首页> 中国专利> 一段重组基因及提高黑曲霉表达糖化酶的方法

一段重组基因及提高黑曲霉表达糖化酶的方法

摘要

本发明属于基因工程领域,公开了一段重组基因及提高黑曲霉表达糖化酶的方法。一种提高黑曲霉表达糖化酶的方法,通过同源重组的方法,将糖化酶表达盒和选择标记基因定点整合到黑曲霉An12g08830基因座,再通过常规的抗性筛选和发酵培养重组黑曲霉获得糖化酶。本发明将糖化酶表达盒通过改进的同源重组方法定点整合到黑曲霉基因座An12g08830处后,不仅其转化效率和表达糖化酶活力显著升高,且省去了大量筛选转化子的过程。

著录项

  • 公开/公告号CN103937766A

    专利类型发明专利

  • 公开/公告日2014-07-23

    原文格式PDF

  • 申请/专利权人 南京百斯杰生物工程有限公司;

    申请/专利号CN201410173213.4

  • 申请日2014-04-25

  • 分类号C12N9/34(20060101);C12N15/52(20060101);C12N1/15(20060101);C12R1/685(20060101);

  • 代理机构32218 南京天华专利代理有限责任公司;

  • 代理人傅婷婷;夏平

  • 地址 211100 江苏省南京市江宁区秣陵街道雍熙路28号

  • 入库时间 2023-12-17 00:06:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-02-01

    授权

    授权

  • 2014-08-20

    实质审查的生效 IPC(主分类):C12N9/34 申请日:20140425

    实质审查的生效

  • 2014-07-23

    公开

    公开

说明书

技术领域

本发明属于基因工程领域,涉及一段重组基因及提高黑曲霉表达糖化酶的方法。

背景技术

糖化酶(1,4-α-D-萄聚糖葡糖水解酶,EC3.2.1.3)是催化淀粉或寡糖等多糖分子的 非还原端释放出D-葡萄糖的酶。在商业上,糖化酶是由包括黑曲霉和米曲霉在内的几种丝状 真菌和酵母生产的。丝状真菌作为细胞工厂生产有价值的产品(如酶)为人们熟知,其中尤以 黑曲霉和米曲霉由于被国际普遍认定为安全菌(Generally Recognized As Safe,GRAS)的特征 而被广泛用于表达宿主,从而用于生产食品添加剂。

最初,科学家及商业公司通过传统的菌种选育方法进行育种,从而提高某种目的产物(如 糖化酶)的表达量或产量。例如,利用紫外照射或者化学诱变剂处理曲霉后,针对特定产物对 其进行筛选,从而获得高产菌株。随着分子生物学技术的发展,人们开始利用基因工程方法进 行微生物育种。要获得高产量(或高表达量)菌株,例如提高酶的表达量,首先需要选择特定 的启动子(诱导型或组成型),随后对要表达的基因进行优化。除此之外,还需要适合的终止 子序列。这样由启动子,编码序列及终止子序列进行串联即可得到表达盒。将目的表达盒与特 定的选择标记连接后,可转入到微生物体内。这些表达盒可以定点插入到基因座中,也可以随 机插入到基因座中。曲霉转化技术原理遵循非同源断裂修复机理,造成利用同源重组进行定点 插入到基因座中比较困难,因此现有曲霉育种方法大都使用随机插入到基因座中,随后再根据 需要对转化子进行大规模筛选,以获得目的菌株。这样的方法费时费力,且结果不可预见。理 论上讲,筛选越多转化子,获得优势菌株的可能性越大。

曲霉如黑曲霉的DNA转化技术主要有聚乙二醇介导的化学转化法、电击转化法及根癌农杆 菌介导转化法。无论上述何种方法,他们的共同特点都是转化效率极其低下,每微克DNA的转 化效率只有几个到几百个转化子,要比细菌(如大肠杆菌)及酵母(如酿酒酵母)转化效率低 几个数量级。再加上曲霉的筛选费时费力,因此与传统诱变-筛选育种一样,随机整合DNA育 种过程也需要耗费大量时间和劳动成本,且结果不可预见。

发明内容

本发明的目的是针对现有技术的上述不足,提供一个定点整合糖化酶基因到黑曲霉菌种染 色体中,实现对糖化酶高表达的技术方案。

本发明的另一目的是提供一段重组基因。

一种提高黑曲霉表达糖化酶的方法,通过同源重组的方法,将糖化酶表达盒和选择标记基 因定点整合到黑曲霉An12g08830基因座,再通过常规的抗性筛选和发酵培养重组黑曲霉获得 糖化酶。

具体地,定点整合基因座被确定为An12g08830(参照黑曲霉CBS513.88基因组),首先选 取基因座侧翼5’及3’序列作为同源侧翼序列,同源侧翼序列片段大小优选100-5000bp,优 选1000-3000bp,更优选2000bp。选取侧翼序列是为了实现定点糖化酶表达盒的敲入。本领域 技术人员应当知晓,同源序列越长,越容易发生同源重组,但是长序列的体外操作可能存在一 定困难。同源序列越短,体外操作越容易,但是定点整合的几率也会降低。通常是在整合几率 与操作难易之间选择一个均衡的长度。

为了构建糖化酶表达盒,首先需要选择必须的启动子。启动子可以是黑曲霉内源启动子, 如黑曲霉糖化酶启动子,中性淀粉酶启动子,酸性淀粉酶启动子,α-葡萄糖苷酶启动子等。 也可以是外源启动子。如米曲霉中性淀粉酶启动子,米根酶糖化酶启动子。也可以是启动子变 体,如黑曲霉中性淀粉酶变体。与启动子3’末端连接的可以是调控序列,如合适的前导序列, 即对于宿主细胞的翻译重要的mRNA非翻译区。如米曲霉中性淀粉酶和构巢曲霉丙糖磷酸异构 酶前导序列。

糖化酶基因可以选择黑曲霉内源基因,也可以来自其他种如米曲霉,米根酶,踝节菌属, 青霉属。本发明优选黑曲霉糖化酶(AnGA)和埃莫森踝节菌糖化酶(TeGA)。

优选的终止子从如下酶的基因获得:米曲霉TAKA淀粉酶、黑曲霉葡糖淀粉酶、构巢曲霉 邻氨基苯甲酸合酶、黑曲霉α-葡糖苷酶和尖镰孢胰蛋白酶样蛋白酶。

本发明的载体优选地含有一个或多个(几个)选择性标记,其允许简单选择经转化、转染、 转导等的细胞。选择性标记是基因,其产物提供杀生物剂或病毒抗性、对重金属的抗性、对营 养缺陷型的原养性(prototrophy to auxotrophs)等。用于丝状真菌宿主细胞的选择性标记包 括但不限于amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(草铵膦 (phosphinothricin)乙酰转移酶)、hyg(潮霉素磷酸转移酶)、niaD(硝酸还原酶)(nitrate  reductase)、pyrG(乳清酸核苷-5’-磷酸脱羧酶)(orotidine-5’-phosphate  decarboxylase)、sC(硫酸腺苷酰转移酶)和trpC(邻氨基苯甲酸合酶(anthranilate synthase))以及它们的等同物。优选用在曲霉属细胞中的是构巢曲霉(Aspergillus nidulans) 或米曲霉的amdS和hyg。

为了实现糖化酶表达盒基因敲入到An12g08830基因座中,优选的方法是使用同源重组方 法,即糖化酶表达盒与选择标记的5’及3’端具有An12g08830基因座同源侧翼序列。通过转 化及标记物筛选获得敲入转化子。曲霉转化技术原理遵循非同源断裂修复机理,造成利用同源 重组进行定点插入到基因座中比例很低,成功率低下。更优选的方案是改进后的同源重组方法, 即Kim(Kim et al.,Biochem.Biophys.Res.Commun390(3):983–988,2009)等人描述的 方法(Double-Joint PCR with Split Dominant Selectable Markers)。具体地,为完成同源 重组,需两段序列共同转化。第一段序列由An12g08830基因座5’侧翼序列与第一段选择标 记基因链接,第二段序列由An12g08830基因座3’侧翼序列与糖化酶表达盒及第二段选择标 记基因顺序链接。第一段与第二段在选择标记部分具有至少100bp的同源序列,优选 100-1000bp。将两段序列共同转化,只有侧翼序列及选择标记三段同源序列同时发生重组,才 会出现阳性转化子。大大提高了同源重组的转化率。

一段重组基因,该基因为通过同源重组的方法,将糖化酶表达盒和选择标记基因定点整合 到黑曲霉An12g08830基因座所得。

其中,选取黑曲霉An12g08830基因座侧翼5’及3’100-5000bp序列作为同源侧翼序 列,优选选取黑曲霉An12g08830基因座侧翼5’及3’1000-3000bp序列作为同源侧翼序列, 进一步优选选取黑曲霉An12g08830基因座侧翼5’及3’2000bp序列作为同源侧翼序列。

所述的同源重组,需两段序列共同转化黑曲霉,第一段序列由An12g08830基因座5’侧 翼序列与第一段选择标记基因链接,第二段序列由An12g08830基因座3’侧翼序列与糖化酶 表达盒及第二段选择标记基因顺序链接,第一段序列与第二段序列在选择标记基因部分具有同 源序列。

所述的第一段序列与第二段序列在选择标记部分优选具有至少100bp的同源序列,进一 步优选具有100~1000bp的同源序列。

所述的糖化酶表达盒主要由启动子、糖化酶基因及终止子组成;优选由启动子、调控序 列、糖化酶基因及终止子组成。启动子、调控序列、糖化酶基因及终止子的选择范围同上所述。

所述的同源重组方法包括两段同源侧翼序列的克隆,以及原生质体的转化。本发明中原生 质体转化为本领域常规方法。

包含上述重组基因的重组菌株;优选含有上述重组基因的黑曲霉。

所述的重组黑曲霉优选含有SEQ ID NO.7及SEQ ID NO.8所示片段。

一种鉴定本发明所述的重组菌株的方法,通过PCR扩增或其他基因鉴定方法,如果能够获 得或鉴定含有SEQ ID NO.7及SEQ ID NO.8所示片段,则表明为本发明所述的重组菌株。

所述的方法优选以08830test_F1与08830test_R1、08830test_F2与08830test_R2为引 物,PCR扩增待检基因、含有待检基因的质粒或重组细胞,如果能够获得SEQ ID NO.7及SEQ ID  NO.8所示片段,则表明为重组菌株;其中所述的08830test_F1序列如SEQ ID NO.9所示, 08830test_R1序列如SEQ ID NO.10所示,所述的08830test_F2序列如SEQ ID NO.11所示, 08830test_R2序列如SEQ ID NO.12所示。

本发明所述的重组基因、所述的重组菌株在提高黑曲霉发酵表达糖化酶中的应用。

有益效果:

本发明将糖化酶表达盒通过改进的同源重组方法定点整合到黑曲霉基因座An12g08830 处后,不仅其转化效率和表达糖化酶活力显著升高,而且省去了大量筛选转化子的过程。

附图说明

图1:pGAHyg质粒图谱。

图2:糖化酶表达盒定点整合到基因座An12g08830的PCR验证结果。

泳道M:DNA Marker III(厂家:TIANGEN);

泳道1:对照以08830test_F1与08830test_R1为引物得到的PCR产物;

泳道2-7:依次为1-6号转化子以08830test_F1与08830test_R1为引物得到的PCR产物;

泳道8:对照以08830test_F2与08830test_R2为引物得到的PCR产物;

泳道9-14:依次为1-6号转化子以08830test_F2与08830test_R2为引物得到的PCR产物。

图3:定点整合转化子整合到An12g08830基因座的图谱。

具体实施方式

下面结合实例对本发明的构建过程做进一步阐释,下述说明中相关实例是说明性质的,不 能限定本发明的保护范围。

按步骤详细写明实验方案,包括实验材料、方法、条件、结果等。

实施例1随机整合GA表达盒构建

为了与定点整合结果作对比,构建了随机整合质粒,该质粒包含以下几个部分:

(1)pUC57质粒经EcoRI-HindIII双酶切后得到的片段;

(2)糖化酶(TeGA)表达盒,其中糖化酶是踝节菌属变体,由GenScript公司合成,序列如 SEQ ID NO.1所示;

(3)选择标记Hyg表达盒,由GenScript公司合成,序列见SEQ ID NO.2;

首先分别用引物GA_F与GA_R、hyg_F0与hyg_R0通过PCR扩出带有重组臂的GA基因和hyg 基因,然后利用PCR通过GA_F与hyg_R0引物两端的重叠序列将GA基因和hyg基因拼成一条 直链长片段,再通过ClonEZ(购自GenScript公司)方法与具有末端互补序列的pUC57 EcoRI-HindIII酶切线性回收片段进行重组,得到pGAHyg质粒,构建好的质粒图谱见图1。该 质粒在GA表达盒上游和Hyg表达盒下游分别加上了HindIII位点,以便线性化后用于原生质 体转化。

相关引物序列如下:

实施例2随机整合GA的转化和筛选

原生质体的制备:在TZ液体培养基(牛肉膏粉0.8%;酵母浸膏0.2%;蛋白胨0.5%;NaCl 0.2%;蔗糖3%;pH5.8)中培养黑曲霉菌丝体(黑曲霉CBS513.88,购自荷兰真菌菌种保藏 中心CBS-KNAW Fungal Biodiversity Centre)。通过mira-cloth(Calbiochem公司)从培养 液中过滤菌丝体并用0.7M NaCl(pH5.8)洗涤,菌丝体滤干后转移至含纤维素酶1%(Sigma)、 蜗牛酶1%(Sigma)和溶壁酶(Sigma)0.2%的酶解液中。30℃,65rpm酶解2.5-3h。然后将 含有原生质体的酶解液置于冰上并用四层擦镜纸过滤。得到的滤液3000rpm,4℃离心10min 后,弃上清;附着在管壁上的原生质体用STC溶液(1M D-山梨醇、50mM CaCl2、10mM Tris-HCl, pH7.5)洗涤一次,最后把原生质体重悬于适量的STC溶液中。

原生质体的转化:将10ug pGAHyg质粒HindIII线性化DNA(4989bp)加入到100ul原生 质体悬浮液中,混匀后室温放置25min;然后分三次共加入900ul PEG溶液(60%PEG4000、 10mM CaCl2、10mM TrisHCl,pH7.5),混匀后室温放置25min;3000rpm,常温离心10min,收 集原生质体,最后把原生质体重悬于1ml STC溶液中。把该悬浮液与预先降温至45℃左右的 TB3培养基(酵母浸膏0.3%、酸水解酪蛋白0.3%、蔗糖20%、琼脂0.7%)混合并铺平板;待 平板凝固后放入34℃培养箱中培养;24h后在平板上再铺一层含300ng/ul潮霉素 (Hygromycin)的TB3固体培养基(琼脂1%,其余成分同上),继续将平板置于34℃培养箱中 培养4-5天后,长出上层培养基的转化子即为阳性转化子。

实施例3定点整合GA表达盒的构建

定点整合按照Kim(Kim et al.,Biochem.Biophys.Res.Commun390(3):983–988,2009) 等人描述的方法(Double-Joint PCR with Split Dominant Selectable Markers)。需要2 个外源DNA片段共转化到黑曲霉中:

片段1:An12g08830基因座5’侧翼序列(SEQ ID NO.3)+hyg2(SEQ ID NO.4)

片段2:An12g08830基因座3’侧翼序列(SEQ ID NO.5)+TeGA表达盒(SEQ ID NO.1)+hyg1 (SEQ ID NO.6)

其中hyg1包含启动子和680bp hyg部分CDS序列,hyg2包含另一部分hyg CDS序列(其 中有616bp与hyg1中的hyg部分CDS序列同源)和终止子。

片段1的构建:以黑曲霉CBS513.88(购自荷兰真菌菌种保藏中心CBS-KNAW Fungal  Biodiversity Centre)基因组DNA为模板,以08830-5'F与08830-5'R为引物进行PCR得到 An12g08830基因座5’侧翼序列;以pGAHyg质粒(实施例1构建,下同)为模板,以hyg-F2 与hyg-R2为引物进行PCR得到hyg2;再通过08830-5'F与hyg-R2引物overlapPCR得到片段 1。

片段2的构建:以黑曲霉基因组DNA为模板,以08830-3'F与08830-3'R为引物进行PCR 得到An12g08830基因座3’侧翼序列;以pGAHyg质粒为模板,以hyg-F1与hyg-R1为引物进 行PCR得到TeGA表达盒+hyg1;再通过hyg-F1与08830-3'R引物overlap PCR得到片段2。

相关引物序列如下:

实施例4定点整合GA表达盒转化与验证

原生质体的制备方法同实施例2。

原生质体转化:将5μg实施例3中的片段1和5μg片段2一起加入到100ul原生质体悬 浮液中,混匀后室温放置25min;然后分三次共加入900ul PEG溶液(60%PEG4000、10mM CaCl2、 10mM Tris-HCl,pH7.5),混匀后室温放置25min;3000rpm,常温离心10min,收集原生质体; 最后把原生质体重悬于1ml STC溶液中。把该悬浮液与预先降温至45℃左右的TB3培养基(酵 母浸膏0.3%、酸水解酪蛋白0.3%、蔗糖20%、琼脂0.7%)混合并铺平板;待平板凝固后放入 34℃培养箱中培养;24h后在平板上再铺一层含300ng/ul潮霉素(Hygromycin)的TB3固体 培养基(琼脂1%,其余成分同上),继续将平板置于34℃培养箱中培养4-5天后,长出上层培 养基的转化子即为阳性转化子。

转化子验证:随机挑取6个转化子,编号依次为1-6号,分别接种至TZ液体培养基,34℃, 200rpm培养4天后,收集菌丝体用液氮冷冻后研磨粉碎,用真菌基因组提取试剂盒(杭州博 日)提取这6个转化子的基因组DNA。然后以08830test_F1与08830test_R1、08830test_F2 与08830test_R2为引物,分别以这6个转化子基因组DNA为模板进行PCR鉴定,以出发菌株 基因组DNA为对照,鉴定结果见图2。

结果分析:若定点插入成功,则以08830test_F1与08830test_R1为引物获得的PCR产物 大小应为510bp,以08830test_F2与08830test_R2为引物获得的PCR产物大小应为997bp; 对照应扩不出任何条带。从图2结果来看,除4号转化子为假阳性外,其余5个均为阳性转化 子。

从5个阳性转化子中随机挑选1个(1号)的PCR产物进行测序验证(测序引物即PCR产 物),测序结果见图3以及SEQ ID NO.7和SEQ ID NO.8。测序结果表明,5个阳性转化子均 扩增得到SEQ ID NO.7及SEQ ID NO.8所示片段,每个片段均含有插入的外源序列和原菌种的 内源序列,在An12g08830上已经定点整合了GA表达盒和hyg表达盒。

PCR鉴定及测序引物序列如下:

实施例5定点整合糖化酶菌株的摇瓶发酵

将实施例4中的阳性转化子孢子分离两次,使用50ml YPM培养基(2g/L酵母提取物,2 g/L蛋白胨,20g/L的麦芽糖)的摇瓶在34℃下,220rpm的摇床中培养六天。按照国标法测试 上清液的糖化酶活性。并以实施例2中随机整合糖化酶转化子经筛选500株获得的最好的菌株 (命名为302-1)作为对照,比较二者糖化酶活力。如表1所示,5株定点整合菌株表现出高 活力,是随机整合菌株活力的1.78-1.91倍,且随机整合菌株需经大量筛选(如本发明中筛选 500株),而定点整合菌株活力相差不大,不需要经过大规模筛选。

表1:糖化酶菌株摇瓶发酵活力

菌种编号 活力(U/ml) 相对活性 302-1 10511 1 1-1 19137 1.82 1-2 20094 1.91 1-3 18557 1.77 1-5 19166 1.82 1-6 18702 1.78

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号