首页> 中国专利> 一种交流特高压同塔双回线路相自导纳、相自阻抗参数测量方法

一种交流特高压同塔双回线路相自导纳、相自阻抗参数测量方法

摘要

本发明公开了一种交流特高压同塔双回线路相自导纳、相自阻抗参数测量方法,其中,相自导纳测量方法包括以下步骤;第一步:将被测相首端与末端开路,其余未被测相首端和末端对地短路;第二步:在被测相首端加入交流电压,首末端同步测量获得被测相首端电压、首端电流、末端电压、末端电流,其中,所述首末端同步测量的时间误差小于1微秒;第三步:由公式获得相自导纳;本发明改变了传统测量方法,在接线方式和算法上考虑了分布参数特性,其它相对被测相的影响以及工频干扰的存在,特别是在长距离输变电线路中,用本发明方法测量得出来的自参数减少了误差,满足了工程的需要。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-08-24

    授权

    授权

  • 2014-06-04

    实质审查的生效 IPC(主分类):G01R27/02 申请日:20140108

    实质审查的生效

  • 2014-04-09

    公开

    公开

说明书

技术领域

本发明属于输变电测试,特别涉及一种交流特高压同塔双回线路相自导纳、 相自阻抗参数测量方法。

背景技术

对于长距离特高压交流同塔双回线路相自阻抗和自导纳的测量,简单测量 方法直接使用首端电压除以首端电流和首端电流除以首端电压获得,该方法由 于线路相导线分布参数特性以及工频干扰的存在,往往会产生较大的误差,线 路距离越长误差越大,此种误差可能会在工程应用中无法容忍,因此不适合长 距离线路相自参数的测量。测量过程中各相的接线方式也会对测量结果产生影 响,不正确的接线方式会使测量结果误差很大。本专利所提方法可以在正确的 接线方式下准确测量长距离特高压同塔双回线路相自阻抗和自导纳。

发明内容

本发明的目的是针对上述问题提出一种交流特高压同塔双回线路相自导 纳、相自阻抗参数测量方法技术方案,方案中规定了测量时各相接线方式,利 用异频电源解决了工频干扰问题,利用双端同步测量的电压和电流求解长线方 程克服了电容和阻抗的相互影响,该方法可适用于不同长度线路相自参数的测 量。

为了实现上述目的,本发明的技术方案是:一种交流特高压同塔双回线路 相自导纳、相自阻抗参数测量方法,是同塔双回A1、B1、C1、A2、B2、C2 六相输电线路50Hz频率下相自导纳、相自阻抗参数测量方法;

所述相自导纳测量包括以下步骤:

第一步:将被测相首端与末端开路,其余未被测相首端和末端对地短路;

第二步:在被测相首端加入交流电压,首末端同步测量获得被测相首端电 压、首端电流、末端电压、末端电流,其中末端电流测量为零,所述首末端同 步测量的时间误差小于1微秒;

第三步:由下述公式获得相自导纳:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2        公式一;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为相波阻抗,λ为相线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0, g0、b0分别为相导线单位长度相自电容、相自电阻、相自电抗、相自电导和相 自电纳,z为相自阻抗,y为相自导纳;

所述相自阻抗测量包括以下步骤:

第一步:将被测相首端开路,被测相末端对地短路,其余未被测相首端和 末端开路;

第二步:在被测相首端施加交流电压,首末端同步测量获得被测相首端电 压、首端电流、末端电压、末端电流,其中末端电压为零,所述首末端同步测 量的时间误差小于1微秒;

第三步:由下述公式获得相自阻抗:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2       公式二;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为相波阻抗,λ为相线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0, g0、b0分别为相导线单位长度相自电容、相自电阻、相自电抗、相自电导和相 自电纳,z为相自阻抗,y为相自导纳。

方案进一步是,所述方法中,当A1、B1、C1、A2、B2、C2六相输电线路 中有其它工频干扰时:

所述相自导纳测量的步骤进一步是:

第一步:将被测相首端与末端开路,其余未被测相首端和末端对地短路;

第二步:在被测相首端分别加入以50Hz频率为中点的上下绝对误差值相等 的两个频率下的交流电压,首末端同步测量获得被测相首端两个频率下的交流 电压、首端电流、末端电压、末端电流,其中末端电流测量为零,所述首末端 同步测量的时间误差小于1微秒;

第三步:采用FFT傅里叶变换滤波算法获得两个频率下的电压和电流;

第四步:由下述公式分别获得两个频率下相自导纳:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2     公式三;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为波阻抗,λ为线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0,g0、 b0分别为相导线单位长度自电容、自电阻、自电抗、自电导和自电纳,z为相 自阻抗,y为相自导纳;

第五步:将获得两个频率下相自参数取平均得到50Hz频率下的相自导纳;

所述相自阻抗测量的步骤进一步是:

第一步:将被测相首端开路,被测相末端对地短路,其余未被测相首端和 末端开路;

第二步:在被测相首端分别加入以50Hz频率为中点的上下绝对误差值相等 的两个频率下的交流电压,首末端同步测量获得被测相首端两个频率下的首端 电压、首端电流、末端电压、末端电流,所述首末端同步测量的时间误差小于 1微秒;

第三步:采用FFT傅里叶变换滤波算法获得两个频率下的电压和电流;

第四步:由下述公式分别获得两个频率下相自阻抗:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2     公式四;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为波阻抗,λ为线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0,g0、 b0分别为相导线单位长度自电容、自电阻、自电抗、自电导和自电纳,z为相 自阻抗,y为相自导纳;

第五步:将获得两个频率下相自阻抗取平均得到50Hz频率下的相自阻抗。

方案进一步是:所述的以50Hz频率为中点的上下绝对误差值是1.5Hz至 3Hz。

方案进一步是:所述首末端同步测量获得被测相首端电压、首端电流、末 端电压、末端电流的方法是:

第一步,由一个中心控制机向设置在首末端的两个同步触发装置发送一个 同步触发请求,两个同步触发装置收到请求后向中心控制机回复一个响应信号, 本地同步触发装置和远端同步触发装置同时启动同步触发程序;其中,所述中 心控制机发送同步触发请求必须提前触发信号发出的时刻发出;

第二步,等待触发时刻到,当触发时刻到,本地同步触发装置和远端同步触 发装置同时发出触发信号启动两端同步测量;

其中,所述本地同步触发装置和远端同步触发装置实时接收GPS授时模块 送来的1PPS秒脉冲信号和UTC时间信息;当接收到GPS的1PPS秒脉冲信号时, 用GPS的1PPS秒脉冲信号对本地同步触发装置和远端同步触发装置中的触发秒 脉冲进行同步校正;当没有GPS的1PPS秒脉冲信号时,保持最后一次同步校正 的触发秒脉冲以UTC时间计时。

方案进一步是:所述的触发秒脉冲是计数脉冲周期等于10纳秒的基准计数 脉冲到一秒时发出的触发秒脉冲。

方案进一步是:所述中心控制机发送同步触发请求至少提前触发信号发出 的时刻一分钟发出。

本发明与现有技术相比具有如下优点:本发明改变了传统测量方法,在接 线方式和算法上考虑了其它相对被测相的影响以及工频干扰的存在,特别是在 长距离输电线路中,用本发明方法测量得出来的自阻抗和自导纳减少了误差, 满足了工程的需要。

下面结合附图和实施例对本发明作一详细描述。

附图说明

图1同塔双回输电线路相阻抗参数定义图;

图2相自阻抗测量过程中等效图;

图3同塔双回线路相导纳参数定义图;

图4相自导纳测量过程中等效图。

具体实施方式

一种交流特高压同塔双回线路相自导纳、相自阻抗参数测量方法,是同塔 双回A1、B1、C1、A2、B2、C2六相输电线路50Hz频率下相自导纳、相自阻 抗参数测量方法:

所述相自导纳测量包括以下步骤:

第一步:将被测相首端与末端开路,其余未被测相首端和末端对地短路;

第二步:在被测相首端施加交流电压,首末端同步测量获得被测相首端电 压、首端电流、末端电压、末端电流,其中末端电流测量为零,所述首末端同 步测量的时间误差小于1微秒;

第三步:由下述公式获得相自导纳:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2      公式一;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为相波阻抗,λ为相线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0, g0、b0分别为相导线单位长度相自电容、相自电阻、相自电抗、相自电导和相 自电纳,z为相自阻抗(此时的相自阻抗z是为测量相自导纳而采用的接线方 式的自阻抗,因此与实际的自阻抗误差大,不能使用),y为相自导纳;

所述相自阻抗测量包括以下步骤:

第一步:将被测相首端开路,被测相末端对地短路,其余未被测相首端和 末端开路;

第二步:在被测相首端施加交流电压,首末端同步测量获得被测相首端电 压、首端电流、末端电压、末端电流,其中末端电压为零,所述首末端同步测 量的时间误差小于1微秒;

第三步:由下述公式获得相自阻抗:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2     公式二;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为相波阻抗,λ为相线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0, g0、b0分别为相导线单位长度相自电容、相自电阻、相自电抗、相自电导和相 自电纳,z为相自阻抗,y为相自导纳(此时的相自导纳y是为测量相自阻抗而 采用的接线方式的自导纳,因此与实际的自导纳误差大,不能使用)。

实施例在所述方法中,当A1、B1、C1、A2、B2、C2六相输电线路中有其 它工频干扰时:

所述相自导纳测量的步骤进一步是:

第一步:将被测相首端与末端开路,其余未被测相首端和末端对地短路;

第二步:在被测相首端分别加入以50Hz频率为中点的上下绝对误差值相等 的两个频率下的交流电压,首末端同步测量获得被测相首端两个频率下的交流 电压、首端电流、末端电压、末端电流,其中末端电流测量为零,所述首末端 同步测量的时间误差小于1微秒;

第三步:采用FFT傅里叶变换滤波算法获得两个频率下的电压和电流;

第四步:由下述公式分别获得两个频率下相自导纳:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2     公式三;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为波阻抗,λ为线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0,g0、 b0分别为相导线单位长度自电容、自电阻、自电抗、自电导和自电纳,z为导 线自阻抗,y为相自导纳;

第五步:将获得两个频率下相自参数取平均得到50Hz频率下的相自导纳;

所述相自阻抗测量的步骤进一步是:

第一步:将被测相首端开路,被测相末端对地短路,其余未被测相首端和 末端开路;

第二步:在被测相首端分别加入以50Hz频率为中点的上下绝对误差值相等 的两个频率下的交流电压,首末端同步测量获得被测相首端两个频率下的交流 电压、首端电流、末端电压、末端电流,所述首末端同步测量的时间误差小于 1微秒;

第三步:采用FFT傅里叶变换滤波算法获得两个频率下的电压和电流;

第四步:由下述公式分别获得两个频率下相自阻抗:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2     公式四;

公式中分别表示所测相首端电压、电流和末端电压、电流,l为 线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为电 源角频率,Zc为波阻抗,λ为线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0,g0、 b0分别为相导线单位长度自电容、自电阻、自电抗、自电导和自电纳,z为相 自阻抗,y为相自导纳;

第五步:将获得两个频率下相自阻抗取平均得到50Hz频率下的相自阻抗。

实施例中:所述的绝对误差值是1.5Hz至3Hz。

一个更详细的说明是:为避开试验中工频信号的干扰,相自参数测量使用 异频电源,电源频率选择接近50HZ的异频47.5HZ和52.5HZ,分别用两个频率 测量,如果测量信号中有工频干扰,则所测电压电流信号由异频信号与50Hz工 频干扰叠加组成,利用FFT傅里叶变换提取其中的异频信号,再计算异频下的 相自参数R47.5、X47.5、R52.5、X52.5,C47.5以及C52.5,50HZ频率下的自参数按照以 下方法获得:

R50=(R47.5+R52.5)÷2         (1)

X50=(X47.5×5047.5+X52.5×5052.5)÷2---(2)

C50=(C47.5+C52.5)÷2          (3)

相相自阻抗为:z=R50+jX50,自电容为:C50

如果不考虑相导线的分布参数特性,输电线路相阻抗参数电路图可等效如 图1所示:

图1中j是1、2、3、4、5、6,按顺序表示两回线路A1、B1、C1、A2、B2、 C2相,A1、B1、C1是1回线路A、B、C三相,A2、B2、C2是2回线路A、B、C 三相,Z11到Z66为相导线的自阻抗,Z1j到Z5j为A1到B2相相间互阻抗,到是导线首末端之间的电压差。

由图1可列出以下矩阵方程:

ΔU·1ΔU·2ΔU·3ΔU·4ΔU·5ΔU·6=Z11Z12Z13Z14Z15Z16Z21Z22Z23Z24Z25Z26Z31Z32Z33Z34Z35Z36Z41Z42Z43Z44Z45Z46Z51Z52Z53Z54Z55Z56Z61Z62Z63Z64Z65Z66I·1I·2I·3I·4I·5I·6---(4)

ΔU·=ZI·

其中矩阵Z为相阻抗矩阵,对角线元素Zii(i=1,2,3,4,5,6)为相自阻抗, 是本实施例所要测量的相自阻抗,非对角线元素Zij(i,j=1,2,3,4,5,6,j≠i) 为相间互阻抗,且Zij=Zji

以A1相为例:ΔU·1=Z11I·1+Z12I·2+Z13I·3+Z14I·4+Z15I·5Z16I·6,Z11为本实施例所要测量 的相自阻抗,由方程可知,为了测量获得自阻抗Z11的值,在测量过程中,可让 非测量相的为零,也就是让2,3,4,5,6相保持两端开路状态, 则自阻抗就是本相导线上首末端电压差与电流的比值, 其不包含本相导线与其它相间的互阻抗。其它相与此相同。

因此,为准确测量相导线自阻抗,让其它相导线两端开路。测量某相自阻 抗时,在该相上施加电源,为让其它相电流为零,其它相保持两端开路状态, 测量相导线电压和电流就可算出自阻抗。

对于长距离线路,由于沿线有分布电容,应考虑分布参数特性,阻抗受电容 的影响,相参数测量时等效电路可转变为等效集中参数π电路,以测量A1相为 例,如图2所示,

图中j是1、2、3、4、5、6,按顺序表示两回线路A1、B1、C1、A2、B2、 C2相,图中将长距离同塔双回线路等效为π模型,Y1到Y6为A1到C2相导线等 效对地总导纳,Y1j到Y5j为A1到B2相对其它相间互导纳,Z11到Z66为相导线自 阻抗,Z1j到Z5j为A1到B2相集中参数的相间互阻抗。

由图2可看出,由于长距离线路分布参数特性,受并联导纳影响矩阵方程(4) 中电流不等于线路首端电流,不能直接使用上述中所列的电压除以电流 获得自阻抗,需要考虑分布参数特性,否则会产生误差。因此,应 采用解长线方程的方法求解自阻抗,接线方式与上述相同,采用将被测相首端 开路,被测相末端对地短路,其余未被测相首端和末端开路;在被测相首端加 入交流电压,首末端同步测量获得被测相首端电压、首端电流、末端电压、末 端电流;采取以下方法求解自阻抗,当测量某相导线自阻抗时,该相导线首末 端仍然遵守长线方程中首末端电压电流的关系式(5),通过求解长线方程,获 得相导线自阻抗并消除分布参数的影响:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2---(5)

公式(5)中分别表示所测相首端电压、电流和末端电压、电流, l为线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为 电源角频率,Zc为相波阻抗,λ为相线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、 x0,g0、b0分别为相导线单位长度相自电容、相自电阻、相自电抗、相自电导 和相自电纳,z为相导线自阻抗,y为相导线自导纳。

z=r0+jx0就是所求导线单位长度自阻抗。

作为同塔双回线路自导纳定义输电线路相导纳参数电路图可等效为如图3 所示,忽略阻抗。

由图3可知同塔双回线路相导纳矩阵Y可表示为:

I·1I·2I·3I·4I·5I·6=Y11-Y12-Y13-Y14-Y15-Y16-Y21Y22-Y23-Y24-Y25-Y26-Y31-Y32Y33-Y34-Y35-Y36-Y41-Y42-Y43Y44-Z45-Y46-Y51-Y52-Y53-Y54Y55-Y56-Y61-Y62-Y63-Y64-Y65Y66U·1U·2U·3U·4U·5U·6---(6)

I·=YU·

j是1、2、3、4、5、6,按顺序表示两回线路A1、B1、C1、A2、B2、C2相, 其中矩阵Y为相导纳矩阵,对角线元素Yii(i=1,2,3,4,5,6)为相自导纳, 相自导纳是相导线对地导纳及与其它相间互导纳之和; 非对角线元素Yij(i,j=1,2,3,4,5,6,j≠i)为相间互导纳,且Yij=Yji。通过 公式Y=2πfC,可求得相电容矩阵。

由以上分析可知,以A1相为例,式(6)中为了获得相自导纳Y11,可让和均为零,也就是让2、3、4、5、6 相均接地,则上述矩阵中,求出自导纳

因此为准确测量相导线自导纳,让其它相导线两端接地。

对于长距离特高压同塔双回线路自导纳测量,按照以上接线方式,测量长 距离特高压同塔双回线路相自导纳时等效图如图4所示:

以A1相为例,按照上述方法将其它相两端接地,等效电路图如图4,Z1为相 导线集中参数的自阻抗。由于导线上存在阻抗,具有分布参数特性,A1相导线 沿线电压和电流均不相等,不能直接用上述第(5)节中所列首端电流除以电压 获得,需考虑分布参数特性。因此,按照以下方法求解:当测量某相 导线自阻抗时,该相导线首末端电压和电流关系仍然遵守长线方程中首末端电 压和电流的关系式,通过求解长线方程,获得相导线自导纳并消除分布参数的 影响:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2---(7)

公式(7)中分别表示所测相首端电压、电流和末端电压、电 流,

l为线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为 电源角频率,Zc为波阻抗,λ为线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0, g0、b0分别为相导线单位长度自电容、自电阻、自电抗、自电导和自电纳,和 传播常数λ,z为相导线自阻抗,y为相导线自导纳;

y=g0+jb0、c0就是所求相导线单位长度自导纳和自电容。

作为双端同步测量计算方法:

上述测量自阻抗和自导纳时需要首末端电压和电流,为了获得同步电压和 电流信号,使用基于GPS双端同步测量方法,测量某相自阻抗或自导纳时,线 路首端施加电源,首末两端同步测量该相导线电压和电流,为了实现同步测量, 以GPS同步时钟信号作为测量的时间基准,双端同步测量信号,同步时钟精度 要优于1μS。

对于所测相导线首末两端电压和电流有如下关系:

U·1I·1=coshλlZcsinhλlsinhλlZccoshλlU·2I·2---(8)

公式(8)中分别表示所测相首端电压、电流和末端电压、电 流,

l为线路长度,ZC=z/y=(r0+jx0)/(g0+jb0),λ=zy=(r0+jx0)(g0+jb0),b0=ωc0,ω为 电源角频率,Zc为波阻抗,λ为线路传播常数,z=r0+jx0,y=g0+jb0,c0、r0、x0, g0、b0分别为相导线单位长度自电容、自电阻、自电抗、自电导和自电纳,z为 相导线自阻抗,y为相导线自导纳;

所测首末端电压和电流代入上式(8),其中,测量自阻抗时 测量自电容时先求解波阻抗Zc和传播常数λ:

对于传播常数λ可推导如下:

coshλl=I·1U·1+I·2U·2I·2U·1+I·1U·2---(9)

测量相自阻抗时有:coshλl=I·1I·2---(10)

测量相自导纳时有:coshλl=U·1U·2---(11)

对于波阻抗Zc可推导如下:

Zc=U·1-U·2coshλlI·2sinhλl,或者Zc=U·2sinhλlI·1-I·2coshλl

测量相自阻抗时有:Zc=U·1I·2sinhλl---(12)

测量相自电容时有:Zc=U·2sinhλlI·1---(13)

根据式(10)(11)可以求得λl,进而求得λ。根据式(12)、(13)可以求 得波阻抗Zc

再根据λ、Zc与z、y的关系列方程(14)和(15)。

z=λ×Zc    (14)y=λ/Zc     (15)

解方程组获得所需参数c0、r0、x0和g0

电阻部分扣减试验引线电阻并转换到20℃温度下,转换方法为:

r20=r/[1+β(t-20)]     (16)

β为电阻的温升系数,对于铝导线,β=0.0036(1/℃)。

实施例中:所述首末端同步测量获得被测相首端电压、首端电流、末端电 压、末端电流的方法是:

第一步,由一个中心控制机向设置在首末端的两个同步触发装置发送一个 同步触发请求,两个同步触发装置收到请求后向中心控制机回复一个响应信号, 本地同步触发装置和远端同步触发装置同时启动同步触发程序;其中,所述中 心控制机发送同步触发请求必须提前触发信号发出的时刻发出;

第二步,等待触发时刻到,当触发时刻到,本地同步触发装置和远端同步触 发装置同时发出触发信号启动两端同步测量;

其中,所述本地同步触发装置和远端同步触发装置实时接收GPS授时模块 送来的1PPS秒脉冲信号和UTC时间信息;当接收到GPS的1PPS秒脉冲信号时, 用GPS的1PPS秒脉冲信号对本地同步触发装置和远端同步触发装置中的触发秒 脉冲进行同步校正;当没有GPS的1PPS秒脉冲信号时,保持最后一次同步校正 的触发秒脉冲以UTC时间计时。

实施例中:所述的触发秒脉冲是计数脉冲周期等于10纳秒的基准计数脉冲 到一秒时发出的触发秒脉冲。

实施例中:所述中心控制机发送同步触发请求至少提前触发信号发出的时刻一 分钟发出。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号