首页> 中国专利> 长基线激光测距实现无控制点卫星精确定位系统及方法

长基线激光测距实现无控制点卫星精确定位系统及方法

摘要

本发明提供了一种长基线激光测距实现无控制点卫星精确定位系统,包括卫星平台、反射镜和激光雷达;所述激光雷达和所述反射镜均设置在所述卫星平台上。所述卫星平台包括卫星平台本体、第一连接杆以及第二连接杆;所述第一连接杆的一端和所述第二连接杆一端分别连接所述卫星平台的两侧。所述激光雷达包括激光发射器、第一激光信号接收器、第二激光信号接收器以及第三激光信号接收器;所述激光发射器设置在所述卫星平台内,所述激光发射器发射的激光脉冲通过反射镜反射向地面。本发明还提供了一种无控制点卫星对地高精度定位方法。本发明能够满足测绘、摄影等具有高精度对地定位需求的卫星使用要求。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-12-15

    授权

    授权

  • 2015-02-25

    实质审查的生效 IPC(主分类):G01S17/48 申请日:20140911

    实质审查的生效

  • 2014-12-31

    公开

    公开

说明书

技术领域

本发明涉及卫星遥感技术,具体地,涉及一种长基线激光测距实现无控制点卫 星精确定位系统及方法。

背景技术

卫星遥感技术获取的信息可分为三类:定性、定位和定量。在上述三类信息中, “定位”信息直接反映了遥感信息与目标之间的空间对应关系,是遥感定性和定量 分析的重要前提与基础。目前,国外卫星在有控制点条件下,对地定位精度能达到 米量级,无控制点时对地定位精度能达到十米、百米的量级,国内卫星对地定位水 平与美国、法国、日本等还有较大差距。

当今世界上不发达地区大约90%属于无图区,无地面控制点卫星对地定位精度 很大程度上取决于光轴指向精度,而光轴指向精度与卫星轨道位置确定、飞行姿态 确定、结构和机构的热变形以及卫星飞行过程中不可预知的抖动相关联。受到当前 硬件、工艺等发展限制,仅通过提高卫星平台的定轨、定姿精度等来修正光轴指向 偏差已经难以满足高精度对地定位要求。

发明内容

针对现有技术中的缺陷,为了提高卫星对地定位精度,促进高精度卫星测绘、 摄影等的领域发展,本发明基于激光雷达精确测距的优势,提出了一种长基线激光 测距实现无控制点卫星精确定位方法。

根据本发明的一个方面提供的一种长基线激光测距实现无控制点卫星精确定位系 统,包括卫星平台、反射镜和激光雷达;所述激光雷达和所述反射镜均设置在所述卫星 平台上。

优选地,所述卫星平台包括卫星平台本体、第一连接杆以及第二连接杆;所述第一 连接杆的一端和所述第二连接杆的一端分别连接所述卫星平台本体的两侧。

优选地,所述激光雷达包括激光发射器、第一激光信号接收器、第二激光信号接收 器以及第三激光信号接收器;所述激光发射器设置在所述卫星平台本体内,所述激光发 射器发射的激光脉冲通过反射镜反射向地面;所述第一激光信号接收器、第二激光信号 接收器分别设置在所述第一连接杆的另一端和所述第二连接杆的另一端;所述第三激光 信号接收器设置在所述卫星平台本体上;所述第一激光信号接收器、所述第二激光信号 接收器以及所述第三激光信号接收器的接收方向均指向地面。

优选地,所述反射镜采用电驱动可旋转反射镜。

优选地,所述激光发射器采用Nd:YAG固体激光器,能够发射1064nm和532nm两种 波长。

优选地,所述第一连接杆以及第二连接杆采用长度为1米至100米的刚性杆。

根据本发明的另一个方面提供的长基线激光测距实现无控制点卫星精确定位系统 的卫星精确定位方法,包括如下步骤:

步骤1:由激光发射器对地面或低空探测目标发射激光脉冲,并同时记录发射时间 t0

步骤2:第一激光信号接收器D1、第二激光信号接收器D2以及第三激光信号接收 器D3分别接收从地面反射点P返回的激光信号,并分别记录接收到信号的时间t1、t2、 t3

步骤3:分别计算第一激光信号接收器D1、第二激光信号接收器D2以及第三激光 信号接收器D3到地面反射点的距离r1、r2和r3

步骤4:通过北斗或GPS定位获得激光发射时刻卫星的位置坐标,根据三个激光信 号接收器的安装矩阵,计算得到三个激光信号接收器在激光发射时刻的位置坐标D1(x1, y1,z1)、D2(x2,y2,z2)、D3(x3,y3,z3);

步骤5:将位置坐标D1(x1,y1,z1)、D2(x2,y2,z2)、D3(x3,y3,z3)和r1、r2、r3代入方 程组,即可得到地面反射点的三维坐标P(x,y,z)。

优选地,所述步骤3采用计算r1、r2和r3,其中c为光速,ri为激光 信号接收器到地面反射点的距离,ti为激光信号接收器收到信号的时间,t0为激光脉冲 发射时间。

优选地,所述步骤5中方程组为(x1-x)2+(y1-y)2+(z1-z)2=r12(x2-x)2+(y2-y)2+(z2-z)2=r22(x3-x)2+(y3-y)2+(z3-z)2=r32.

与现有技术相比,本发明具有如下的有益效果:

1、本发明对地高精度定位不需要传统意义上的地面的高精度控制点,而是主 动地、高精度地获取地面“控制点”坐标,可以有效解决欠发达的无图地区没有地 面控制点的定位问题,以及海洋、山林等无明显地面标志的定位问题;

2、本发明不需要精确的卫星飞行姿态信息,也不依赖于对卫星结构、机构的 热变形精确标定,只根据知道卫星的轨道位置信息(卫星的位置坐标通过北斗、GPS 等定位系统定位可以达到很高精度),即可实现高精度对地定位,大大降低了对相 关卫星硬件的要求及系统的复杂性;

3、本发明利用激光测距方法,通过卫星坐标、激光雷达测得的距离信息即可 精确解算地面点的坐标信息,结构简单,算法简易,可以搭载于摄影、测绘、激光 三维成像等卫星,实现对地高精度三维定位;

4、本发明能够获得定位目标点的三维精度坐标,能够实现卫星对低空运动目 标的高精度定位,获得低空飞行目标(如导弹、飞机)等的三维坐标信息,连续跟 踪模式下还可以获得目标的速度、轨道信息,具有重大的应用意义。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、 目的和优点将会变得更明显:

图1为本发明中长基线激光测距实现无控制点卫星精确定位系统的结构示意图;

图2为本发明中长基线激光测距实现无控制点卫星精确定位的测量原理图。

图中:

1 为卫星平台本体;

2 为激光发射器;

3 为反射镜;

4 为第一连接杆;

5 为第二连接杆;

6 为第一激光信号接收器;

7 为第二激光信号接收器;

8 为第三激光信号接收器。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人 员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技 术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于 本发明的保护范围。

在本实施例中,如图1、图2所示,本发明提供的长基线激光测距实现无控制点卫 星精确定位系统包括卫星平台、反射镜3和激光雷达。所述激光雷达和所述反射镜3均 设置在所述卫星平台上。所述卫星平台包括卫星平台本体1、第一连接杆4以及第二连 接杆5;所述第一连接杆4的一端和所述第二连接杆5一端分别连接所述卫星平台本体 1的两侧。所述激光雷达包括激光发射器2、第一激光信号接收器6、第二激光信号接收 器7以及第三激光信号接收器8;所述激光发射器2设置在所述卫星平台本体内,所述 激光发射器2发射的激光脉冲通过反射镜3反射向地面;所述第一激光信号接收器6、 第二激光信号接收器7分别设置在所述第一连接杆4的另一端和所述第二连接杆5另一 端;所述第三激光信号接收器8设置在所述卫星平台本体1上;所述第一激光信号接收 器6、所述第二激光信号接收器7以及所述第三激光信号接收器8的接收方向均指向地 面。第三激光信号接收器8安装在卫星平台本体1上,可以与主载荷(如光学相机等) 共光路接收,也可以采用特定的接收系统。所述反射镜3采用电驱动可旋转反射镜,以 实现激光脉冲光束方向的连续、快速调节。反射镜3能够控制激光光束方向的偏转,实 现在一定视场内对地不同点的定位,也可以实现对运动目标的定位与跟踪。所述第一连 接杆4以及第二连接杆5采用长度为1米至100米的刚性杆。在卫星进行轨道工作后展 开,展开后与卫星平台夹角固定,具体杆的长度、与平台夹角可根据不同卫星任务要求 做具体设计。

所述激光发射器2采用Nd:YAG固体激光器,能够发射1064nm和532nm两种波长。 如激光三维测绘卫星采用1064nm波长的激光,光学摄影卫星采用532nm波长的激光。

针对不同波长的发射激光,采用不同的激光探测器:532nm波长选择Si-APD探测 器,1064nm选择InGaAS-APD探测器。激光器能量为mJ量级,发散角为μrad量级, 根据不同目标特性及目标高度可以灵活调整激光脉冲能量及发散角。

在本发明中第一连接杆4以及第二连接杆5相当于测量学中的“长基线”,测量过 程如图2所示,具体实施步骤如下:

步骤1:由激光发射器对地面或低空探测目标发射激光脉冲,并同时记录发射时间 t0

步骤2:第一激光信号接收器D1、第二激光信号接收器D2以及第三激光信号接收 器D3分别接收从地面反射点P返回的激光信号,并分别记录接收到信号的时间t1、t2、 t3

步骤3:分别计算第一激光信号接收器D1、第二激光信号接收器D2以及第三激光 信号接收器D3到地面反射点的距离r1、r2和r3,其中:c为光速,ri为激光信号接收器到地面反射点的距离,ti为激光信号接收器收到信号的时间,t0为激 光脉冲发射时间;

步骤4:通过北斗或GPS定位获得激光发射时刻卫星的位置坐标,根据三个激光信 号接收器的安装矩阵,计算得到三个激光信号接收器在激光发射时刻的位置坐标D1(x1, y1,z1)、D2(x2,y2,z2)、D3(x3,y3,z3);

步骤5:将位置坐标D1(x1,y1,z1)、D2(x2,y2,z2)、D3(x3,y3,z3)和r1、r2、r3代入下 面的方程组,即可得到地面反射点的三维坐标P(x,y,z)。

(x1-x)2+(y1-y)2+(z1-z)2=r12(x2-x)2+(y2-y)2+(z2-z)2=r22(x3-x)2+(y3-y)2+(z3-z)2=r32

本发明满足无控制点、高精度对地定位要求,包含卫星平台和激光雷达两个部分, 激光雷达载荷由一个激光发射器和三个激光信号接收器组成,卫星平台本体分别向两个 相反方向伸出两根连接杆,每根杆的末端安装一个激光信号接收器,第三个激光信号接 收器安装在卫星平台上。本发明提供的方法利用激光雷达测距原理,测量三个接收器与 目标点的距离,再代入三个接收器在固连坐标系下的三维坐标,即可通过解方程组获得 目标点的三维坐标。本发明采用长基线激光测距方法实现高精度对地定位,计算简单, 结构简易,对卫星高精度的姿态信息依赖性小,大大降低了对星敏感器等硬件的要求, 可以应用于摄影测绘卫星,线阵或面阵激光三维测绘卫星,具有高精度对地定位需求的 光学成像等卫星上。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上 述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改, 这并不影响本发明的实质内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号