首页> 中国专利> 基于磁共能修正的开关磁阻电机磁链曲线测试方法及装置

基于磁共能修正的开关磁阻电机磁链曲线测试方法及装置

摘要

基于磁共能修正的开关磁阻电机磁链曲线测试方法及装置。目前使用的测试设备测试繁琐、测试结果不准确,不适用于磁链在线测试、现场测试和大规模生产产品测试等情况。本发明组成包括:直流可调稳压电源(1),所述的直流可调稳压电源与开关磁阻电机驱动器(2)连接,所述的开关磁阻电机驱动器分别与三相开关磁阻电机(3)、CAN分析仪(4)连接,所述的CAN分析仪与PC机(5)连接。本发明用于无需锁定电机转子位置的磁链在线测试、现场测试和大规模生产产品测试。

著录项

  • 公开/公告号CN103869245A

    专利类型发明专利

  • 公开/公告日2014-06-18

    原文格式PDF

  • 申请/专利权人 哈尔滨理工大学;

    申请/专利号CN201410087774.2

  • 申请日2014-03-11

  • 分类号G01R31/34;

  • 代理机构哈尔滨东方专利事务所;

  • 代理人陈晓光

  • 地址 150080 黑龙江省哈尔滨市南岗区学府路52号哈尔滨理工大学

  • 入库时间 2024-02-20 00:11:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-08

    未缴年费专利权终止 IPC(主分类):G01R31/34 授权公告日:20170201 终止日期:20180311 申请日:20140311

    专利权的终止

  • 2017-02-01

    授权

    授权

  • 2014-09-03

    实质审查的生效 IPC(主分类):G01R31/34 申请日:20140311

    实质审查的生效

  • 2014-06-18

    公开

    公开

说明书

技术领域:

本发明涉及一种基于磁共能修正的开关磁阻电机磁链曲线测试方法及装置。

背景技术:

开关磁阻电机(Switched Reluctance Motor,简称SRM)是双凸极可变磁阻电动机。其定、转子的凸极均由普通硅钢片叠加而成。转子既无绕组也无永磁体,定子极上绕有集中绕组,径向相对的两个绕组串联构成一个两极磁极,称为“一相”。SRM的运动是由定、转子间气隙磁阻的变化产生的。基于SRM的特点,开关磁阻电动机具有结构简单、坚固和控制方便,且具有较宽的转速及功率调节范围,广泛应用于牵引运输、通用工业、航空、家用电器等各个领域,已成为当代电气传动热门研究课题之一。开关磁阻电机的磁链特性是电机优化设计、模型建立及运行控制的必要前提,但其特殊的双凸极结构及磁路的高度饱和性,使得磁场分布复杂,存在显著的边缘效应、涡流效应和严重的局部饱和等情况。它不可能像传统交、直流电机一样用一条二维磁链曲线就可以描述电机特性,它需要一组不同转子位置下的三维磁链曲线族才能描述其特性,而且电机性能计算的准确性取决于三维磁链曲线族的准确性。现有较为可行的磁链曲线获取方法有实验测试法和有限元分析法。

实验测试法一般通过设计测试电路,测试出电机绕组上的电压、电流信息进行磁链间接计算。实验测试法简单易行、测试方便、结果准确,但需要锁定转子位置,测试过程繁琐费时,不适用于磁链在线测试、现场测试和大规模生产产品测试等情况。

有限元分析法是采用有限元分析软件对电机磁场进行静态分析计算来求取不同转子位置下磁链曲线。二维有限元分析法比较成熟,应用广泛,但因忽略端部的磁场效应,造成特定位置处误差较大。三维有限元法虽然全面考虑了电机的各种因素,提高了准确性,但计算过于耗时繁琐,且对计算机硬件环境要求很高,没有得到广泛的应用。

目前使用的测试设备测试繁琐、测试结果不准确,不适用于磁链在线测试、现场测试和大规模生产产品测试等情况。

发明内容:

本发明的目的是提供一种基于磁共能修正的开关磁阻电机磁链曲线测试方法及装置。

上述的目的通过以下的技术方案实现:

一种基于磁共能修正的开关磁阻电机磁链曲线测试装置,其组成包括:直流可调稳压电源,所述的直流可调稳压电源与开关磁阻电机驱动器连接,所述的开关磁阻电机驱动器分别与三相开关磁阻电机、CAN分析仪连接,所述的CAN分析仪与PC机连接。

所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置,所述的开关磁阻电机驱动器包括壳体,所述的壳体内部安装有DSP控制器,所述的DSP控制器与IGBT驱动电路、模数转换器连接,所述的IGBT驱动电路与绕组连接,所述的绕组分别与电压传感器、电流传感器连接,所述的电压传感器、所述的电流传感器分别与所述的模数转换器连接,所述的DSP控制器内具有CAN接口,所述的CAN接口与所述的CAN分析仪连接。

所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置,所述的DSP控制器的型号为TMS320F2812,所述的电流传感器的型号为LT 58-S7/SP,所述的电压传感器的型号为CLSM-10MA,所述的模数转换器采用12位高速同步数据采集芯片AD7864。

所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置,所述的三相开关磁阻电机为三相12/8开关磁阻电机。

一种利用权利要求1-4之一所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置的测试方法,该方法包括如下步骤:

(1)由PC机使用二维有限元法获得开关磁阻电机磁链计算曲线;

(2)在电机定、转子凸极中心线对齐处,无需锁定转子位置,通过单相励磁测出对齐相位置磁链曲线,再通过两相励磁并引入互感系数M准确得到相邻相位置磁链曲线;

(3)根据实测两条磁链曲线,按照磁共能修正原理由PC机计算磁链修正系数,并对二维有限元计算曲线进行修正,从而获得准确的三维磁链曲线族;

其中:为对齐相定子凸极中心线与相邻转子槽中心线的夹角,为同侧相邻相定子凸极中心线与该转子槽中心线的夹角。

所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置的测试方法,所述的按照磁共能修正原理计算磁链修正系数是通过对齐相和相邻相位置所测的磁共能与有限元计算所得的磁共能,根据公式1来分别获取对齐相和相邻相位置处磁共能修正系数,其中,公式1为

根据所求,通过公式2来获得不同角度位置下基于磁共能的磁链修正系数,其中,公式2为,且系数K为

所述的基于磁共能修正的开关磁阻电机磁链曲线测试方法,所述的再通过两相励磁并引入互感系数M准确得到相邻相位置磁链曲线,所述的引入互感系数M来定量描述两相激励模式与单相激励模式下磁链的差异,从而准确获得相邻相位置磁链曲线;如果两相同时通电测出的磁链为,则按式对磁链值进行校正。

有益效果:

1. 本发明的直流可调稳压电源提供测试电压,为了满足电机峰值电流的要求,选用德国EA电源ps9300-75。不对称半桥电路由IGBT和快恢复二极管组成,由DSP的I/O口通过IGBT驱动电路驱动给绕组施加电压。电流传感器(LT 58-S7/SP)和电压传感器(CLSM-10MA)用于检测绕组电流与绕组电压。模数转换器选用12位高速同步数据采集芯片AD7864。AD7864采集的电压、电流数据读入DSP中,通过CAN接口和CAN分析仪送给PC机完成基于磁共能修正原理的SRM三维磁链曲线族计算。由于该装置无需锁定转子位置,大大简化了测试装置。

本发明方法无需锁定电机转子位置直接测出两条磁链曲线,通过磁共能修正原理修正有限元计算曲线,准确获取开关磁阻电机磁链曲线族;不仅可以在电机定、转子凸极中心线对齐位置处,无需锁定转子位置,快速获得对齐相和相邻相位置磁链曲线,并且与二维有限元法相结合,通过对端部磁场效应的补偿,可以得到准确的SRM磁链特性,为开关磁阻电机的优化设计、模型建立及控制运行提供依据。

本发明方法对于性能、结构参数和生产工艺已经确定的同一型号开关磁阻电机,磁链特性的差异主要是由磁性材料、加工和装配误差造成,通过本发明方法可以进行现场测试与校正。

本发明方法工业生产中使用的开关磁阻电机,经过长时间运行后,由于磨损、老化等原因,磁链特性也会发生变化,采用本发明方法也可以进行在线测试与校正。

本发明方法适用于磁链在线测试、现场测试和大规模生产产品测试等情况。

附图说明:

附图1是本发明的结构示意图。

附图2是本发明的电路原理图。

附图3是本发明的机结构与转子位置角示意图。

附图4是本发明的均匀自然剖分图。

附图5是本发明的局部放大剖分图。

附图6是本发明的0度定子极与转子槽对齐位置磁力线分布图。

附图7是本发明的22.5度定子极与转子极对齐位置磁力线分布图。

附图8是本发明的7.5度定子极与转子极不重叠位置磁力线分布图。

附图9是本发明的15度定子极与转子槽对齐位置磁力线分布图。

附图10是本发明的22.5度定子极与转子极对齐位置磁通密度分布图。

附图11是本发明的7.5度定子极与转子槽对齐位置磁通密度分布图。

附图12是本发明的0度定子极与转子极对齐位置磁通密度分布图。

附图13是本发明的15度定子极与转子槽对齐位置磁通密度分布图。

附图14是本发明的磁链-电流-角度2D计算曲线图。

附图15是本发明的磁链-电流-角度3D计算曲线图。

附图16是本发明的磁链曲线算术平均值处理后测试结果图。

附图17是本发明的基于磁功能修正后的三维磁链曲线族图。

附图18是本发明的磁共能修正后磁链曲线与修正前比较图。

具体实施方式:

实施例1:

一种基于磁共能修正的开关磁阻电机磁链曲线测试装置,其组成包括:直流可调稳压电源1,所述的直流可调稳压电源与开关磁阻电机驱动器2连接,所述的开关磁阻电机驱动器分别与三相开关磁阻电机3、CAN分析仪4连接,所述的CAN分析仪与PC机5连接,所述的PC机完成开关磁阻电机基于磁共能修正原理的三维磁链曲线族计算。

实施例2:

根据实施例1所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置,所述的开关磁阻电机驱动器包括壳体,所述的壳体内部安装有DSP控制器6,所述的DSP控制器与IGBT驱动电路7、模数转换器8连接,所述的IGBT驱动电路与绕组9连接,所述的绕组分别与电压传感器10、电流传感器11连接,所述的电压传感器、所述的电流传感器分别与所述的模数转换器连接,所述的DSP控制器内具有CAN接口12,所述的CAN接口与所述的CAN分析仪连接。

实施例3:

根据实施例1或2所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置,所述的DSP控制器的型号为TMS320F2812,所述的电流传感器的型号为LT 58-S7/SP,所述的电压传感器的型号为CLSM-10MA,所述的模数转换器采用12位高速同步数据采集芯片AD7864。

实施例4:

根据实施例1所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置,所述的三相开关磁阻电机为三相12/8开关磁阻电机。

实施例5:

一种利用权利要求1-4之一所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置的测试方法,该方法包括如下步骤:

(1)由PC机使用二维有限元法获得开关磁阻电机磁链计算曲线;

(2)在电机定、转子凸极中心线对齐处,无需锁定转子位置,通过单相励磁测出对齐相位置磁链曲线,再通过两相励磁并引入互感系数M准确得到相邻相位置磁链曲线;

(3)根据实测两条磁链曲线,按照磁共能修正原理由PC机计算磁链修正系数,并对二维有限元计算曲线进行修正,从而获得准确的三维磁链曲线族;

其中:为对齐相定子凸极中心线与相邻转子槽中心线的夹角,为同侧相邻相定子凸极中心线与该转子槽中心线的夹角。

实施例6:

根据实施例5所述的基于磁共能修正的开关磁阻电机磁链曲线测试装置的测试方法,所述的按照磁共能修正原理计算磁链修正系数是通过对齐相和相邻相位置所测的磁共能与有限元计算所得的磁共能,根据公式1来分别获取对齐相和相邻相位置处磁共能修正系数,其中,公式1为

根据所求,通过公式2来获得不同角度位置下基于磁共能的磁链修正系数,其中,公式2为,且系数K为

实施例7:

根据实施例5或6所述的基于磁共能修正的开关磁阻电机磁链曲线测试方法,所述的通过两相励磁并引入互感系数M准确得到相邻相位置磁链曲线,所述的引入互感系数M来定量描述两相激励模式与单相激励模式下磁链的差异,从而准确获得相邻相位置磁链曲线;如果两相同时通电测出的磁链为,则按式对磁链值进行校正。

实施例8:

所述的基于磁共能修正的开关磁阻电机磁链曲线测试方法,将二维有限元法和实验测试法相结合,并引入互感系数校正及磁共能修正,从而获得准确的三维磁链曲线族。

二维静态电磁特性有限元分析

本发明通过使用ANSOFT MAXWELL2D有限元分析软件对开关磁阻电机的磁场分布进行分析,以获得磁链计算曲线。

根据SRM实际情况,选择合适的网格剖分,以确保计算精确度的同时,尽量减少计算时间。如图4、图5所示,本模型中在气隙处剖分较密,在其它的地方剖分相对较稀疏,这样能够保证计算精度,同时也减少计算时间。由此得到磁链计算曲线如图14所示。

无电机转子位置锁定的磁链特性快速测试与校正

对于三相开关磁阻电机,由于SRM结构的对称性,当一相处于电机定、转子凸极中心线对齐位置时,另外两相以对齐位置为中心线在两侧对称分布。由于距离中心线相同位置处的转矩大小相等方向相反,如果给相邻两相同时通电,电机的总转矩为0,电机不会转动。因此,在此位置测试磁链时,转子不需要锁定即可测出相邻相位置磁链曲线。为了进一步减小误差,引入互感校正系数M来定量描述两相激励模式与单相激励模式下磁链的差别,如果两相同时通电测出的磁链为,则按式对磁链值进行校正。

在实际测试过程中,两相通电测试时会出现转子转动现象,在两侧转子位置会出现偏差,由此带来测试误差。依据SRM的对称性,可通过对两相实测磁链值求算术平均值的方法来消除误差。

在对齐位置给对齐相通电转矩为0,电机不会转动,因此,无需要锁定转子即可直接测出对齐相位置磁链曲线。

基于磁共能的磁链曲线修正

开关磁阻电机电磁转矩按磁共能计算比较方便,鉴于电磁转矩与磁共能的关系,本发明提出通过磁共能来间接计算磁链修正系数。由于开关磁阻电机定转子均无永磁体,在磁链曲线确定后,磁共能按下式计算:

假设位置处有限元计算得到的磁共能为,实验测试得到的磁共能为,根据式1可求出则对齐位置处磁共能修正系数,式1为:

                       (1)

相应地,可以计算出在位置处磁共能修正系数,并根据式2来计算各个位置处磁链修正系数,式2为:

                     (2)

其中,系数

把有限元法得到的各个位置磁链计算曲线乘以对应的系数,便得到修正后的磁链曲线族。

实施例9:

所述的基于磁共能修正的开关磁阻电机磁链曲线测试方法,如图18所示是本发明是针对12/8开关磁阻电机基于磁共能修正的磁链特性曲线。主要通过SRM二维静态电磁特性有限元计算、无电机转子位置锁定的磁链特性快速测量以及磁共能系数修正来完成的。

一、SRM二维静态电磁特性有限元计算

1、二维有限元提出的假设

(1)采用虚拟二维场模拟实际电磁场;选取直角坐标系和国际单位制。

对定子槽口、定子扇形片圆角及磁极冲片部分圆角、倒角的细微之处作近似处理。

忽略端部效应,磁场沿轴向均匀分布,即电流密度矢量和磁位矢量只有轴向分量

电机外部磁场所占比例很小,可以近似忽略。转子内表面圆周和定子外表面圆周为零矢量位面。

、开关磁阻电机的二维静磁场分析

本文对12/8开关磁阻电机进行二维静磁场分析,样机的相关参数如表1所示,结构如图3所示。

表1 SRM样机参数

参数数值参数数值额定功率(瓦)3000额定电压(伏)514额定转速(转/分)3000相数3定子极数12转子极数8定子外径(米)0.12定子内径(米)0.072转子外径(米)0.0723转子内径(米)0.03定子极弧(度)15转子极弧(度)16.95定子轭厚(米)0.01转子轭厚(米)0.01铁心长度(米)0.08气隙(米)0.0003转子齿型:平行齿绕组电阻(欧)2.47

根据式3求解磁位,其中为矢量磁位在Z轴方向的值,电流密度在Z轴方向的值。

(3)。

根据式4、式5求得静磁场的磁感应强度和磁场强度的物理量。

(4)。

(5)。

根据麦克斯韦静磁场理论来计算磁链,是磁通密度,是面积。

(6)。

根据SRM实际情况,在保证计算精确度的同时,尽量减少计算时间。应该选择合适的网格剖分大小。如图4、图5所示本模型在气隙处剖分较密,在其它的地方剖分相对较稀疏,这样能够保证计算精度,同时也减少计算时间。

、开关磁阻电机的二维静磁场计算

      以电机在额定工作情况下为例,对SRM一相绕组通以9A额定电流时,可得不同角度下二维磁场的磁力线分布图如图6、图7、图8、图9所示。其不同角度下二维磁场的磁通密度分布图如图10、图11、图12、图13所示。

分别对不同电流、不同角度下的磁链进行插值计算,磁链2D计算曲线如图14  2所示,磁链3D计算曲线如图15所示。

二、无电机转子位置锁定的磁链特性快速测试与校正

对于三相12/8极电机,定义定子凸极与转子槽中心线对齐位置为,则其对齐相,相邻相,如图3所示。当处于对齐位置时,另外两相以对齐位置为中心线在两侧对称分布,空间位置角均为7.5o。由于距离中心线相同位置的转矩大小相等方向相反,如果给空间位置角为7.5o的两相同时通电,电机的总转矩为0,电机不会转动。因此,无需锁定电机转子位置,即可测出的磁链曲线。同样,在对齐位置存在0转矩区,在此位置给对齐相用电,电机不会转动,因此,无需要锁定转子也可测出磁链曲线。

由以上分析知,两条磁链曲线可以不需要锁定转子位置直接测试,具体的测试方式有两种,一是在对齐位置处三相同时通电测试;二是在对齐位置处先两相通电测试磁链曲线,再一相通电测试磁链曲线。之所以先给两相通电是为了保证转子极中心线与定子极中心线能对齐,在对齐位置附近存在0转矩区,一相通电不能保证定转子极中心线对齐。但是三相同时激励会造成对齐位置磁路严重饱和,磁势降大幅增加,对相磁链有较大影响(每相磁通量减小,相磁链也减小)。两相同时激励时,定转子轭部磁通量增大,使磁路饱和程度增大,但在转子齿与定子槽轴线对齐位置附近,磁路磁阻比较大,该位置处对相磁链的影响较小。为了进一步减小误差,引入互感校正系数M来定量描述两相激励模式磁链与单相激励模式下磁链的差别,经过多次测试取,按对磁链值进行校正。

根据式(7)离散化SRM磁链表达式可知,只需通过电压、电流的测量就可获取SRM的磁链。

            (7)。            

式中,为采样时间间隔,N为测量点个数。

在实际测试过程中,如果SRM不带负载,则转子阻力较小,两相通电测试时会出现转子转动现象,由此出现的转子位置偏差将给测试带来误差。应该注意到,通电的两相以对齐位置为中心线在两侧对称分布,当一相出现角度的偏差时,另一相必然出现角度的偏差,依据SRM的对称性,可以通过对两相实测磁链值求算术平均值的方法来消除误差。经过算术平均值处理后的测试结果(磁链曲线)如图16所示,图中同时给出了采用位置锁定装置的实验测试结果。从图中可以看出,本发明的测试结果与实验法测试结果基本一致。

三、基于磁共能的磁链曲线修正

对齐相处有限元计算得到的磁共能为,实验测试得到的磁共能为,根据式1计算对齐位置处磁共能修正系数。相应地,可以计算出相邻相处磁共能修正系数,并根据式2来计算各个位置的磁链修正系数

根据实验结果,计算出,由此得到校正后的磁链曲线族如图 17所示,图中同时给出了采用位置锁定装置的实验测试结果。从图17可以看出,本发明提出的测试方法与实验法的测试结果基本一致。

为进一步说明本发明对磁链测试的效果,给出了时磁共能修正后磁链曲线与修正前的比较,如图18所示。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号