首页> 中国专利> 基于声学超流体棱镜的单向负折射装置

基于声学超流体棱镜的单向负折射装置

摘要

基于声学超流体棱镜的单向负折射装置,涉及单向负折射超流体棱镜及单向负折射效应的测试装置,本发明为了解决现有声学负折射效应的带宽窄及缺少实现低损耗单向负折射的超流体棱镜及其测试装置的问题,本发明包括功率放大器、信号发生器、计算机和示波器,计算机的控制信号与信号发生器的控制信号的输入端连通,信号发生器与功率放大器连通,示波器与计算机连通,它还包括声源阵列、单向导通器件和声探测器,声源阵列、单向导通器件和声探测器依次串接在声路中,声源阵列的声波信号的输入端与功率放大器的声波信号的输出端连通,声探测器的声波信号的输出端与示波器的声波信号的输入端连通。本发明适用于基于声学超流体棱镜的单向负折射测试装置。

著录项

  • 公开/公告号CN103761962A

    专利类型发明专利

  • 公开/公告日2014-04-30

    原文格式PDF

  • 申请/专利权人 黑龙江大学;

    申请/专利号CN201410024769.7

  • 申请日2014-01-20

  • 分类号G10K11/30;G01H17/00;

  • 代理机构哈尔滨市文洋专利代理事务所(普通合伙);

  • 代理人孙淑荣

  • 地址 150080 黑龙江省哈尔滨市南岗区学府路74号

  • 入库时间 2024-02-19 23:36:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-04-05

    授权

    授权

  • 2017-03-22

    著录事项变更 IPC(主分类):G10K11/30 变更前: 变更后: 申请日:20140120

    著录事项变更

  • 2014-06-04

    实质审查的生效 IPC(主分类):G10K11/30 申请日:20140120

    实质审查的生效

  • 2014-04-30

    公开

    公开

说明书

技术领域

本发明涉及声学超材料及基于该超流体棱镜的单向负折射装置。

背景技术

声学超材料作为一种声学人工介质,已经被广泛研究并被用于操纵声波按照自己设计 的方式传播,例如声隐身、完美声聚焦、声单向传输等都是利用超材料来操纵声波的。最 典型的声学超材料是体弹性模量和质量密度均为负的超材料,这种材料也被称为负折射率 材料。在上述负折射率材料和普通的双正材料的交界面处,声波会沿着和我们预想的相反 的方向发生折射,我们称之为负折射。同时在声学非正定介质的研究表明,声学非正定介 质也可以用来实现声学负折射,此种声学负折射的实现只需要声学材料密度张量中的4个 量中的一个值为负即可,而并不需要密度张量在各个方向上均为负。由于这种非正定介质 的高度各向异性,其色散曲线成双曲特性分布,我们可以通过层叠动态质量密度分别为正 和负的均匀介质来构成上述非正定介质。然而,这种材料的负折射效应只能在材料共振频 率附近的极小的频率范围内实现,因此,其负折射效应的带宽是比较窄的。

最近,受到电二极管对现代科学深远影响的启发,研究者们开始致力于声学波单向传 输的研究。通过打破时间反演或者空间反演对称性,许多新颖的结构被提出并从实验上给 予验证,例如声整流器、声二极管、声隔离器等。通过打破空间或者时间反演对称性,同 样有助于研究其它形式的声单向传输效应。目前对单向负折射的装置仍处于研究阶段,还 没有能在较宽频带范围内实现低损耗、单向负折射的装置。

发明内容

本发明的目的是为了解决现有声学负折射效应的带宽窄及缺少实现低损耗单向负折 射的超流体棱镜及其测试装置的问题,提供一种基于声学超流体棱镜的单向负折射装置。

基于声学超流体棱镜的单向负折射装置,它包括功率放大器、信号发生器、计算机和 示波器,计算机的声波启动控制信号的输出端与信号发生器的声波启动控制信号的输入端 连通,信号发生器的声波信号的输出端与功率放大器的声波信号输入端连通,示波器的信 号输出端与计算机的接收波形信号的输入端连通,它还包括声源阵列、单向导通器件和声 探测器,声源阵列、单向导通器件和声探测器依次顺序串接在声路中,声源阵列的声波信 号的输入端与功率放大器的声波信号的输出端连通,声探测器的声波信号的输出端与示波 器的声波信号的输入端连通。

本发明通过声源阵列发出平行声束,平行声束进入单向导通器件,利用单向导通器件 的单向负折射的特征,使声探测器在单向导通器件的负折射出射位置处接收到声波信息; 而从负折射出射位置处入射的平行声束,并没有沿着负折射所示的路径返回,而是发生了 正折射。综上我们可以得出单向导通器件实现了单向导通声波的特性,即可将其看做声二 极管。

附图说明

图1为本发明的结构示意图,图2为具体实施方式三中单向导通器件的单向负折射的 示意图,图3为具体实施方式三中沿单向导通器件负折射出射路径原路返回的声束的正折 射示意图,图4为具体实施方式三中单轴声学超流体棱镜的实体图片,图5为具体实施方 式三中不同频率下的正负折射角度的分布示意图。

具体实施方式

具体实施方式一:结合图1说明本实施方式,本实施方式所述基于声学超流体棱镜的 单向负折射装置,它包括功率放大器1、信号发生器2、计算机3和示波器4,计算机3的 声波启动控制信号的输出端与信号发生器2的声波启动控制信号的输入端连通,信号发生 器2的声波信号的输出端与功率放大器1的声波信号输入端连通,示波器4的信号输出端 与计算机3的接收波形信号的输入端连通,它还包括声源阵列5、单向导通器件6和声探 测器7,声源阵列5、单向导通器件6和声探测器7依次顺序串接在声路中,声源阵列5 的声波信号的输入端与功率放大器1的声波信号的输出端连通,声探测器7的声波信号的 输出端与示波器4的声波信号的输入端连通。

具体实施方式二:结合图1说明本实施方式,本实施方式是对具体实施方式一所述基 于声学超流体棱镜的单向负折射装置的进一步限定,声源阵列5由多个GETTOP  SR151135LE组成。

通过多个GETTOP SR151135LE小声源等间隔排列,组成线阵列来模拟输出我们所需 要的平行声束。

具体实施方式三:结合图2至图5说明本实施方式,本实施方式是对具体实施方式一 所述基于声学超流体棱镜的单向负折射装置的进一步限定,单向导通器件6采用单轴声学 超流体棱镜。

图2为声学单向负折射的示意图。浅色区域为背景基质—空气;深色区域为单轴声学 超流体棱镜。通过线源产生的两束平行声束分别位于棱镜边缘的两侧。由于该超流体的各 向异性特性,因此我们能够很容易实现平行于和垂直于声学轴6-1的相速度的较大差异性: 在一个特定的情况下(如入射角度),我们可以设计平行于声学轴6-1的相速度υp=kω/|k|2趋近于0;垂直于声学轴6-1的相速度为υp=c0。因此,在这种结构中声能流的传输方向 (也可称为群速度方向)需要垂直于声学轴其中,k为波矢,ω为频率,c0 声场在空气中的传播速度。如图2所示,空气中声场在特定角度斜入射情况下,经历一个 负折射路径进入超流体棱镜,这就是基于上述超流体棱镜中群速度的方向必须是垂直于声 学轴6-1而实现的负折射效应。然而,如图3所示,按照负折射出射路径原路返回的声束 却发生了正折射,这种单向负折射的发生来源于打破了相速度矢量的对称性。在超流体棱 镜中群速度是沿着特定的方向的,但相速度矢量却需要满足波矢在棱镜与空气交界处切向 分量的连续性,因此可以说,在满足声场在两种不同介质交界面处切向分量连续性的情况 下,左入射和右入射由于(即负折射和正折射)不同入射角所带来的波矢反演对称性的破 坏,实现了上述单向负折射效应。

自然界中,液体和固体不同,一般的液体都是各向同性的介质,但是,利用厚度为深 亚波长尺度的各向同性介质来层叠构成各向异性的声学超流体材料却是可行的。由于本发 明中构成上述超流体棱镜的介质是阻抗对比相差较大的空气和钢,我们可以借助上述介质 来制作我们的各向异性的超流体棱镜。在声场传输的过程中,由于钢相对于空气而言是比 较坚硬的,因此我们可以认为钢是一种钢性流体。超流体基质中的波动方程可以用下述方 程来描述:

Σmxm(Σlρml-1pxl)-κ-12pt2=0(m,l=1,2)---(1)

其中,p为声压,ρml为密度张量,κ为等效弹性模量。从式(1)中我们可以得到我 们所设计的超流体棱镜的等频线方程:

k//2ρ//+k2ρ=ω2κ---(2)

式(2)中,k//和k分别为平行于和垂直于声学轴6-1的波矢分量;ρ//、ρ分别为 平行于和垂直于声学轴6-1的等效质量密度,均为正数。深亚波长尺寸的空气层间距允许 我们利用等效介质理论来计算体弹性模量κ=κ0/f和等效质量密度ρ//=∞、ρ0/f, f为超流体材料中空气层的体积填充比。

超流体棱镜的等频线轮廓为一组平行线,波矢值分别为k=±k0,k0为空气中声场传 输的波矢大小。构造线为超流体棱镜垂直的那条边界即图2、3中超流体与空气的交界线, 构造线和声学轴6-1(超流体中黑色实线)之间的夹角为45°。如图2所示为声场负折射的 传输示意图,单向导通器件6二维平面成正三角形,其核心为位于正三角形右半边区域的 超流体棱镜。声场以30°(即声源阵列平行于正三角形单向导通器件6左侧边界)的入射 角从左侧空气介质中入射,然后经过负折射进入右侧的超流体棱镜中,因为等频线和群速 度方向垂直,所以我们可以计算得到负折射的角度为-45°。从图3中,我们可以看出, 从棱镜右侧的负折射出射端入射的声场经过超流体棱镜之后却发生了正折射,折射角度为 31.17°。上述这种声场传输对称性的破坏主要是来源于声场从左右两侧进入到超流体棱 镜的入射角度不同所产生的差异(分别为15°和75°)。同样,我们可以利用声场边界处 切向分量的连续性,从等频线轮廓中,能够计算出正折射和负折射的角度。我们所设计的 超流体棱镜是基于空气层和薄钢片的层叠结构来实现的,其中,空气层的体积占空比是 0.875即空气厚度与钢片厚度比为7:1。从模拟结果我们可以得知,模拟结果和利用等频 线计算的正负折射角度具有高度的一致性。需要指出的是,我们所设计的线性、非时变单 向负折射系统中,洛伦兹互易定理并没有被打破。将来我们有希望在时变超流体透镜中实 现单向负折射。

具体实施方式四:结合图1说明本实施方式,本实施方式是对具体实施方式一所述的 基于声学超流体棱镜的单向负折射装置的进一步限定,信号发生器2采用SRS MODEL  DS345。

具体实施方式五:结合图1说明本实施方式,本实施方式是对具体实施方式一所述的 基于声学超流体棱镜的单向负折射装置的进一步限定,声探测器7采用GETTOP  BOM6015GL。

具体实施方式六:结合图1至图5说明本实施方式,本实施方式是对具体实施方式一 所述的基于声学超流体棱镜的单向负折射装置的进一步限定,示波器4采用Tektronix  TDS5052。

本发明的具体应用为:

如图1所示为我们的实验系统图。我们的声学实验是在空气基质中来完成的。实验中, 我们用4个间距为2mm的GETTOP SR151135LE小声源组成的声源阵列来模拟输出我们 实验中所需要的平行声束。声源均由型号为SRS MODEL DS345的信号发生器及功率放大 器来驱动。声场探测由型号为GETTOP BOM6015GL的麦克来完成,并通过型号为 Tektronix TDS5052的示波器输出显示。单轴超流体棱镜的制作:我们用一块正三角形钢板, 利用数控电火花线切割机床来制作上述样品,如图4所示:样品中包含48根薄钢片,钢 片宽度为w为0.5mm,钢片排列周期Λ为4mm,高度h为20mm。实验中,我们用另一块 正三角形的薄钢板盖住上述样品形成一个波导,并利用吸声棉来抑制边界反射的干扰。实 验中所用到的声场频率为15KHz。实验上证明了超流体棱镜的负折射效应;从负折射出射 位置处入射的平行声束,并没有沿着负折射所示的路径返回,而是发生了正折射。因此, 从图2和图3中我们可以得知,上述超流体棱镜同样可以被看做是一个单向导通器件(声 二极管)。

由于上述超流体棱镜是由基于非共振单元的各向异性超流体材料构成的,理论上来说 随着声场入射频率的变化,我们的正折射和负折射角度是不变的,实验测量值在理论值上 下较小的范围内浮动,实验所得的负折射角度的平均值为-45.81°,正折射角度的平均值 为32.53°,能够很好的和理论值吻合,但由于受到声源工作频率限制,加上10KHz的低 频条件下,模拟平行声束的不规则性(如强度不成高斯状,有多个峰值等),所以实验结 果中仅给出10KHz-20KHz频率范围内的正负折射角度,如图5所示。我们的超流体棱镜 在低于10KHz及高于20KHz的频率范围内均能实现单向负折射特性。但上述实验结果同 样能够证明我们的超流体棱镜能够摆脱共振材料带宽窄的限制,在相当宽的频率范围内均 具有良好的正负折射特性。

综上所述,本发明设计、制作并从实验上验证了声学超流体棱镜的单向负折射特性。 理论计算、仿真模拟、实验测量的结果的一致性,很好的阐明了我们理论的正确性,本发 明所设计的超流体材料有望用于其它超材料器件的设计中。

本发明的第一个发明点在于给出了一种不同于以往的负折射形式,设计并制作出了一 种超流体棱镜,并从实验上证明了此种方式的负折射效应的存在。本发明的这种负折射效 应是基于一种密度张量中各个值均为正的超流体(超材料)来实现的。该超流体棱镜的负 折射特性在于超流体棱镜中不同方向上波矢分量的巨大差异性。

本发明的第二个发明点在于,在一个特定角度入射声波照射的情况下,本发明所设计 的超流体棱镜能够实现单向负折射,该超流体棱镜的单向特性在于打破左入射、右入射声 场的波矢对称性。

本发明中的超流体棱镜是基于非共振性超材料来制作的,这种材料的色散曲线是平坦 的,因此,我们所设计的超流体棱镜在一个较宽的带宽范围内均能实现低损耗单向负折射。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号