首页> 中国专利> 用于两个通信装置之间的准确的直线距离估计的方法和系统

用于两个通信装置之间的准确的直线距离估计的方法和系统

摘要

本发明提供了用于估计接近度并且准确地计算正在进行通信的蓝牙使能的便携式通信装置之间的直线距离的方法和系统。具体而言,本发明提供了这样一种方法和系统,其中,该方法和系统用于:由参考通信装置(202)获取来自至少一个目标通信装置(204)的接收信号强度指示符(RSSI)值;通过利用所获取的接收信号强度指示符(RSSI)值,计算该装置的通信环境的属性的常数值;并且通过利用该装置的通信环境的属性的所计算的常数值,得出该参考通信装置(202)与该目标通信装置(204)之间的准确的直线距离。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-04-12

    授权

    授权

  • 2014-06-25

    实质审查的生效 IPC(主分类):G01S5/02 申请日:20131024

    实质审查的生效

  • 2014-05-21

    公开

    公开

说明书

技术领域

概括而言,本发明涉及无线通信领域。更具体而言,本发明涉及用于通过 确定第一蓝牙使能的便携式通信装置与另一个蓝牙使能的便携式通信装置之间 的接近度来计算两个或更多个所述蓝牙装置之间的准确的直线距离的系统和方 法。

背景技术

个人在日常生活中使用蓝牙使能的便携式通信装置如移动电话、智能电话、 个人数字助理(PDA)、寻呼机、MP3播放器、蜂窝电话、即时消息收发装置、 便携式压缩盘(CD)播放器、无线电子邮件装置以及诸如此类的装置。这些装 置具有各种先进的功能如由蓝牙、红外线和其他的通信方式的使用所允许的数 字媒体传递、因特网使用等等。如今在该装置中可用的先进应用允许在周围环 境中的相似装置的接近度估计。除了接近度估计之外,其他相似装置的距离计 算也在装置的配对(针对如通信的各种目的)和数据传递中扮演重要的作用。 现有技术的主机(host)公开了各种用于当在接近的蓝牙使能的装置之间存在显 著的间隔距离时用于计算该装置的距离的方法。

接收信号强度指示符给出了发射器装置与接收器装置之间的最短距离的直 接测量,其中,信号强度与距离成反比即接收信号强度越弱则发射器(Tx)与 接收器(Rx)之间的间隔越大。除了距离测量之外,如果使用三个或更多个此 类Tx/Rx站,则可以在2D平面上计算具体接收器(NODE)的准确位置。

然而,在室内障碍物、软装、墙壁、天花板等等的出现导致无线信号的显 著的空间和时间变化。该变化导致两个点或装置之间的不确定的位置估计以及 距离计算。当蓝牙使能的装置出现在封闭环境比如说室内环境中并且蓝牙使能 的装置之间的间隔距离相当小(一般而言在封闭环境或在小房间(或比如说小 于12英尺的工作区)中小于4米)时,距离计算中的不确定性增加。

现有模型将该空间变化作为对数正态随机分布来处理,并且基于标准Friis (弗林斯)公式估计接收信号强度和距离之间的关系。现有模型在封闭环境中 的距离预测和实际测量中的运作具有大量潜在误差,因此,重点在于在用于较 大空间如仓库、大规模仓库等等的预测中实现合理的准确性。现有技术不能够 对于室内位置以小于+/-2米的准确半径正确地预测距离。

对于基于功能的以人为核心的接近度估计,出现对于更好的准确性的要求。 基于功能的以人为核心的接近度估计需要识别并且知道给定人员集合中的哪些 人正在彼此交互,其中,由合并到该给定人员集合中的每个人各自的移动电话 中的蓝牙装置ID来唯一地识别每个人。给定人员集合与使能的装置的交互导致 以下情况:

1.两个或更多个人位于相隔比如说1-2米的位置;

2.小型人员集合将在简短的时间周期期间相对运动比如说彼此靠近,在该时 间周期之后紧接着这样一个周期,其中在该周期中他们关于活动地交互的 彼此静止

此外,本传播模型接受在给定距离的RSSI预测中以及在给定时间点的实际 测量中将存在大于3-4dB的差异的事实。这就是为什么在室内定位中达到准确 性仍然是个重大的挑战。

从以上讨论的现有技术看出在本领域中需要开发一种用于两个携带蓝牙使 能的装置的人之间的更好的直线距离估计的系统和方法。此外,需要开发一种 用于距离估计的准确的信道模型,其中,该信道模型在保持功能要求的同时对 于短距离而言是准确的。

发明内容

在描述本发明的方法、系统和硬件实现之前,应当理解的是,本发明不限 于所描述的具体系统和方法,因为可以存在本发明的多个在本文的公开内容中 未明确地说明的可能的实施方式。还应当理解的是,在说明书中使用的术语仅 用于描述具体描述或实施方式的目的并且不意图用于限制本发明的范围。

本发明提供一种用于估计蓝牙使能的便携式通信装置之间的接近度并且进 一步利用该接近度信息来得出所述装置之间的准确的直线距离的方法和系统。

本发明的一个实施方式提供了一种方法,该方法用于:由该参考通信装置 (202)获取来自至少一个目标通信装置(204)的接收信号强度指示符(RSSI) 值;通过利用所获取的接收信号强度指示符(RSSI)值计算该装置的通信环境 的属性的常数值;并且通过利用该装置的通信环境的属性的所计算的常数值得 出该参考通信装置(202)与该目标通信装置(204)之间的准确的直线距离。

本发明的一个实施方式提供了一种用于至少一个参考通信装置(202)和至 少一个目标通信装置(204)的系统,其中,该参考通信装置(202)进一步包 括接收信号强度指示符(RSSI)获取模块(208)和至少一个后端服务器(206), 该后端服务器(206)进一步包括常数值计算模块(210)和直线距离得出模块 (212)。

附图说明

当结合附图来阅读时,更好地理解前文的摘要以及优选实施方式的以下详 细描述。为了说明本发明,在附图中显示了本发明的示例性的构造;然而,本 发明不限于附图中公开的具体的方法和装置:

图1显示了用于得出准确的直线距离估计的流程图(100)。

图2显示了用于示出用于得出准确的直线距离估计的系统架构(200)的方 框图。

图3显示了用于获取在各种距离处的RSSI值的流程图(102)。

图4示出了使用零交叉的RSSI对距离的图形。

图5显示了用于计算装置的通信环境的属性的常数值的流程图(104)。

图6显示了用于得出准确的直线距离并且创建求解点簇的流程图(106)。

图7显示了用于数据采集的电话相对方向。

图8显示了用于各种电话方向的测量RSSI对距离的图形。

图9显示了所测量的RRSI与模型的比较的图形。

图10显示了根据示例性实施方式的所测量的RSSI计算的估计距离的图形。

具体实施方式

现在将讨论用于说明本发明的特征的一些实施方式。

词语“包括”、“具有”、“含有”和“包含”以及它们的其他形式意图在含义上等 效的并且以开放式结尾,因为跟随这些词语的任意一个的一项或多项并不意味 着该一项或几项的穷尽列表,也不意味着局限于所列出的一项或多项。

应当注意的是,如本文所使用的,单数形式“一”、“一个”以及“该”包括复数 引用,除非上下文清楚地指示相反情况。尽管类似于或等同于本文中描述的那 些系统、方法、设备和装置的任意系统、方法、设备和装置可以被用在本发明 实施方式的实践或测试中,但是现在描述优选的系统及部分。所公开的实施方 式仅仅为可以被以各种形式来实现的本发明示例。

所公开的实施方式仅仅为可以被以各种形式来实现的本发明示例。

术语“使能的装置”是指具有蓝牙的便携式通信装置和/或任意具有蓝牙的装 置并且可互换使用。具有蓝牙的装置可以被其他使能的装置发现并且识别。

本申请提供了一种用于估计至少一个蓝牙使能的便携式参考通信装置 (202)与至少一个蓝牙使能的便携式目标通信装置(204)之间的接近度以得 出该参考通信装置(202)与目标通信装置(204)之间的准确的直线距离的方 法,所述方法包括以下由处理器实现的步骤:

a、由该参考通信装置(202)使用接收信号强度指示符(RSSI)获取模块(208), 获取来自至少一个目标通信装置(204)的接收信号强度指示符(RSSI)值;

b、使用常数值计算模块(210),通过利用所获取的接收信号强度指示符 (RSSI)值,计算该装置的通信环境的属性的常数值;并且

c、使用直线距离得出模块(212),通过利用该装置的通信环境的属性的所计 算的常数值,得出该参考通信装置(202)与该目标通信装置(204)之间的 准确的直线距离。

本申请提供了一种用于估计至少一个蓝牙使能的便携式参考通信装置 (202)与至少一个蓝牙使能的便携式目标通信装置(204)之间的接近度以得 出该参考通信装置(202)与目标通信装置(204)之间的准确的直线距离的系 统,所述系统包括:

a、至少一个参考通信装置(202)和至少一个目标通信装置(204),其中, 该参考通信装置(202)进一步包括被适配为获取至少一个目标通信装置(204) 的接收信号强度指示符(RSSI)值的接收信号强度指示符(RSSI)获取模块 (208);

b、至少一个后端服务器(206),该后端服务器(206)进一步包括:被适配 为通过利用所获取接收信号强度指示符(RSSI)值来计算该装置的通信环境 的属性的常数值的常数值计算模块(210);以及被适配为得出该参考通信装 置(202)与该目标通信装置(204)之间的准确的直线距离的直线距离得出 模块(212)。

图1是指用于得出准确的直线距离估计的流程图(100)。

该过程在步骤102处开始,其中,在步骤102处至少一个参考通信装置(202) 获取来自至少一个目标通信装置(204)的接收信号强度指示符(RSSI)。在步 骤104处,通过利用所获取的接收信号强度指示符(RSSI)值来计算该装置的 通信环境的属性的常数值。该过程在步骤106处结束,其中在步骤106处通过 利用该装置的通信环境的属性的所计算的常数值来得出该参考通信装置(202) 与该目标通信装置(204)之间的准确的直线距离。

参考图2,图2是用于示出用于得出准确的直线距离估计的系统架构(200) 的方框图。

准确的直线距离估计架构(200)包括便携式参考通信装置(202)、便携式 目标通信装置(204)、后端服务器(206)、获取模块(208)、常数值计算模块 (210)以及直线距离得出模块(212)。

根据本发明的一个示例性实施方式,便携式参考通信装置(202)被适配为 获取来自至少一个目标通信装置(204)的接收信号强度指示符(RSSI)值。此 外,在本发明的一个示例性实施方式中,获取模块(208)被适配为存储来自所 述目标通信装置(204)的所获取的RSSI值。

在一个示例性实施方式中,可以从包括移动电话、智能电话、膝上电脑、 掌上电脑、个人数字助理(PDA)、传真机、移动电话、电话、膝上电脑、个人 电脑、打印机、全球定位系统(GPS)接收器、数码相机和视频游戏操纵台等等 的一组蓝牙使能的装置中选择便携式参考通信装置(202)和便携式目标通信装 置(204)。

在一个示例性实施方式中,便携式参考通信装置(202)可以对于获取RSSI 值的操作而作为静止的参考点,并且便携式目标通信装置(204)可以作为移动 或静止的目标点。

在另一个示例性实施方式中,便携式参考通信装置(202)和便携式目标通 信装置(204)都是移动的。

由合并在便携式参考通信装置(202)和便携式目标通信装置(204)中的 蓝牙装置ID来唯一地识别便携式参考通信装置(202)和便携式目标通信装置 (204)。把装置的唯一识别转换成个别人的唯一识别。

嵌入在便携式参考通信装置(202)中的应用获取并且记录RSSI值,并且 进一步将所获取和记录的RSSI值存储到获取模块(208)中。获取模块(208) 按照从1英尺开始到10英尺的升序,存储用于从便携式参考通信装置(202) 到便携式目标通信装置(204)的距离的所观察的RSSI值。

此外,后端服务器(206)被适配为计算两个由蓝牙模块的相应的MAC Id 所唯一地识别的人之间的准确的距离。该后端服务器(206)还被配置为接收由 便携式参考通信装置(202)发射的RSSI值。该后端服务器(206)进一步包括 常数值计算模块(210)和直线距离得出模块(212)。

常数值计算模块(210)被适配为通过利用所获取的接收信号强度指示符 (RSSI)值来计算该装置的通信环境的属性的常数值。该常数值计算模块(210) 基于下文所述的数学方程式来执行计算以计算常数:

Ld=L0+(c1(|sin(2πd/Ω+θ)|2+c2)log(d)

其中,

Ld=在“d”英尺的距离处的RSSI。

L0=在一英尺处的RSSI。

Ω=(从有限的测量集合所近似地确定的)信道的空间波长

c1和c2=用于取得该读数的环境的属性的常数。

θ=由于多径导致的相位误差,其范围为0到π/2。

按照距便携式参考通信装置(202)的距离的升序接着对于高达10英尺的 各种已知距离来考虑RSSI值。

将在后端服务器(206)处采集的RSSI值用于上述方程式的运行,以使用 标准曲线拟合技术获得c1和c2的值。对于后续的估计,需要在1英尺处的RSSI 值。该1英尺值给出了用于发现实际距离的计算中使用的常数值。在1英尺处 的值对于不同的通信环境如本公司空间或购物中心而言是不同的。

直线距离得出模块(212)被适配为得出两个相隔1m到10m的短距离的便 携式通信装置之间的实际准确距离。

直线距离得出模块(212)存储从多个用于ISM频带的室内波形传播的公知 的模型得出的距离的值,并且,在本发明中使用的一个模型是统计模型。该统 计模型根据如下函数计算用于给定环境的功率损耗:

L=L0+10nlog(d)(单位为dB)   (1)

其中,L0是在1米处测量的RSSI并且用于校准,L是在“d”米的距离处预测 的RSSI。对于给定的环境,常数被称为“n”。对于自由空间,n=2,并且对于 室内环境,n依据经验被确定为>2,通常而言n=4。方程式(1)意味着RSSI 遵循功率衰减函数并且如果测量了RSSI则可以唯一地确定发射器与接收器之间 的相对距离。然而,由于多径效应导致实际的RSSI曲线是不同的,并且因此从 RSSI不能唯一地计算距离。测量显示两个或更多个距离可以具有与所测量的值 相同的RSSI值。

根据拉帕波特(Rappaport)考虑,进一步修改根据方程式(1)的模型,以 将多径效应作为对数正态随机分布Xσ来说明,并且该修改的模型为:

L=L0+10nlog(d)+Xσ   (2)

根据另一个示例性实施方式,除了标准测量方法之外,可以扩展通过将两 个蓝牙模块即Tx和Rx之间的相对方向角度作为重要的感兴趣参数来处理的测 量。基本的感兴趣参数可以是相对距离。

基于大型的测量集合,下文中给出用于在给定的环境中准确地表示信道的 统计模型。

修改的方程式:

L=L0+x log(d)   (3)

其中,如下限定x:

x=c1(|sin(2πd/Ω+θ)|2+c2   (4)

其中,

L0=在单位距离(1米或1英尺)处的RSSI

c1和c2=常数,该常数是给定的环境的属性并且是距离测量的单位

Ω=(从有限的测量集合所近似地确定的)信道的空间波长

θ=主要为了满足范围为0到π/2的相对方向值的多径相位效应的任意测量。

将来自方程式(4)的“x”的值放到方程式(3)中并且调整用于给定位置 的“c1”和“c2”的值,RSSI的合理的量化拟合可以与用于高达12到14英尺的 距离的室内多径效应一起使用。

在一个示例性实施方式中,通过方程式3和4给出的建议,引入用于建模 的新范式。在方程式1和2中显示了现有理论,其中,在方程式1和2中将由 方程式(4)中的“d”给出的距离变量直接与由“L”给出的路径损耗一起处理; 其他参数是基于所测量的数据的常数值,路径损耗是衰减正弦波。因此,空间 变量不被作为随机值来处理,因此提高准确的估计的概率。

在一个示例性实施方式中,下文的测量表显示了当模型在较短的距离处具 有可预测性的感觉时,对于超过4米的较大距离,偏差增加,其中,如显而易 见的,在超过4米的较大距离的情况中随机性是更加普遍存在的。然而,对于 较短的距离,可以看出所提出的模型足够准确以允许我们有可能以比现有的准 确性好得多的准确性预测两个携带具有蓝牙的移动电话的人之间的接近度。

表1

表2

表3

表4

图3显示了用于获取在各种距离处的RSSI值的流程图(102)。

该过程在步骤302处开始,其中,在步骤302处从便携式目标通信装置(204) 获取具有对应的距离的RSSI值。在步骤304处,将在步骤302中获取的数据发 射到后端服务器(206)。在步骤306处,验证所获取的数据所位于的位置。如 果该数据已经是在具体的位置处取得的,则流程去往步骤308。该步骤是重要的, 因为该步骤验证RSSI数据是在每个要求的位置距离处取得的。在步骤308处, 目标装置远离当前位置移动2英尺以获取在该位置处的RSSI值。此外,可以对 于10英尺之内的多个距离取得该读数。该过程在步骤310处结束,其中,在步 骤310处遵循相同的过程直到目标装置距参考装置的距离为12英尺为止。否则, 重复步骤306直到实现步骤310中的条件为止。

在本发明的一个示例性实施方式中,从参考通信装置(202)传递到后端服 务器(206)的数据可以是包括RSSI值、实际距离和虚拟位置(房间id)等等 的字节组。后端服务器(206)读取该数据并且计算该数据是否具有用于该距离 的足够的读数。如果具有足够的读数,则应用程序接口可以(API)可以返回 “OVER(完成)”否则返回“CONTINUE(继续)”。在应用得到如“OVER” 的答复之后,其可以通知用户移开另一个1到2英尺远。

图4示出了使用零交叉的RSSI对距离的图形。

在本发明的实施方式中,使用方程式 Ld=L0+(c1(|sin(2πd/Ω+θ)|2+c2)log(d)达成的曲线是sind*logd 的形式,其中,“d”是距离。该曲线的直接求解可能是高度复杂的,并且因此 需要使用“零交叉”的间接求解。将以上方程式改写为,

Ld-L0=(c1(|sin(2πd/Ω+θ)|2+c2)log(d)

在本发明的一个示例性实施方式中,从以上改写的方程式看出全部RSSI项 关于LHS,并且RHS包括依赖于距离和相对方向的项。

在本发明的一个示例性实施方式中,对于我们的初始相位,确定相位中的 方向可能是未知的,因此,固定θ=π/4,因为它的范围可以从0到π/2,平均值, 并且确认将一直存在与π/4相位差的最大值相对应的误差。由于相位的贡献是 +/-3dB,因此显然该误差可能仅导致0.5英尺的偏差,其中,0.5英尺的偏差是 可接受的。因此,假设双方都具有智能电话则可以使用智能电话的加速计和陀 螺仪读数来修正方向,以将该误差最小化。如果其中一个参与者具有特色电话, 其中该特色电话不具有所需要的传感器,则可以考虑距离估计中的0.5英尺的误 差。

在本发明的一个示例性实施方式中,根据该改写的方程式,如果通过以0.1 的步幅(step)将“d”从1英尺赋予到12英尺来计算LHS和RHS,则进行绘 图以得到这样一种曲线,其中,该曲线将具有在LHS与RHS之间的多个重叠点, 其中,每个点指向用于该RSSI值的可能的求解,如图4中所示的,其中,全部 星形标记的点都是可能的求解。

在本发明的一个示例性实施方式中,如果存在附加的RSSI测量,则再次计 算零交叉,以得到另一个距离测量集合。在一个该测量集合之后,假设大多数 求解将在实际距离周围。因此,将距离测量分割成簇,并且随后找出最稠密的 簇的质心,其中,该质心将给出实际距离。

图5显示了用于计算装置的通信环境的属性的常数值的流程图(104)。

该过程在步骤502处开始,其中,在步骤502处获得并且利用存储于后端 服务器(206)中的所获取的各距离的RSSI值。在步骤504处,计算该装置的 通信环境的属性的常数值。该过程在步骤506处结束,其中在步骤506处,将 该常数值存储在后端服务器(206)中。

在本发明的一个示例性实施方式中,常数值计算模块(210)对于常数值的 计算使用下述公式:

Ld=L0+(c1(|sin(2πd/Ω+θ)|2+c2)log(d)

其中,

Ld=在“d”英尺的距离处的RSSI。

L0=在一英尺处的RSSI。

Ω=(从有限的测量集合所近似地确定的)信道的空间波长

c1和c2=作为用于取得该读数的环境的属性的常数。

θ=由于多径导致的相位误差,其范围为0到π/2。

图6显示了用于得出准确的直线距离并且创建求解点簇的流程图(106)。

该过程在步骤602处开始,其中,在步骤602处将各自的距离的所存储RSSI 值存储于后端服务器(206)中,并且获取参考通信装置的位置。在步骤604处, 获取后端服务器(210)中的所存储常数值。在步骤606处,基于步骤602和604 计算准确的直线距离,并且确定零交叉点。在步骤608处,本地地存储数据点。 在步骤610处,验证预先限定的门限的条件。如果该预先限定的门限小于所存 储的求解点或数据点的数量,则该流程前往下一个步骤612。在步骤612处,创 建求解点的簇,并且找出最普遍存在的簇的质心。在该步骤中,对于每个RSSI 值,使用成簇方法来计算距离。该过程在步骤614处结束,其中在步骤614处 步骤612的结果与质心信息一起被存储在后端服务器中。

在本发明的一个示例性实施方式中,将RSSI的读数从参考通信装置(202) 传递到后端服务器(206),并且对于每个值使用成簇方法来计算距离。计算最 终的估计距离,并且将其存储在后端服务器(206)中。对于每个所获取的RSSI 的值不存在手段干预,后端服务器(206)在以前的1分钟的时间窗中获取用于 参考通信装置的全部RSSI值,并且随后当门限数量的距离估计被成簇时执行计 算。在图6中显示了该过程。

图7显示了用于数据采集的电话相对方向。

在本发明的一个示例性实施方式中,图7显示了当测量在具体距离处的 RSSI时两个蓝牙使能的电话的相对方向。通过广泛的测量和经验配合,将相对 方向的影响作为模型参数来包括。

图8显示了用于各种电话方向的测量RSSI对距离的图形。

在本发明的一个示例性实施方式中,图8显示了通过快速连续地改变两个 电话之间的相对方向所进行的基于以英尺为单位的距离的RSSI测量。还使用经 典方法画出了RSSI拟合曲线。该拟合曲线显然没有非常准确地建模所计算的 RSSI值。当然,其没有考虑相对方向。相对方向的影响不是随机的;因此可以 被准确地建模。还考虑RSSI函数的正弦属性。

图9显示了将所测量的RSSI与模型比较的图形。

在本发明的一个示例性实施方式中,图9显示了所提出的信道模型与用于 RSSI的测量数据的比较。还比较了经典方法。该提案提供了用于在封闭环境中 典型地见到的空间变量的确切的配合。

在本发明的一个示例性实施方式中,该测量显示,当如图7中所示的,模 型在较短的距离处具有可预测性的感觉时,对于超过(通常)4米的较大距离, 偏差增加,其中,如从图8显而易见的,在超过4米的较大距离的情况中随机 性是更加普遍存在的。然而,对于较短的距离,可以如图9中所描绘的,看出 所提出的模型足够准确以允许我们有可能以比现有的准确性好得多的准确性预 测(两个携带具有蓝牙的移动电话的人之间的)接近度。

图10显示了从示例性实施方式的所测量的RSSI计算的估计距离的图形。

在本发明的一个示例性实施方式中,图10显示了使用所提出的信道模型执 行的距离估计实验的结果。X轴包括用于取得RSSI读数的实际距离并且Y轴显 示在地面实况训练该模型以校准c1、c2和θ之后使用L=Lo+x log(d)计算的距离。 红线显示用于所计算的距离的平均值并且灰色正方形是误差容限。在这里,对 于每个距离确定一系列RSSI测量;通过使用方程式L=L0+10nlog(d)+Xσ和方程 式L=L0+x log(d)来根据每个RSSI测量值估计距离,计算测量的均值。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号