首页> 中国专利> 基于交流放电等离子体传感器的气体流动场测量系统

基于交流放电等离子体传感器的气体流动场测量系统

摘要

本发明提供了一种基于交流放电等离子体传感器的气体流动场测量系统。该气体流动场测量系统包括:基底,附着于被测物体的表面;若干个等离子体传感单元,分别用于测量所在区域的流动情况,其中,每一等离子体传感单元包括:等离子体传感器,包括在所述基底表面的相对设置的高压电极和接地电极;交流电源,其一端连接于所述高压电极,另一端连接于所述接地电极,用于为等离子体传感器提供工作电压;以及判定装置,与所述若干个等离子体传感单元相连接,用于利用等离子体传感器输出的电压信号判断其所在位置的气体流动情况。相比于现有的气体流动场测量系统,本发明气体流动场测量系统结构简单、造价低、精度高。

著录项

  • 公开/公告号CN104251767A

    专利类型发明专利

  • 公开/公告日2014-12-31

    原文格式PDF

  • 申请/专利权人 中国科学院工程热物理研究所;

    申请/专利号CN201310268218.0

  • 申请日2013-06-28

  • 分类号G01M9/06(20060101);

  • 代理机构11021 中科专利商标代理有限责任公司;

  • 代理人曹玲柱

  • 地址 100190 北京市海淀区北四环西路11号

  • 入库时间 2023-12-17 02:34:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-08-24

    授权

    授权

  • 2015-01-21

    实质审查的生效 IPC(主分类):G01M9/06 申请日:20130628

    实质审查的生效

  • 2014-12-31

    公开

    公开

说明书

技术领域

本发明涉及测量技术领域和能源动力技术领域,尤其涉及一种基于交 流放电等离子体传感器的气体流动场测量系统。

背景技术

提高飞行器的气动性能基本要求是减小飞行阻力、增大升力,以便减 小飞行器的燃料消耗。此外,提高航空发动机推重比的一个重要手段是减 少风扇、压气机以及透平的级数,达到减轻重量的目的,这就需要优化叶 型,增大它们单级的负荷和输出功。而飞行器的阻力、升力,以及航空发 动机叶片的气动性能都有气体的流动状态密不可分。

下面对气体的流动状态加以说明。首先以气体流过平板为例对流动的 层流区、转捩区、湍流区的概念加以说明。如图1所示,气体流过物体表 面时首先是层流区,然后是转捩区,最后是湍流区,如果发生流动分离还 会有分离区。层流区中流体分层流动,流体微团的轨迹没有明显的不规则 脉动;而湍流区中流体的速度脉动和压力脉动都较强;转捩区是层流向湍 流的过渡区域。由于层流中流体微团的脉动较小,因而气体处于层流状态 时,气体与壁面之间的摩擦阻力较小,但是层流气体抵抗流动分离的能力 较弱;处于湍流状态的气体则与此相反,由于湍流中流体微团脉动较强, 气体与壁面之间的摩擦阻力较大,抵抗流动分离的能力较强。

在飞行器、机翼、发动机叶片、风力机叶片设计中,需要合理组织气 体在壁面处的流动状态,如果为了减小摩擦阻力,就应该尽量使气体处于 层流状态;如为了使气体有较强的抵御流动分离的能力,就应该尽快使气 体由层流状态转捩为湍流状态。工程设计结果是否合理必须通过实验测量 来检验,这就需要准确测量飞行器、机翼、发动机叶片、风力机叶片上的 流动状态。

为了准确得到叶片附面层分离、转捩点位置,现有的流动场测量系统 为利用多普勒效应,或对流换热的原理进行测量。然而,激光多普勒测速 仪需要激光器、光电倍增管、传输接收器、光纤耦合器等部件,因而其结 构复杂、造价高;热线风速仪需要复杂的电路,因而其造价也较高。

发明内容

(一)要解决的技术问题

鉴于上述技术问题,本发明提供了一种于交流放电等离子体传感器的 气体流动场测量系统,以提供基于等离子体传感器的流动场测量系统,降 低其复杂度和成本,提高精度。

(二)技术方案

本发明提供了一种基于交流放电等离子体传感器的气体流动场测量 系统。该气体流动场测量系统包括:基底,附着于被测物体的表面;若干 个等离子体传感单元,分别用于测量所在区域的流动情况,其中,每一等 离子体传感单元包括:等离子体传感器,包括在所述基底表面的相对设置 的高压电极和接地电极;交流电源,其一端连接于所述高压电极,另一端 连接于所述接地电极,用于为所述等离子体传感器提供工作电压;以及判 定装置,与所述若干个等离子体传感单元相连接,用于利用等离子体传感 器输出的电压信号判断其所在位置的气体流动情况。

(三)有益效果

从上述技术方案可以看出,本发明于交流放电等离子体传感器的气体 流动场测量系统通过击穿空气放电产生等离子体,通过等离子体来感知气 流的脉动状态,具有以下有益效果:

(1)等离子体传感器电极的宽度可以做到微米的量级,这样就可以 更精细的测量不同区域的流动状态,从而本发明气体流动场测量系统具有 很高的空间分辨率;

(2)高压交流电源、高压探头、示波器、计算机都是常规产品,可 以直接在市场上采购;等离子体传感器的制作可以采用现有的集成电路加 工技术,因而加工成本也不高,从而本发明气体流动场测量系统结构简单、 造价低;

(3)高压交流电源的频率可以达到几百kHz,甚至MHz,由此确定 本发明气体流动场测量系统的测量频带较其他类型的气体流动场测量系 统宽;

(4)基底选用柔性材料时,可以布置在复杂曲面上,从而本发明气 体流动场测量系统可以应用于各种不同的场合;

(5)等离子体传感器的基底和电极都可以做得很薄,直接粘贴在测 量物体的表面,因而不会影响测量物体的气动外形,测量结果更加准确。

附图说明

图1为平板上气流的流动状态示意图;

图2为本实施例基于交流放电等离子体传感器的气体流动场测量系统 的结构示意图;

图3为图2所示气体流动场测量系统中的等离子体传感单元的结构示 意图;

图4为图3所示等离子体传感单元中高压电极和接地电极之间的间距 与宽度的示意图;

图5为图3所示气体流动场测量系统中不同等离子体传感器位置关系 的示意图;

图6为图3所示气体流动场测量系统中等离子体传感器方向与气流方 向关系的示意图;

图7为图3所示等离子体传感单元中高压电极和接地电极电极端形状 的示意图;

图8为等离子体传感器测量速度脉动的示意图;

图9为利用热线风速仪测量得到的壁面处不同流动状态区域中速度脉 动波形;

图10为气体流动状态与统计参数之间的对应关系示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实 施例,并参照附图,对本发明进一步详细说明。附图中未绘示或描述的实 现方式,为所属技术领域中普通技术人员所知的形式。虽然本文可提供包 含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可 在可接受的误差容限或设计约束内近似于相应的值。此外,以下实施例中 提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是 参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。

本发明利用气流在不同区域的脉动会反应到等离子体传感器的输出 电压信号上的原理,通过分析等离子体传感器输出的电压信号就可以捕捉 到气体在不同位置的流动状态。

在本发明的一个示例性实施例中,提供了一种基于交流放电等离子体 传感器的气体流动场测量系统。如图2所示,该气体流动场测量系统包括: 基底、若干个等离子体传感单元、示波器和判定装置。其中,基底附着于 被测物体的表面。若干个等离子体传感单元中的等离子体传感器附着在基 底表面的不同位置,用于感知被所在位置的流体流动情况。示波器,用于 观察由各等离子体传感单元测量获得的电压信号的波形。判定装置与所述 若干个等离子体传感单元相连接,用于利用等离子体传感器输出的电压信 号判断其所在位置的气体流动情况。

本实施例中包括示波器,其为多个等离子传感单元所共用,可以让用 户直观、方便、实时的观察等离子传感器输出的调制波信号。然而,本发 明也可以不包括示波器,同样不影响本发明的实施。

以下分别对本实施例基于交流放电等离子体传感器的气体流动场测 量系统进行详细说明。

基底可以嵌入或者粘贴在被测物体的表面。其中,基底厚度为 0.001-100mm,材料可以为聚酰亚胺、特氟龙、聚四氟乙烯、尼龙、塑料、 陶瓷、石英玻璃。

请参照图3,等离子体传感单元包括:等离子体传感器,包括在基底 表面的相对设置的高压电极和接地电极;交流电源,其一端连接于高压电 极,另一端连接于接地电极,用于为等离子体传感器提供工作电压;高压 探头,其高压端连接于高压电极,其接地端连接于接地电极,用于对输出 的电压信号进行衰减,并将衰减后的电压信号输入判定装置。

高压电极和接地电极之间留有一定的间隙,在高压交流电的作用下, 间隙之间的空气被电离生成弱电离的低温等离子体。当气流通过放电间隙 时,气流的波动会对放电产生影响,测量电极电压就可以反应气流波动的 情况。

高压探头均为本领域常用的部件,本实施例并没有对其进行改进,将 不对其进行详细介绍。以下着重介绍等离子体传感器进行介绍。

对于每一等离子体传感器而言,其均有对应的交流电源。该交流电源 能够提供电压为0.001kV~100kV,频率为0.01kHz~100000kHz的交流信号。 在本发明的其他优选实施例中,交流电源提供电压为0.1kV~10kV,频率 为10kHz~1MHz的交流信号。

需要说明的是,当交流电源提供的工作电压幅度高于0.1kV;该气体 流动场测量系统还包括:高压探头。而当工作电压幅度低于0.1kV时,也 可以不设置该高压探头。

请参照图4,等离子体传感器的高压电极和接地电极之间的间距D1 介于0.00001mm~10mm之间;电极宽度D2介于0.0001mm~10mm之间; 电极厚度介于0.00001mm~10mm之间。

在本发明的其他优选实施例中,高压电极和接地电极的间距D1介于 0.001mm~1mm之间;电极宽度D2介于0.01mm~10mm之间;电极厚度介 于0.001mm~1mm之间。

请参照图5,等离子体传感器采用单列直线形式,其中相邻等离子体 传感器之间的距离D介于0.001mm~10mm之间,等离子体传感器数目介 于1~10000之间。在本发明的其他优选实施例中,等离子体传感器采用单 列直线形式,相邻等离子体传感器之间的距离介于0.1mm~10mm之间, 等离子体传感器的数目介于10~100之间。

此外,虽然本实施例中等离子体传感器采用单列直线形式,但本发明 并不以此为限,在基底幅面较宽的情况下,等离子体传感器还可以采用多 列阵列的形式,此处不再详述。

请参照图6,气流方向与等离子体传感器布置方向之间的夹角为90 度,但本发明并不以此为限,气流方向与等离子体传感器布置方向之间的 夹角可以为0~180度之间的任意数值。

请参照图7,等离子体传感器中高压电极和接地电极的端部形状可以 为圆弧形、三角形或锯齿形。但本发明并不以此为限,该端部形状还可以 是本领域技术人员能够想到的其他形状,例如椭圆形等等。

本实施例中,等离子体传感器的材料为铂或钨。但本发明并不以此为 限,该等离子体传感器的材料还可以为钼、钢、铜、氧化镁、氧化锰等。

本实施例中,判定装置为计算机。需要说明的是,示波器和计算机为 全部等离子体传感器所述共同使用,图3中只给出了第一个等离子体传感 器与示波器和计算机的连接,其它等离子体传感器与此类似。

图8为等离子体传感器测量速度脉动的示意图。由图8可知,由于气 流的脉动会对气体放电产生影响,因而等离子体传感器电极的输出电压会 随气流的波动而波动,也就是说气流脉动将等离子体传感器输出电压进行 了调幅。其中,气流脉动的信息就包含在调制波中,而高压交流电源的输 出电压信号起到了载波的作用。

图9为利用热线风速仪测量得到的壁面处不同流动状态区域中速度脉 动波形。以下结合图8和图9来介绍不同流动状态区域等离子体传感器获 得信号的特点:

(1)对于层流区来讲,由于其气流速度脉动较弱,在速度脉动波形 表现为波形的振幅较小、波形的频率较低;

(2)对于湍流区来讲,由于其气流速度脉动较强,在速度脉动波形 表现为波形的振幅较大、波形的频率较高;

(3)转捩区为层流向湍流的过渡区域,气流在转捩区的脉动特征是 会间歇性的出现很强的脉动,在图8中的速度脉动波形表现为波形的主体 振幅较小,但会间歇性出现很大的振幅,使波形呈现毛刺状。

由此,将不同位置的等离子体传感器输出电压波形特征加以比较,就 可以判断该位置气流的流动状态,如某处的电压信号被调幅的频率和幅值 都较小,则该位置的气流状态为层流;如某处的电压信号被调幅的频率和 幅值都较大,则该位置的气流状态为湍流;如某处的电压信号被调幅的幅 值呈毛刺状,则该位置的气流处于转捩区。

基于上述原理说明,判定装置根据电压信号波动频率的特征来判断气 体流动的层流区、转捩区、分离区,其可以包括:电压信号提取模块,用 于提取由一等离子体传感器获得的在一段时间T内的电压信号(T≥30s); 调制波提取模块,用于根据所述交流电压的频率,从所述电压信号中提取 出气流的调制波信号;统计特征提取模块,用于对所述气流的调制波信号 进行统计分析,得到其平均值、均方根和偏斜度;以及判定模块,用于由 调制波信号的平均值、均方根和偏斜度,判定所述等离子体传感器所在位 置的气流状态,其中:

(1)偏斜度为0且均方根为0,则所在位置气流处于层流状态;

(2)偏斜度为0且平均值和均方根为最大值,或偏斜度不为0,则所 在位置气流处于转捩状态;

(3)偏斜度为0、均方根和平均值不为0,且均方根和平均值不为最 大值,则所在位置气流处于湍流状态。

至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本 领域技术人员应当对本发明基于交流放电等离子体传感器的气体流动场 测量系统有了清楚的认识。

此外,上述对各元件的定义并不仅限于实施方式中提到的各种具体结 构或形状,本领域的普通技术人员可对其进行简单地熟知地替换,例如:

(1)等离子体传感器电极还可以采用非对称形式,如高压电极和接 地电极的长度可以不同;高压电极和接地电极

(2)用于数据处理得计算机可以用单片机来代替。

综上所述,本发明提供一种基于交流放电等离子体传感器的气体流动 场测量系统。该气体流动场测量系统通过等离子体传感器的输出电压来反 应气体流动的特征,将多个等离子体传感器阵列布置在物体表面就可以捕 捉到气体流动的层流区、转捩区、湍流区以及分离区等流动区域的具体位 置,具有系统简单、成本低、精度高的优点,可以广泛用于空气动力学的 实验测试,适用于飞行器设计、叶轮机械设计、能源动力等行业。

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行 了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而 已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修 改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号