO)作用和溶液的依数性差异带来的渗透压差,实现煤化工废水有效处置、 循环利用水资源的同时,充分利用正渗透(FO)产生的压差获得电能,节约能源。

发明内容

本发明针对现有煤化工废水处理技术存在的不足,依据生化处理后煤化工废水的特性, 利用溶液的依数性,提供一种处理效果好、节能的煤化工废水深度处理系统。同时提供一种 该系统对煤化工废水的深度处理方法。

本发明的节能煤化工废水深度处理系统,采用以下技术方案:

该系统,包括正渗透膜浓缩装置和母液焚烧炉,正渗透膜浓缩装置包括FO膜密闭交换 箱、汲取液回收利用装置和清水回收装置,FO膜密闭交换箱至少设置一级,汲取液回收利用 装置与各级FO膜密闭交换箱分别通过电动阀门连接,清水回收装置与汲取液回收利用装置连 接,各级FO膜密闭交换箱依次通过排液电动阀门连接,且均通过超越电动阀门与母液焚烧炉 连接。母液焚烧炉配套有助燃燃料(天然气、柴油或焦炉煤气等)燃烧器和尾气净化装置。

FO膜密闭交换箱的内部设置膜元件,膜元件将FO膜密闭交换箱内部分为母液区和汲取 液区,母液区的上部设置有进水管,该进水管上设置有进水电动阀门;上一级FO膜密闭交 换箱中母液区的底部通过排液电动阀门与下一级FO膜密闭交换箱中母液区的上部连接,同 时每一级FO膜密闭交换箱中母液区的底部均通过超越电动阀门与母液焚烧炉连接;每一级 FO膜密闭交换箱中汲取液区的上部分别通过汲取液输送管与汲取液回收利用装置中的汲取液 交换箱连接,各自的汲取液输送管上均设置有汲取液出口电动阀门;每一级FO膜密闭交换箱 中汲取液区的底部均设置有汲取液补偿电动阀门,且与汲取液回收利用装置中的汲取液补偿 箱之间通过汲取液补偿管连接,汲取液补偿管上连接有汲取液补偿泵。

汲取液区的外部设置有连接汲取液区上部和下部的汲取液循环管,汲取液循环管上设置 有汲取液循环泵。通过汲取液循环泵将汲取液在汲取液区上部和下部形成循环。

母液区和汲取液区内均设置有搅拌器和温度调节装置。

母液区设置有COD在线监测仪,汲取液区设置有离子浓度计。

汲取液回收利用装置包括汲取液交换箱、汲取液中间箱、汲取液多效蒸发器、汲取液溶 解箱、汲取液补偿箱和溶药箱,汲取液交换箱上部设置有交换箱电动阀门和交换箱电动排气 阀,并通过交换箱电动阀门与汲取液中间箱连接;汲取液交换箱的底部通过交换箱超越管电 动阀门与汲取液中间箱连接;汲取液中间箱上部设置有中间箱电动排气阀,汲取液中间箱与 汲取液多效蒸发器连接;汲取液溶解箱与汲取液多效蒸发器连接,;汲取液补偿箱的底部通过 补偿箱进口电动阀门与汲取液溶解箱的底部连接;溶药箱的底部通过溶药出口电动阀门与汲 取液补偿箱的底部连接。

汲取液溶解箱和溶药箱内均设置有搅拌器和离子浓度计。

汲取液补偿箱内设置有离子浓度计。

清水装置包括清水箱、清水泵和清水管,清水箱与汲取液多效蒸发器连接,清水管与清 水箱连接,清水泵连接在清水管上,清水管与溶药箱连接。

上述系统,还包括渗透能量利用装置,该装置包括密闭的转子箱和涡轮发电机组,转子 箱内设置有涡轮机叶轮,涡轮机叶轮与涡轮发电机组连接,转子箱的底部设置有转子箱电动 排气阀,转子箱通过转子箱进水电动阀门与汲取液交换箱连接,同时转子箱也与汲取液中间 箱连接。

上述系统的处理方法,是:

首先分析计算煤化工废水的渗透物质的量浓度(溶液中的离子态物质的量与分子态物质 的量之和)S1(运行过程中以COD在线监测仪显示数据近似折算),按照所需渗透压力(△π, 由是否用于发电等实际需求决定)得出所需第一级FO膜密闭交换箱汲取液的离子浓度J1, J1大于S1,且得出需要的FO膜密闭交换箱的级数n和每级FO膜密闭交换箱的个数i;然后 通过汲取液回收利用装置配制离子浓度J1的汲取液,使汲取液充满第一级FO膜密闭交换箱; 开启煤化工废水进水电动阀门,煤化工废水流入第一级FO膜密闭交换箱内,与汲取液交换, 使煤化工废水中的水分子自由传至汲取液,稀释后体积增大的汲取液通过汲取液回收利用装 置中的多效蒸发器实现汲取液溶质(一般为气体)和水(溶剂)的分离,实现汲取液溶质的 回收和再利用,多余的水进入清水装置,实现水资源的回收利用;煤化工废水通过逐级FO膜 密闭交换箱进行浓缩,最后无法再浓缩的或根据需要无需进一步浓缩(一般COD在600000mg/L 以上时)的母液进入母液焚烧炉进行焚烧处理。

本发明针对煤化工废水的高渗透压特性,通过配制依数性更高的汲取液,利用溶液的依 数性差异带来的渗透压差,使煤化工废水得到高效浓缩的同时,回收循环利用水资源,生产 电能;同时,运行过程实现自动联锁控制,可根据不同进水条件调整运行方式,便于实施。 具有以下特点:

1.充分利用溶液的依数性,通过配制依数性较高的汲取液(如NH4HCO3等),利用其与煤 化工废水的高渗透压差,实现煤化工废水高效浓缩的同时,可回收大量水资源;

2.采用的FO膜具有膜通量大,浓差极化现象少的特性,可保障渗透功能的顺利实现;

3.采用的母液焚烧炉为通用设备,专门处理高浓度有机废液,利用高温(850-1100℃) 热解,可充分分解废液中的有机物和含氯、苯、酚类的有害化合物,并具有以下特点:

(1)微负压设计,燃烧安全性高,控制程序中设有炉内点火前不排除易燃易爆气体就不 能点火的功能,以防气爆;

(2)自动化程度高,全方位在线检测控制,燃烧稳定。

(3)采用雾化喷枪,喷出极细微的颗粒,保证在炉内空中气化,氧化分解,不会滴落。

(4)采用切线燃烧雾化装置内部混合式二流体雾化器,其混合程度,雾化效果燃烧速度 极高,过剩空气低,可节约大量燃料。

(5)涡流效果好,燃烧滞留时间达2秒以上,燃烧无死角。

(6)低氮燃烧技术,无烟无臭,无有害气体,可同时焚烧有机废气及少量固体。

(7)配套完善合理的尾气处理净化装置,保证环保排放达标。

4.采用的渗透能量利用装置可将系统产生的渗透能转化为电能,从而降低废水处理成本;

5.通过自动化仪器仪表使运行过程实现自动联锁控制,便于根据不同进水条件调整运行 方式;

6.模块化设计,可根据煤化工废水实际浓度和其他实施条件,自由组合,具有较强的灵 活性。

附图说明

图1是本发明高效节能煤化工废水处理系统的流程示意图。

图中:1、进水电动阀门,2、FO膜密闭交换箱,3、煤化工废水搅拌器,4、汲取液搅拌 器,5、膜机架,6、膜元件,7、煤化工废水COD在线监测仪,8、汲取液离子浓度计,9、温 度调节装置,10、汲取液出口压力表,11、汲取液出口电动阀门,12、汲取液循环泵,13、 汲取液交换箱,14、交换箱压力表,15、交换箱电动阀门,16、密闭转子箱,17、涡轮机叶 轮,18、涡轮发电机组,19、汲取液中间箱,20、中间箱电动排气阀,21、汲取液多效蒸发 器,22、中间箱溢流管,23、汲取液溶解箱,24、溶解箱搅拌器,25、溶解箱离子浓度计, 26、补偿箱进口电动阀门,27、汲取液补偿箱,28、补偿箱离子浓度计,29、溶药出口电动 阀门,30、溶药箱,31、溶药搅拌器,32、汲取液离子浓度计,33、洗气装置,34、清水箱, 35、清水泵,36、第一级超越管电动阀门,37、排液电动阀门,38、第二级超越管电动阀门, 39、母液焚烧炉进口电动阀门,40、母液焚烧炉,41、汲取液补偿泵,42、汲取液补偿电动 阀门,43、交换箱超越管电动阀门,44、自来水管道,45、交换箱电动排气阀,46、转子箱 电动排气阀,47、转子箱进水电动阀门,48、折流挡板,49、助燃燃料燃烧器,50、尾气净 化装置。

具体实施方式

本发明的高效节能煤化工废水处理系统主要包括正渗透膜浓缩装置、母液焚烧炉40和渗 透能量利用装置,各个装置通过管路依次连接。各装置的具体结构如图1所示。

正渗透膜浓缩装置,包括至少一级FO膜密闭交换箱2(图1中设有3级)、汲取液回收 利用装置和清水回收装置。

单级FO膜密闭交换箱2的内部中间设置有膜机架5,膜机架5内设置有膜元件6。膜机 架5将FO膜密闭交换箱2分为左侧母液区(煤化工废水区)和右侧汲取液区两部分,两区 为完全独立区域,仅可通过膜元件6进行传质。母液区的上部设置有煤化工废水进水管,该 进水管上设置有进水电动阀门1,母液区内设置有煤化工废水搅拌器3、煤化工废水COD在线 监测仪7和温度调节装置9(设置在母液区底部),温度调节装置9可以是电驱动,也可以是 交换器。汲取液区内设置有汲取液搅拌器4、汲取液离子浓度计8和加热器(设置在汲取液 区底部),汲取液区的外部设置有连接其上部和下部的汲取液循环管,汲取液循环管上设置有 汲取液循环泵12,通过汲取液循环泵12将汲取液在汲取液区上部和下部形成循环,加快传 质。

上一级FO膜密闭交换箱2中母液区的底部通过排液管与下一级FO膜密闭交换箱中母液 区的上部连接,排液管上设置有排液电动阀门37,同时每一级FO膜密闭交换箱中浓缩液区 的底部均通过超越管与母液焚烧炉40连接,超越管上设置电动阀门(如图1中的第一级超越 管电动阀门36和第二级超越管电动阀门38),超越管通过母液焚烧炉进口电动阀门39与母 液焚烧炉40连接。母液焚烧炉40上配套有助燃燃料(天然气、柴油或焦炉煤气等)燃烧器 49和尾气净化装置50。每一级FO膜密闭交换箱中汲取液区的上部分别通过汲取液输送管与 密闭汲取液交换箱13连接,各自的汲取液输送管上均设置有汲取液出口压力表10和汲取液 出口电动阀门11。每一级FO膜密闭交换箱中吸取液区的底部均设置有汲取液补偿电动阀门 42,且与汲取液补偿箱27之间通过汲取液补偿管连接,汲取液补偿管上连接有汲取液补偿泵 41,汲取液补偿箱27上设置有补偿箱离子浓度计28。

汲取液回收利用装置包括汲取液交换箱13、汲取液中间箱19、汲取液多效蒸发器21、 汲取液溶解箱23、汲取液补偿箱27和溶药箱30,汲取液交换箱13、汲取液中间箱19、汲取 液多效蒸发器21、汲取液溶解箱23和汲取液补偿箱27均是密闭的。汲取液交换箱13是密 闭的,其上部设置有交换箱压力表14、交换箱电动阀门15和交换箱电动排气阀45,并通过 交换箱电动阀门15与汲取液中间箱19的上部连接;汲取液交换箱13的底部通过交换箱超越 管电动阀门43与汲取液中间箱19的底部连接。汲取液中间箱19内部设置有折流挡板48, 其上部设置有中间箱电动排气阀20。汲取液中间箱19与汲取液多效蒸发器21下部连接,且 上部连接有中间箱溢流管22。汲取液溶解箱23与汲取液多效蒸发器21连接,汲取液溶解箱 23内设置有溶解箱搅拌器24和溶解箱离子浓度计25,汲取液溶解箱23底部连接有洗气装置 33(洗气塔)。汲取液补偿箱27的底部通过补偿箱进口电动阀门26与汲取液溶解箱23的底 部连接,汲取液补偿箱27内设置有补偿箱离子浓度计28。溶药箱30的底部通过溶药出口电 动阀门29与汲取液补偿箱27的底部连接,溶药箱30与自来水管道44连接,且其内设置有 溶药搅拌器31和汲取液离子浓度计32。多效蒸发器为通用设备。

清水装置包括清水箱34、清水泵35和清水管,清水箱34与汲取液多效蒸发器21连接, 清水管与清水箱34连接,清水泵35连接在清水管上。清水管可通过阀门与溶药箱30连接, 以对汲取液多效蒸发器21产生的清水进行利用。

渗透能量利用装置,包括密闭的转子箱16和涡轮发电机组18,转子箱16内设置有涡轮 机叶轮17,涡轮机叶轮17与涡轮发电机组18连接,转子箱16的底部设置有转子箱电动排 气阀46。转子箱16通过转子箱进水电动阀门47与汲取液交换箱13连接,同时也与汲取液 中间箱19连接。

上述系统的运行过程,如下所述。

运行前,首先确定以下几项重要参数:

1、处理前煤化工废水的渗透压π(煤化工废水)

首先对处理前煤化工废水进行检测分析,计算其中的渗透物质的量浓度(溶液中的离子 态物质的量分子态物质的量之和)(S1,以mol·L-1计),采用范托夫(van’t Hoff)公式计 算得出处理前煤化工废水的渗透压π(煤化工废水):

π(煤化工废水)=cBRT≈S1RT

其中:π(煤化工废水)为处理前煤化工废水的渗透压;

对电解质溶液来说,cB是1L溶液中能产生渗透效应的溶质分子与离子总物质的量,此处 cB≈S1,称为渗透物质的量浓度;

R为气体常数;

T为绝对温度。

运行过程中各级FO膜密闭交换箱母液区(或称浓缩液区)的渗透物质的量浓度按其上 设置的废水COD在线监测仪显示数据近似折算;

2、第一级FO膜密闭交换箱汲取液的离子浓度J1

按照所需渗透压差(△π,由是否用于发电等实际需求决定),采用范托夫(van’t Hoff) 公式π=cBRT计算得出所需第一级FO膜密闭交换箱汲取液的离子浓度J1

J1≈cB=π(汲取液)/RT

π(汲取液)=π(煤化工废水)+△π

π(煤化工废水)≈S1RT

其中,π(汲取液)为汲取液的渗透压,π(煤化工废水)为煤化工废水的渗透压;

对电解质溶液来说,cB是1L溶液中能产生渗透效应的溶质分子与离子总物质的量,此处 cB≈J1,称为渗透物质的量浓度;

R为理想气体常数;

T为绝对温度。

运行过程中各级FO膜密闭交换箱汲取液区的渗透物质的量浓度按其上设置的废水离子 浓度计显示数据近似计算;

为提高效率,一般采用接近饱和浓度的汲取液。

3、FO膜密闭交换箱的级数n(串联数量)

以汲取液的离子浓度J1为常温常压条件下汲取液溶质的饱和浓度为例,其渗透压为定值 π(汲取液)饱和

由于搅拌器和循环泵的作用,同一级FO膜密闭交换箱的母液(或称浓缩液)浓度和汲 取液浓度可以认为是均一的;

系统正常运行时,随着母液(或称浓缩液)的不断浓缩,不同级FO膜密闭交换箱的母 液区渗透物质的量浓度会越来越高,且Sn+1>Sn(Sn为第n级FO膜密闭交换箱的母液中渗透 物质的量浓度,n为FO膜密闭交换箱的级数),其与汲取液的渗透压差△π也会逐渐减小, 理论上,当Sn接近母液溶质的饱和浓度、接近汲取液离子浓度J1以及等于汲取液离子浓度 J1时,FO膜两侧的母液和汲取液已不存在渗透压差△π,此时FO膜密闭交换箱的级数为n 的最大数值。

渗透压差△π的减小会影响膜通量和渗透效率,用于发电时还会影响发电机的工作,为 此,通常根据膜通量、渗透效率以及发电机叶轮所需压力等实际因素,综合确定FO膜密闭 交换箱的级数n。

4、每级FO膜密闭交换箱的个数i(并联数量)

每级FO膜密闭交换箱的个数i由以下公式估算:

i=Q/(Q’·S)。

其中:Q为废水处理规模(m3·S-1);

Q’为FO膜通量(m3·S-1·m-2);

S为单个FO膜密闭交换箱的有效正渗透膜面积(m2)。

确定了上述重要参数,意味着确定了系统的配置。

开启自来水管道44,使溶药箱30中加入自来水,并向溶药箱30内倒入液体汲取液溶液 (渗透物质的量浓度为J0,J0>J1,市场采购)或固体汲取液溶质粉末(市场采购),通过溶 药搅拌器31搅拌,配制离子浓度为J1的汲取液,通过汲取液离子浓度计32检测配制的汲取 液离子浓度。开启溶药出口电动阀门29,使汲取液流入汲取液补偿箱27,然后依次开启第一 级的汲取液补偿电动阀门42和汲取液补偿泵41,使汲取液充满第一级FO膜密闭交换箱2, 然后依次关闭汲取液补偿泵41、第一级的汲取液补偿电动阀门42、溶药出口电动阀门29和 溶药搅拌器31,同时检查确定其余电动阀门均处于关闭状态,各排气阀处于开启状态,最终 做好系统运行前的处理准备工作。

上述工作做完后,开启煤化工废水进水电动阀门1,煤化工废水流入第一级FO膜密闭交 换箱2的母液区,由于膜元件6一侧汲取液区的离子浓度(J1)大于母液区的渗透物质的量 浓度(S1)形成的渗透压差(△π),使母液区煤化工废水中的水分子透过膜元件6自由传至 汲取液区,由于汲取液区为密闭结构,稀释后体积增大的汲取液会通过汲取液补偿管进入密 闭的汲取液交换箱13。汲取液交换箱13充满后,关闭交换箱电动排气阀45。如需利用汲取 液进行发电,则关闭交换箱超越管电动阀门43,开启转子箱进水电动阀门47,稀释后的稀汲 取液(离子浓度为J1’,J1’<J1)进入密闭转子箱16,推动涡轮机叶轮17做功,通过涡 轮发电机组18输出电能,发电后的稀汲取液进入汲取液中间箱19。如无需发电,则关闭转 子箱进水电动阀门47,开启交换箱超越管电动阀门43,使稀汲取液进入汲取液中间箱19, 然后进入汲取液多效蒸发器21。通过多效蒸发器21,实现汲取液溶质(一般为气体)和水(溶 剂)的分离,其中的溶质进入汲取液溶解箱23,开启溶解箱搅拌器24,利用溶解箱离子浓度 计25控制溶液浓度,实现汲取液溶质的回收和再利用;多余的水进入清水箱34,由清水泵 35输送至溶药箱30或回用于厂区其它用水设置,实现水资源的回收利用。

浓缩后的煤化工废水逐级通过排液电动阀门37进入下一级的FO膜密闭交换箱,按上述 流程运行。每级FO膜密闭交换箱利用其底部的温度调节装置9,合理控制煤化工废水的温度, 使其浓度达到该温度下的饱和浓度。最后无法再浓缩或根据需要无需进一步浓缩(一般COD 在600000mg/L以上时)的母液进入母液焚烧炉40进行焚烧处理。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号