首页> 中国专利> 一种人工页岩物理模型及其制作方法和应用

一种人工页岩物理模型及其制作方法和应用

摘要

本发明提供了一种人工页岩物理模型及其制作方法和应用。人工页岩物理模型的制作方法包括:将粘合剂与石粉混合均匀,所述粘合剂为环氧树脂类胶粘剂,石粉包括石英10%-70%、高岭土10%-80%、有机碳粉4%-25%、方解石3%-10%,粘合剂用量占石粉总质量的5%~35%;将粘合剂与石粉的混合物装填入模具中,放在压力器上水平固定,调整垂直方向压强至80~300MPa,固定放置24小时以上,初步固化;脱模,将初步固化的页岩样品于30~50℃干燥,制得人工页岩物理模型。所制得的人工页岩物理模型致密,具有特定孔隙度和密度,具有各向异性特征,并具有横向各向同性特征,可为实际页岩储层研究结果的对比、验证提供可靠依据。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-01-04

    授权

    授权

  • 2014-09-24

    实质审查的生效 IPC(主分类):G01V1/00 申请日:20140610

    实质审查的生效

  • 2014-08-27

    公开

    公开

说明书

技术领域

本发明涉及一种人工页岩物理模型及其制作方法和应用,属于油气勘探和开发的 地球物理研究领域。

背景技术

页岩是一种由粒径小于0.004mm的细粒碎屑、黏土矿物、有机质等组成的具有 纹层与页理构造的沉积岩,其成分复杂,除粘土矿物外,还含有许多碎屑矿物和自生 矿物等,且不同地区差异较大。页岩在自然界中分布广泛,沉积岩中大约有60%以上 为页岩。常见的页岩类型有黑色页岩、碳质页岩、油页岩、硅质页岩、铁质页岩、钙 质页岩、砂质页岩等。通常情况下,页岩孔隙度介于2~15%之间,渗透率小于1mD, 是典型的低孔低渗储层。

页岩气是指主题位于暗色泥页岩或高碳泥页岩中、以吸附或游离状态为主要存在 方式的天然气聚集。在页岩气藏中,天然气也存在于夹层状的粉页岩、粉砂质泥岩甚 至页岩地层中,是天然气生成之后在源岩层内就近聚集的结果,表现为典型的原地成 藏模式。页岩气的勘探、开发和研究一直是本领域的研究热点。其中,利用地震物理 模型和室内超声波采集系统进行实验室采集、处理,进而研究特定模型的地震响应特 征,已经成为储层岩石物理分析的一项重要技术,对于页岩油气藏的勘探开发具有重 要的指导意义。

地震物理模拟实验中,模拟天然页岩成分和结构的人工页岩物理模型的制作是一 项关键技术,其模拟准确性直接关系到模拟实验分析的成败,对于模拟特定的石油、 天然气储层具有重要的研究价值和意义。然而,对人工页岩物理模型的研究兴起于近 10年,在理论研究方面的文献资料相对较少,在实验室能够较成功的制作出这种人 工页岩介质的到目前为止国际始终没有,相应的文献也较少。

页岩具有页状或薄片状层理,具有明显的速度各向异性;同时,页岩也是一种横 向各向同性介质,即TI介质;此外,由于开发技术的原因,只有那些低泊松比、高 弹性模量、富含有机质的脆性页岩才是页岩气勘探的主要目标。人工页岩物理模型也 必须具有这些特性,才能准确进行模拟实验分析。

理论上,人工模拟TI介质的制作通常会采用片层结构材料进行粘结或压合,本 案发明人在研发过程中也曾采用这种方法来制作人工页岩物理模型。其中,由于纸质 材料的吸水性好,容易被浸透,又具有成层性,所以选择报纸来模拟页岩,采用粘合 剂浸透报纸后将多层报纸层压而制成人工页岩物理模型,所制作的人工页岩样品为横 向各向同性介质,且具有各向异性特征,还可通过改变粘合剂的组成及用量达到改变 速度各向异性大小的目的。然而,这种采用报纸及粘合剂层压制作的人工页岩物理模 型,其没有孔隙,不能进行不同油、气、水饱和度试验,且与实际页岩差距较大,仅 能作为研究TI介质的一种模拟手段。

本案发明人在研究过程中也曾尝试采用传统制作人工岩石物理模型的烧结法来 制作人工页岩物理模型。对于页岩气储层来说,地震波速度主要受矿物、孔隙度、裂 缝等孔隙空间结构及有机质的影响。发明人研究了页岩的主要矿物组成、孔隙度等空 隙间结构特征,采用了相关的粘土矿粉和碎屑矿粉加一定比例的水玻璃加压、烘烤、 烧结来制作人工页岩,所制作的样品也具有各向异性特征。然而,该烧结法所存在的 主要问题在于:烧结法成品率较低,破碎比较严重;所制得的样品密度太小,孔隙度、 渗透率太大;烧结法后期如果希望加入有机质成分难度较大。此种方法也难以制作出 具有低泊松比、高弹性模量的脆性特征的岩石物理模型。

综上所述,基于研究页岩地震响应及各向异性特征对于页岩气的勘探和开发的重 要指导意义,如何制作出一种致密、具有特定孔隙度和密度、具有各向异性及横向各 向同性、且具有脆性特征的能够准确模拟页岩的物理模型,是当前本领域所必须解决 的技术难题。

发明内容

本发明的一个目的在于提供一种致密、具有特定孔隙度和密度、能够准确模拟页 岩结构特征的页岩物理模型的制作方法,为下一步进行人工页岩的地震物理模型模拟 提供可用的模型材料,为实际页岩储层研究结果的对比、验证提供可靠依据,提出一 种研究人工页岩油气储层地震勘探的新思路。

本发明的另一目的在于提供所制得的人工页岩物理模型。

本发明的另一目的在于提供所述人工页岩物理模型的应用。

为达上述目的,一方面,本发明提供了一种人工页岩物理模型的制作方法,该方 法包括步骤:

将粘合剂与石粉混合均匀;其中,所述粘合剂为环氧树脂类胶粘剂;所述石粉包 括石英、高岭土、有机碳粉和方解石,以石粉的总质量为100%计,各石粉用量为: 石英10%-70%,高岭土10%-80%,有机碳粉4%-25%,方解石3%-10%;所述粘合剂 用量占石粉总质量的5%~35%;

将粘合剂与石粉的混合物装填入模具中,放在压力器上水平固定,调整垂直方向 压强至80~300MPa,固定放置24小时以上,初步固化;

脱模,将初步固化的页岩样品于30~50℃干燥,制得人工页岩物理模型。

本发明的人工页岩物理模型的制作方法中,主要采用石英模拟页岩中的脆性矿 物、高岭土模拟页岩中的黏土矿物、以方解石模拟页岩中的碳酸盐矿、以有机碳模拟 页岩中的有机质,调整各组分的用量比例,并与特定量的环氧树脂类胶粘剂混合,冷 压制备人工页岩物理模型。按照本发明的方法制得的人工页岩物理模型,其具有明显 的横波各向异性和纵波各向异性,并具有横向各向同性特征,且具有特定孔隙度和密 度,具有低泊松比、高弹性模量,符合页岩脆性特征,能够准确地模拟天然页岩,为 下一步进行人工页岩的地震物理模型模拟提供可用的模型材料,进而能为实际页岩储 层研究结果的对比、验证提供可靠依据。

根据本发明的具体实施方案,本发明的人工页岩物理模型的制作方法中,所述石 粉粒度及分选性可以根据对人工页岩物理模型的具体要求而进行选择;欲得到孔隙度 较大的人工页岩物理模型,则选用颗粒分选性较好的石粉,对人工页岩物理模型的孔 隙度要求较小时,可以适当的增大石粉的分选范围。为了尽可能接近实际页岩,降低 孔隙度及渗透率,本发明中所用石粉的粒径为2000目~5000目(此处是指过2000目 ~5000目筛),一般为粒径在2000~4000目的石粉。其中所述有机碳粉是指粉末状的 有机碳。各石粉可分别进行球磨或混合后进行球磨以满足粒度要求。

发明人在研究中发现,本发明中所用粘合剂的特性对于人工页岩物理模型的性能 具有重要影响,根据本发明的具体实施方案,本发明中所用粘合剂为环氧树脂类胶粘 剂,优选为环氧树脂AB胶,其液体粘度为500~3000CPS/25℃,固化硬度70~100Shore D,剪切强度≥10Mpa。其中所述粘合剂的液体粘度是指粘合剂的A、B二组分混合 后未固化时的液体粘度,如果A、B二组分均为液体,优选地,二组分的粘度均在该 范围内。通常情况下,使用符合本发明所述粘度和固化硬度要求的粘合剂,按照本发 明的方法能够成功地制备得到可模拟天然页岩的人工页岩物理模型。更进一步地,本 发明优选的粘合剂的比重为1.0~1.2g/cm3(25℃),收缩率≤0.5%。对粘合剂的其他 性能如外观色泽、固化时间等不做特殊要求,但应理解,固化时间应满足本发明的操 作时间需求。符合本发明所述要求的粘合剂可以商购获得,例如,所述粘合剂可以为 AB双组分环氧树脂胶,更具体例如可以是YY505A/B(透明)环氧树脂胶等。具体应 用时,A、B二组分的混合用量可参照现有技术或是按照供应商的建议即可。

发明人在研究中还发现,本发明的人工页岩物理模型的制作方法中,通过控制所 用粘合剂与石粉的质量比而能够控制人工页岩物理模型的各向异性,具体而言,在所 述范围内减少所述粘合剂的用量,有利于提高所制得的人工页岩物理模型的各向异性 (横波各向异性和纵波各向异性)。例如,在本发明的一系列实验中,通过在所述范 围内控制粘合剂用量占石粉总质量的12%以下,而能提高人工页岩物理模型的横波各 向异性和纵波各向异性在10%以上。

部分天然页岩的各向异性会更高,可高达20%以上甚至30%以上。为了进一步 提高所制作的人工页岩物理模型的各向异性,根据本发明的优选实施方案,本发明的 人工页岩物理模型的制作方法中,所述石粉中还包括磷铁粉,以石粉的总质量为100% 计,磷铁粉的量为3%~30%,粒度为2000目~5000目。磷铁粉的添加有助于提高所 制得的人工页岩物理模型的各向异性,然而,并非是磷铁粉的用量越高越好。根据本 发明的优选方案,控制磷铁粉在石粉中的用量比例为10%~30%,更优选为10%~20%。

在本发明的一优选具体实施方案中,所述石粉的组成为:以石粉的总质量为100% 计,石英10%-40%,高岭土10%-50%,有机碳粉4%-25%,方解石3%-10%,磷铁粉 10%~30%优选为10%~20%。

根据本发明的具体实施方案,本发明的人工页岩物理模型的制作方法中,将粘合 剂与石粉的混合物装填入模具中,可以是采用装填后整体加压的方式,或是采用分层 加压方式。两种装填方式对人工页岩物理模型的主要性能无太大影响。本发明中优选 采用分层加压方式,具体而言,所述分层加压方式为:将粘合剂与石粉的混合物分成 多份,第一份装填入模具中,铺平后加压至1~3MPa,再倒入第2份混合物,铺平加 压,依次重复,直至加入全部混合物;其中,控制每份混合物在模具中铺平后的层高 为0.5~2mm。全部混合物装填完毕后,再整体加压。

根据本发明的具体实施方案,本发明的人工页岩物理模型的制作方法中,装好粘 合剂与石粉的模具在压力器上整体加压时,压力保持在80~300MPa固定24小时以上 达到初步固化程度即可。按照本发明的方法,对于确定的人工页岩组分,压力在所述 范围内的或高或低对模型成品密度影响不大。本发明的人工页岩物理模型的制作方法 中,加压方式为冷压,温度不超过30℃为宜,通常常温(18~25℃)操作即可。

初步固化成型的页岩样品脱模后进一步于30~50℃干燥,彻底固化成型,即可制 得本发明的人工页岩物理模型。可根据需要进行打磨及修整外观。

另一方面,本发明还提供了一种人工页岩物理模型,其是按照本发明上述方法制 作得到的。本发明的人工页岩物理模型,其密度为1.6g/cc~2.5g/cc,通常在 1.9g/cc~2.5g/cc,孔隙度为1%~15%;具有各向异性特征(纵波异性在2%以上,可高 达26%以上),并具有横向各向同性特征,纵波速度为2000m/s~4000m/s;且其脆性 特征也与实际页岩相符,能够真实地模拟天然页岩。

另一方面,本发明还提供了所述的人工页岩物理模型在页岩储层研究中的应用。 具体而言,是应用所述人工页岩物理模型开展页岩储层地震波响应及各向异性模拟研 究。

综上所述,本发明依据地震物理模拟技术特点,从实际地层特征与实验室模型制 作的关系出发,解决了页岩模型在设计和制作中可能出现的问题,提供了一种致密、 具有一定孔隙度和密度的人工页岩物理模型及其制作方法,该技术模拟了页岩的纹层 与片理结构,通过其组分的选择所制得的人工页岩样品具有不同层次的结构且这些结 构构造定向排列,所制得的人工页岩样品为各向异性介质;且根据裂隙与对称轴的关 系,可以证明本发明的人工页岩物料模型样品为横向各向同性介质,即TI介质。此 外,本发明的人工页岩物理模型可较准确地预测地震波在富有机质泥页岩岩石中的纵 波速度和横波速度,为实际页岩储层研究结果的对比、验证提供可靠依据。

附图说明

图1为本发明的人工页岩物理模型的制作流程示意图。

图2为本发明实施例1人工页岩物理模型横波波形图。

图3为本发明实施例1人工页岩物理模型纵波波形图。

图4为本发明实施例2人工页岩物理模型纵波波形图。

图5为多个实施例样品随不同对称轴夹角变化的杨氏模量E曲线图。

图6为多个实施例样品随不同对称轴夹角变化的泊松比ν曲线图。

图7为实施例8样品外观。

图8为实施例9样品外观。

图9为对比例1样品外观。

具体实施方式

为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技 术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。

实施例1

本实施例提供了一种人工页岩物理模型,其原料组成包括:

粘结剂:YY505环氧AB胶(盐城壹加壹电子材料有限公司)50g,其主要性能 参数如下:YY505A,透明粘液,粘度1200~1800CPS/25℃;YY505B,淡黄色粘液, 粘度800~1200CPS/25℃;此外,A液25℃比重1.12±0.05g/cm3,B液25℃比重1.08 ±0.05g/cm3;A、B混合重量比为2:1。固化物特性:硬度85±5Shore D,剪切强 度34~38Mpa;收缩率≤0.5%;

石粉:3000目的石英粉200g、3000目的高岭土200g、3000目的方解石25g和 3000目的有机碳粉75g。

本实施例还提供了上述人工页岩物理模型的制作方法,具体制作流程如图1所 示,该方法包括以下步骤:

按上述原料组成,将YY505环氧A胶(环氧树脂)与B胶(固化剂)搅拌均匀, 得到粘结剂;

称取各石粉,球磨混合10小时以上,然后与粘结剂混合,搅拌均匀,得到混合 物;

将钢质模具清洗干净并在模具内侧涂抹一层凡士林;

将粘合剂与石粉的混合物装填入模具中,放在压力器上水平固定,调整垂直方向 压强至260MPa,常温固定放置48小时,初步固化;然后于模具腔体内稳定48小时, 脱模,取出页岩样品,放入40℃保温箱内2天左右使其固化;

将页岩样品取出,用砂纸打磨表面,使其成为较为规整的长方体,打磨完后将样 品放入40℃烤箱彻底烘干,即得到本实施例的人工页岩物理模型(记为A4)。

实施例2

本实施例的人工页岩物理模型,其原料组成包括:

粘结剂:YY505环氧AB胶55g;

石粉:3000目的石英粉200g、3000目的高岭土200g、3000目的方解石25g和 3000目的有机碳粉75g。

本实施例的人工页岩物理模型的制作方法,与实施例1相比,是采用分层填装, 其他工艺条件同实施例1。其中所述分层装填的具体操作步骤为:将搅拌均匀粘结剂 与石粉的混合物均匀分为多份,每份质量10g左右;选取一份混合好的混合物倒入立 方体模具中,铺平后加压至2MPa,压实,再倒入第2份混合物,铺平2MPa压实, 依次重复,直至加入全部混合物,然后将模具放在压力器上水平固定,调整压强至饱 压260MPa常温加压成型。

实施例3

本实施例的人工页岩物理模型(记为A3),其原料组成包括:

粘结剂:YY505环氧AB胶78g;

石粉:3000目的石英粉200g、3000目的高岭土200g、3000目的方解石50g和 3000目的有机碳粉150g。

制作时,压强:286MPa,一体填装,饱压48小时,之后在模具腔体内稳定72 小时,脱模后成型。其他同实施例1。

实施例4

本实施例的人工页岩物理模型(记为A2),其原料组成包括:

粘结剂:YY505环氧AB胶90g;

石粉:3000目的石英粉200g、3000目的高岭土200g、3000目的方解石25g和 3000目的有机碳粉75g。

制作时,压强:260MPa,一体填装,饱压48小时,之后在模具腔体内稳定72 小时,脱模后成型。其他同实施例1。

实施例5

本实施例的人工页岩物理模型(记为A1),其原料组成包括:

粘结剂:YY505环氧AB胶120g;

石粉:3000目的石英粉200g、3000目的高岭土200g、3000目的方解石25g和 3000目的有机碳粉75g。

制作时,压强:260MPa,一体填装,饱压48小时,之后在模具腔体内稳定48 小时,脱模后成型。其他同实施例1。

实施例6

本实施例的人工页岩物理模型,其原料组成包括:

粘结剂:YY505环氧AB胶60g;

石粉:3000目的石英粉100g、3000目的高岭土300g、3000目的方解石25g、3000 目的有机碳粉75g、3000目的磷铁粉100g。

制作时,压强:200MPa,一体填装,饱压30小时后脱模,40℃固化成型。其他 同实施例1。

实施例7

本实施例的人工页岩物理模型,其原料组成包括:

粘结剂:YY505环氧AB胶70g;

石粉:3000目的石英粉100g、3000目的高岭土300g、3000目的方解石25g、3000 目的有机碳粉75g、3000目的磷铁粉200g。

制作时,压强:200MPa,一体填装,饱压30小时后脱模,40℃固化成型。其他 同实施例1。

实施例1~实施例7人工页岩物理模型性能检测

对实施例1~实施例7人工页岩物理模型性能进行检测,数据列于下表(表中各 数据标示均为本领域常规标示,x、y、z分别代表不同方向,x、y向为垂直于压力方 向,z向为平行于压力方向,p代表纵波,s代表横波,t代表时间,v代表速度,L 为长度,1、2代表该方向上有分裂,45代表45度角):

编号 tpx tpy tpz tsx1 tsx2 tsy1 tsy2 tsz tp45

  (μs) (μs) (μs) (μs) (μs) (μs) (μs) (μs) (μs) 实施例1 23.69 23.69 22.19 40.08 42.08 39.88 41.78 35.78 20.52 实施例2 24.7 24.68 23.02 41.47 42.87 41.17 42.57 36.87 21.58 实施例3 22.77 22.69 25.87 39.66 41.5 39.42 41.32 43.68 23.05 实施例4 21.23 21.83 20.13 37.38 38.56 37.4 38.46 33.8 19.05 实施例5 20.13 20.11 18.41 35.38 35.9 35.28 35.84 32.22 17.07 实施例6 26.46 26.2 30.54 42.25 48.35 41.55 47.85 44.45 26.14 实施例7 25.28 25.16 29.62 40.91 46.09 40.41 45.71 45.01 26.04

此外,为了验证制成的人工页岩模型在不同的方向是否具有均匀性,本发明还进 行了模型块均匀性测量。方法:在一块人工页岩物理模型的X方向任选取五个点进 行测量,在同一块人工页岩的Z方向任选取五个点进行测量。结果表明,本发明实施 例1~7的模型在X方向和Z方向上具有均匀性,验证了人工页岩模型在不同的方向 具有均匀性,说明了人工页岩模型的制作是成功的。例如,实施例1的横波波形图(X 方向)参见图2所示,纵波波形图(Z方向)参见图3所示。实施例2的纵波波形图 参见图4所示。

此外,本发明还对实施例1~7的各样品的杨氏模量E、泊松比ν进行了检测,进 一步证实本发明的页岩物理模型的机械性能等方面符合模拟实验要求。图5为多个实 施例样品随不同对称轴夹角变化的杨氏模量E曲线图,图6为多个实施例样品随不同 对称轴夹角变化的泊松比ν曲线图。可以看出,杨氏模量E随对称轴夹角的变化呈现 出明显的变化,粘合剂用量减少导致杨氏模量整体减小。随着样品各向异性程度的增 大,杨氏模量在0°与90°方向上的差异也增大。泊松比随对称轴夹角变化曲线最小 值出现在45°附近,最大值为0°与90°两处,在垂直页理构造方向泊松比对岩石 胶结程度并不敏感。

可以证明,本发明实施例1-7提供的人工页岩物理模型是与实际页岩地层参数相 符,是一种符合模拟实验要求的页岩物理模型,将其应用于页岩储层地震波响应及各 向异性模拟的研究之中,能够起到良好的效果。

实施例8

本实施例提供了一种人工页岩物理模型,其原料组成包括:

粘结剂:YY505环氧AB胶40g;

3000目的石英粉80g、3000目的高岭土70g、3000目的方解石20g和3000目的 有机碳粉40g。

制作时,将搅拌均匀的粘结剂与石粉的混合物均匀分为多份,每份质量10g左右; 分层填压。饱压:160MPa,其他工艺条件基本同实施例2。

产品外观参见图7。基本参数:

密度:1.89g/cm3

X向纵波速度:3500m/s

Y向纵波速度:3499m/s

Z向纵波速度:3269m/s

纵波各向异性:7.5%。

注:其中X、Y向为垂直于压力方向;Z向为平行于压力方向。

实施例9

本实施例提供了一种人工页岩物理模型,其原料组成包括:

粘结剂:20s-750双组份环氧AB胶(购自深圳正大化工,胶液粘度为2000~3000 CPS/25℃,固化硬度70~100Shore D,剪切强度≥10Mpa)40g;

3000目的石英粉80g、3000目的高岭土70g、3000目的方解石20g和3000目的 有机碳粉40g。

制作同实施例8。

产品外观参见图8。基本参数:

密度:1.61g/cm3

X向纵波速度:2344m/s

Y向纵波速度:2350m/s

Z向纵波速度:2143m/s

纵波各向异性:9.4%

注:其中X、Y向为垂直于压力方向;Z向为平行于压力方向。

对比例1

人工页岩物理模型,其原料组成包括:

粘结剂:ZB3216双组份AB胶(南京中贝电子有限公司,胶液粘度为8000~10000 CPS/25℃)40g;

3000目的石英粉80g、3000目的高岭土70g、3000目的方解石20g和3000目的 有机碳粉40g。

制作同实施例8。产品外观参见图9,无法有效制备人工页岩物理模型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号