首页> 中国专利> 一种被动合成孔径目标信号检测和分辨方法及系统

一种被动合成孔径目标信号检测和分辨方法及系统

摘要

本发明提供了一种被动合成孔径目标信号检测和分辨方法及系统,所述的方法包含:步骤101)构造在拖线阵移动下对目标信号的运动多普勒接收模型;步骤102)依据被动合成孔径声纳算法利用阵列在固定的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收的目标信号做互相关平均,然后对不同时间段各阵元接收的目标信号进行频域波束形成处理;步骤103)对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出;步骤104)按多普勒接收模型对时间延迟及空间位置移动进行相位估计,依据位估计获取相位修正因子;步骤105)将分时间段各次相位修正因子用于补偿所述波束输出,对补偿后的波束输出相干组合累加并采用时间方位历程图实现对目标的检测。

著录项

  • 公开/公告号CN103529441A

    专利类型发明专利

  • 公开/公告日2014-01-22

    原文格式PDF

  • 申请/专利权人 中国科学院声学研究所;

    申请/专利号CN201210227963.6

  • 发明设计人 赵闪;陈新华;余华兵;

    申请日2012-07-02

  • 分类号G01S7/539(20060101);

  • 代理机构11318 北京法思腾知识产权代理有限公司;

  • 代理人杨小蓉;杨青

  • 地址 100190 北京市海淀区北四环西路21号

  • 入库时间 2024-02-19 22:44:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-06-28

    未缴年费专利权终止 IPC(主分类):G01S7/539 授权公告日:20150617 终止日期:20180702 申请日:20120702

    专利权的终止

  • 2015-06-17

    授权

    授权

  • 2015-02-11

    著录事项变更 IPC(主分类):G01S7/539 变更前: 变更后: 申请日:20120702

    著录事项变更

  • 2014-02-26

    实质审查的生效 IPC(主分类):G01S7/539 申请日:20120702

    实质审查的生效

  • 2014-01-22

    公开

    公开

说明书

技术领域

本发明涉及水声被动声纳信号检测方法和拖线阵被动合成孔径声纳(Passive  Synthetic Aperture Sonar,PSAS)技术用于目标信号检测和分辨的算法,尤其涉及一种 运动非重叠孔径拖线阵被动合成孔径信号检测方法及系统。

背景技术

近年来,被动声纳系统对低噪声目标的检测变得越来越重要,且越来越困难, 其检测能力随着安静型目标的出现和迅猛发展而受到严重挑战。纵观声纳发展史, 高分辨和高增益一直是声纳领域追求的目标,为提高声纳探测距离,其工作频段越 来越低,而低频条件下提高方位分辨力意味着更长的水听器阵列,但由于拖曳过程 中的稳定性和机动性的限制,把基阵长度增加到太大的量级是不现实的,被动合成 孔径算法是解决此问题的一种重要手段,其通过拖曳线列阵运动合成得到比实际孔 径大得多的合成孔径阵列,依靠短阵的机动突破阵列孔径的限制,获得更高的增益 和更高的方位分辨力。依据水下舰船等目标特性分析得知螺旋桨的桨叶切割海水产 生单频信号分量等线谱成分为合成一个比物理孔径大得多的有效孔径提供了可能, 被动合成孔径声纳技术实现方法为在阵列相继两次运动时,对空间位置上重叠部分 的水听器接收信号做互相关平均,作为后此未重叠水听器接收信号的相位修正因子, 将此相位修正因子用于运动阵相继位置上的波束输出的相干组合可得到扩展的拖线 阵等效长度。由于实际水下复杂环境下介质和路径扰动引起的阵列移动偏差,常规 被动合成孔径声纳算法相位修正补偿在间隔时间固定的两个连续位置上,阵元孔径 前后不完全重合,使得相位估计因子出现误差甚至错误,即PSAS算法如扩展拖线 尺寸算法进行阵列扩展中存在有重叠阵元位置约束问题,导致不能有效检测和分辨 水下目标信号。重叠阵元(孔径)被动合成孔径声纳算法一般用于理想情况下目标信号 的检测和分辨,考虑水声信道等复杂因素影响,实际应用中拖线阵维持恒定速度以 保证连续测量时重叠水听器的空间位置相同难以满足,不具有可行性、通用性及实 用性,使被动合成孔径声纳常规信号检测和分辨方法不能在工程合理得到应用。

发明内容

本发明的目的在于,被动声纳拖曳线列阵应用较短的基阵获得几倍到几十倍的 实际物理孔径阵的增益和分辨力,实现对水下弱目标信号的有效检测,并使得被动 合成孔径技术有效应用到工程实际中,即本发明提供了一种被动合成孔径目标信号 检测和分辨方法及系统。

为了实现上述目的,本发明提供了一种被动合成孔径目标信号检测和分辨方法, 该方法应用被动合成孔径技术实现对水下弱目标信号进行有效检测,所述的方法包 含:

步骤101)构造在拖线阵移动下对目标信号的运动多普勒接收模型;

步骤102)依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生相 继两次运动时,分别对空间位置上重叠部分的水听器接收的目标信号做互相关平均, 即将接收的目标信号进行分时间段处理,分析每相邻两次时间段的接收信号,然后 对不同时间段各阵元接收的目标信号进行频域波束形成处理;

步骤103)对频域波束形成后的输出分频带进行能量积分得到各时间段波束输 出;

步骤104)按拖线阵移动下构建的多普勒接收模型,分别对时间延迟及空间位置 移动进行相位估计,并依据得到的相位估计获取相位修正因子;

步骤105)将分时间段各次相位修正因子用于补偿步骤103)的波束输出,对补 偿后的波束输出相干组合累加进而获得时间方位历程图,读出目标所在方位,将其 方位记录进行处理及判别,实现对目标的检测。

上述技术方案中,所述重叠部分的水听器的具体重叠数目为拖线阵阵元总个数 的一半。

上述技术方案中,所述相位修正因子为时间延迟估计和空间位置移动相位估计 的和。

上述技术方案中,所述步骤102)进一步包含如下子步骤:

步骤102-1)依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间间隔发生 相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关平均,即 将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号;

其中,该步骤还包含采用线谱检测策略检测接收的目标信号中的有用的信号;

步骤102-2)然后对不同时间段各阵元接收信号进行频域波束形成处理。

上述技术方案中,所述步骤105)进一步包含如下子步骤:

步骤105-1)依据步骤104)得到的“相位估计获取相位修正因子”及步骤103) 中“各时间段波束输出”,分时间段处理,将各时间段的相位修正因子与对应时间段 波束输出进行相乘等处理,即完成对“分时间段各次相位修正因子用于补偿步骤103) 的波束输出”;

步骤105-2)将上述各时间段的信号进行叠加,即对补偿后的波束输出进行相干 组合累加进而获得时间方位历程图;

步骤105-3)再对时间方位历程图波束输出进行检测,得到目标波束对应方位, 具体为:将不同频带内目标波束对应的检测方位进行记录,将各频带内存储的方位 进行二次拟合,根据计算结果计算方位估计方差,将计算的方位估计方差与设定的 检测方差门限进行比较,若小于门限,则检测到的水声目标信号结果属实,接收到 水下目标信号确实含有水声目标信号,否则检测结果为虚警,接收到的信号中不含 目标信号,综完成目标信号的检测和定位。

基于上述方法本发明提供了一种被动合成孔径目标信号检测和分辨系统,该系 统应用被动合成孔径技术实现对水下弱目标信号进行有效检测,所述的系统包含:

接受模型建立模块,用于构造在拖线阵移动下对目标信号的运动多普勒接收模 型;

第一处理模块,用于依据被动合成孔径声纳算法利用拖线阵阵列在固定的时间 间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做互相关 平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号,然后 对不同时间段各阵元接收信号进行频域波束形成处理;

第二处理模块,用于对频域波束形成后的输出分频带进行能量积分得到各时间 段波束输出;

时空相位修正因子获取模块,用于按拖线阵移动下构建的多普勒接收模型,分 别对时间延迟及空间位置移动进行相位估计,并依据得到的相位估计获取相位修正 因子;和

运动相位误差补偿及检测结果输出模块,用于将分时间段各次相位修正因子用 于补偿所述的波束输出,对补偿后的波束输出进行相干组合累加进而获得时间方位 历程图,再由其时间方位历程图得到目标波束对应方位,完成目标信号的检测和定 位。

上述技术方案中,所述重叠部分的水听器的具体重叠数目为拖线阵阵元总个数 的一半。

上述技术方案中,所述相位修正因子为时间延迟估计和空间位置移动相位估计 的和。

上述技术方案中,所述第一处理模块进一步包含如下子模块:

分时间段处理子模块,用于依据被动合成孔径声纳算法利用拖线阵阵列在固定 的时间间隔发生相继两次运动时,分别对空间位置上重叠部分的水听器接收信号做 互相关平均,即将接收信号进行分时间段处理,分析每相邻两次时间段的接收信号; 和

频域波束形成子模块,用于对不同时间段各阵元接收信号进行频域波束形成处 理。

上述技术方案中,所述运动相位误差补偿及检测结果输出模块进一步包含如下 子模块:

运动相位误差补偿子模块,用于将分时间段各次相位修正因子补偿波束输出;

相干组合处理子模块,用于对补偿后的波束输出进行相干组合累加;和

检测结果输出子模块,用于由时间方位历程图得到目标波束对应方位,完成目 标信号的检测和定位。

其中,上述技术方案中时间方位历程图观测是水声信号检测中常用方法,无需 赘述,简要描述如下:时间方位历程图通过对连续的采样数据进行短时傅里叶变换 而构成,将原始信号的采样序列进行分帧处理(如分为100帧,每帧2000个点), 帧间相互重叠50%,分别对各帧信号进行波束形成处理,得到各帧对应目标方位, 将各帧的时间联合即得到时间方位历程图。总之,采用一张时间方位历程图可以读 出目标所在方位,将其方位记录进行后续拟合处理及门限判别,可以实现对目标的 有效检测。

综上所述,本发明提供了一种提出一种基于运动非重叠孔径拖线阵被动合成孔径 目标信号的检测和分辨方法,该方法避免由于复杂水声环境影响而使拖曳线阵列难 以维持恒定速度,继而不能保证连续测量时重叠水听器的空间位置相同,提出的非 重叠孔径PSAS算法在相邻时间间隔两次移动前后阵元不用完全重合,分别利用时 延及空间位置移动等相位修正因子能够精确补偿运动相位误差。所述的方案包括对 水下舰船等目标辐射噪声的特性分析及拖线阵移动下运动多普勒接收信号模型的构 建,考虑目标信号可利用线谱检测技术检测到有用信号,所述方法可利用频域波束 形成予以处理,通常针对宽频带信号进行分析,提取该频率范围内信号,继而得到 波束输出,同时由于阵列运动接收时目标频率会发生多普勒频移,具体考虑线列阵 接收信号时多普勒频域带来的误差,所述运动非重叠孔径拖线阵被动合成孔径信号 检测方法可以直接用于相位延时补偿,不用考虑阵元相互完全重叠。

与现有技术相比,本发明所提出的一种基于运动非重叠孔径拖线阵被动合成孔 径目标信号的检测和分辨方法具有以下优点:

一方面,该方法无需知道信号源的方位角、确切频率和准确的拖曳阵速度,通 过相位估计补偿修正即能合成水听器的接收数据,无需确保阵元位置必须完全重合, 通过时间延迟及空间位置移动可获得相位修正补偿因子,被动合成孔径算法应用于 信号检测不受孔径位置的约束限制,在波束域代替其在阵元域上进行相位修正,直 接用于相位修正补偿;

另一方面,结合对水下舰船等目标辐射噪声特性的分析及拖线阵移动下运动多 普勒接收信号模型的构建,其中分析舰船噪声特性不仅为水下螺旋桨切割形成线谱 信号的被动合成孔径技术奠定基础,而且为后续信号检测对拖船噪声抵消等技术提 供理论参考;阵列移动的多普勒接收信号模型构建对信号形成、阵元移动接收等作 清晰认识,更加明确被动合成孔径的合成阵列接收信号形成及相位修正补偿方法;

其次,在所述方案中含线列阵接收信号时多普勒频域带来的误差,综合考虑其 时间延迟、空间位置移动、多普勒频移等影响因子带来的相位不一致,由于时间延 迟及空间位置移动只要保证相邻时间间隔移动前后两次阵列有超过阵列长度一半的 孔径长度重合即可对其做修正补偿,不必细化考虑阵列移动重合位置,更不必要求 阵列孔径完全重合,避免由于阵元位置移动偏差孔径未完全重合而导致的检测信号 目标方位不精确,拖线阵移动中接收信号分时间段处理,对不同时间段拖线阵基阵 各阵元接收信号进行频域波束形成处理,并对频域波束形成后的输出分频带进行能 量积分即可得到波束输出;

最后,由于孔径非重叠运动拖线阵被动合成孔径信号检测方法可以直接用于相 位延时补偿,不用考虑阵元相互完全重叠,应用较短的基阵获得几倍到几十倍的实 际物理孔径阵的增益和分辨力,对水下弱目标信号的检测能力优异,速度较快,其 具有一定的工程实用性。

附图说明

图1是本发明利用水平线列阵对水下目标的辐射噪声进行噪声检测的简图;

图2是本发明的基于运动拖线阵阵元移动重叠(孔径未完全重叠)被动合成孔径 原理图;

图3是运动非重叠孔径拖线阵被动合成孔径信号检测及分辨方法流程图

具体实施方式

下面结合附图和具体实施例,详细阐述此方法在孔径未完全重叠时相位修正补 偿的工作流程。

本发明提出一种基于运动非重叠孔径拖线阵被动合成孔径目标信号的检测和分 辨方法,避免由于复杂水声环境影响而使拖曳线阵列难以维持恒定速度,继而不能 保证连续测量时重叠水听器的空间位置相同,即提出的非重叠孔径PSAS算法不必 要求相邻时间间隔两次移动前后阵元完全重合,分别利用时间延迟及空间位置移动 等时空联合相位修正能够精确补偿运动相位误差。本发明提供一种被动合成孔径算 法可以直接用于相位延时补偿,不用考虑阵元相互完全重叠,对水下弱目标信号的 检测能力优异,速度较快,其具有一定的工程实用性。

为了实现上述目的,本发明提供了一种运动非重叠孔径拖线阵被动合成孔径目 标信号检测和分辨方法,其特征在于综合考虑实际水声复杂水声环境中拖线阵运动 不规则导致阵元孔径不完全重叠的情况下,能够对水下弱目标信号进行有效检测, 所述方法包含如下步骤:

步骤(1)以水下舰船等目标辐射噪声特性分析为基础构造信号在拖线阵移动下运 动多普勒接收模型;

步骤(2)在构建信号接收模型的基础上,考虑将拖线阵移动中实际接收信号进行 分时间段处理,对不同时间段拖线阵基阵各阵元接收信号进行频域波束形成处理;

步骤(3)对步骤(2)频域波束形成后的输出分频带进行能量积分得到波束输出;

步骤(4)分别对步骤(2)和步骤(3)中由于分时间段处理引起的时间延迟及由于空 间位置移动进行相位估计;

步骤(5)将步骤(4)中分时间段的各次相位修正因子用于步骤(3)波束输出补偿,相 干组合输出得到目标波束对应方位,实现对目标信号的有效检测。

上述技术方案中,所述步骤(2)和步骤(3)还考虑线列阵接收信号时多普勒频域带 来的误差,综合考虑时间延迟、空间位置移动、多普勒频移等影响因子带来的相位 不一致,由于时间延迟及空间位置移动只要保证相邻时间间隔移动前后两次阵列有 超过阵列长度一半的孔径长度重合即可对其做修正补偿,不必细化考虑阵列移动重 合位置,更不必要求阵列孔径完全重合,避免由于阵元位置移动偏差孔径未完全重 合而导致的检测信号目标方位不精确。

上述技术方案中,所述步骤(1)进一步包含对水下舰船噪声的分析及拖线阵移动 下运动多普勒接收信号模型的构建:其中分析舰船噪声特性不仅为水下螺旋桨切割 形成线谱信号的被动合成孔径技术奠定基础,而且为后续信号检测对拖船噪声抵消 等技术提供理论参考;阵列移动的多普勒接收信号模型构建对信号形成、阵元移动 接收等作清晰认识,为被动合成孔径的合成阵列接收信号分析及相位补偿指明思路。

船体的机械噪声、螺旋桨噪声以及水动力噪声是舰船船噪声的三种主要来源, 其中机械噪声和螺旋桨噪声是舰船噪声的主要声源。机械噪声是航行或行业舰船上 的各种机械振动,通过船体向水中辐射而形成的噪声,由于各种机械运动形式的不 同,其产生的水下辐射噪声性质也就不同,此噪声可以看成是强线谱和弱连续谱的 迭加;螺旋桨噪声是由旋转着的螺旋桨所辐射的噪声,包括螺旋桨空化噪声和螺旋 桨叶片振动所产生的噪声,往往是舰船辐射噪声高频段的主要部分;水动力噪声由 不规则的、起伏的海流流过运动船只表面而形成,是水流动力作用于舰船的结果, 在强度方面一般被机械噪声和螺旋桨噪声所掩盖。

水下舰辐射噪声谱特性与频率、航速、深度有关,低航速时谱的低频端主要为 机械噪声和螺旋桨叶片速率谱线,随着频率增高,该谱线不规则地降低;航速较高 时螺旋桨空化噪声的连续谱更为重要,掩盖了很多线谱。舰船辐射噪声信号的总的 功率谱可以写成宽带连续谱与线谱的和:

G(t,f)=Gs(f)+GL(f)+2m(t)m(f)Gs(f)

式中Gs(f)表示平稳连续功率谱,GL(f)表示线谱部分,2m(t)m(f)Gs(f)表示非平稳 时变谱,m(t)和m(f)分别为调制函数和调制深度谱。对于舰船辐射噪声而言,给定的 航速和深度下,谱的主要成分与临界频率有关,通常的舰船临界频率约在100~1000Hz 之间,低于此频率时,谱的主要成分时船的机械和螺旋桨的线谱,高于此频率时, 谱的主要成分则是螺旋桨空化的连续噪声谱。依据研究表明,舰船辐射噪声的频域 特性是宽带连续谱与窄带线谱的迭加,窄带谱线主要集中在1kHz以下,而宽带连续 谱则覆盖了多个倍频程。

实际测量中由于目标信号与接收阵列水听器相互运动,存在多普勒信号接收问 题。图1(见附图说明)为利用水平线列阵对水下目标的辐射噪声进行噪声检测的简图, 舰船或被测目标经过水平线列阵时,对噪声信号进行采样,完成对噪声源的检测。 对于N个基元组成的线列阵,由于拖曳速度的存在相互运动,使接收到的信号与辐 射声源存在频率不一致情况,且相对声源运动接收频率变高,背离声源运动接收频 率变低。

对于辐射噪声信号s(t)复包络可以表示为

s(t)=Re[s·(t)ej2πfct]

信号经一定延时到达接收水听器,N个阵元叠加形成f(t)

f(t)=Σn=1Nan(t)s(t-xnc)

=Re[Σn=1Nan(t)s·(t-τ(n))ej2πfc(t-τ(n))]

当接收阵以速度v运动时,每次运动时间为△t,角度为an,相应的路径长度随 时间发生变化

△xn=v△tcosan

接收到信号为

f(t)=Re[Σn=1Nan(t)s·(t-xn-Δxnc)ej2πfc(t-xn-Δxnc)]

=Re[Σn=1Nan(t)s·(t-xnc+tcosαnc)ej2πfc(t-xnc+tcosαnc)]

考虑拖线阵对目标信号运动接收,由于采样时间间隔序列变化,会导致接收频 率与目标信号频率不一致。

步骤(2)和步骤(3)将拖线阵移动中接收信号分时间段处理,对不同时间段拖线阵 基阵各阵元接收信号进行频域波束形成处理,并对频域波束形成后的输出分频带进 行能量积分得到波束输出。声纳波束形成的目的是对多个基元构成的线列阵经过适 当的处理得到在预定方向上的指向性,目标信号可利用线谱检测技术检测到有用信 号,进一步利用频域波束形成予以处理,通常针对于目标范围fmin~fmax宽频带信号 可以对频率范围的信号进行分析,提取该频率范围内信号,继而得到波束输出,由 于阵列运动接收时目标频率会发生多普勒频移,即接收频率与目标信号不一致,所 以应具体考虑线列阵接收信号时多普勒频域带来的误差。

拖线阵用于被动合成孔径原理示意图如图2(见附图说明),应用于被动合成孔径 常规信号检测算法,阵元数为N的拖曳阵阵元间距是d,运动速度是v。在t=0时刻, N元基阵对声场进行空间采样,τ秒后,基阵移动距离为vτ,选择合理的参数v,使 得基阵在时间间隔τ秒移动q个基元位置,运动Jτ后,扩展为(N+Jq)个阵元即可视 为一个虚拟阵。对于一个由N个水听器组成的间隔为d的等间隔线阵,以速度v向 前拖动,考虑水下单点声源,考虑多普勒影响,接收信号采样频率为fs,采样时间间 隔为Ts=1/fs,实际信号采样时间间隔为ti,每个水听器的时间样本可表示为:

xn(ti)=Aexp[j2πf(tin)]+ξn,j

式中n=1,2…N,阵元;A-幅度;f-频率;ti-第i个采样时间,τn为第n号水听器 相对于1号水听器时间延迟,如图1所示,

τn=(Rn-R1)/c

其中ξn,j是独立、零均值高斯随机噪声。

将拖线阵移动中接收信号分时间段处理,单个水听器时间序列的傅里叶变换为

Xn(f)=Σi=1Jxn(ti)exp(-j2πfti)

对不同时间段拖线阵基阵各阵元接收信号进行频域波束形成处理,在时刻t0的 波束输出为:

b(f0,θs)t0=Σn=1NXn(f0)exp[j2πf0d(n-1)sinθsc]

式中θs变化的角度。在t=ti+τ时刻,阵响应为:

b(f0,θs)t=Σn=1N{Σi=2Jxn(ti+τ)exp(-j2πf0ti)}exp[j2πf0d(n-1)sinθsc]

可得出:

b(f0,θs)t=b(f0,θs)t0exp[j2πf0(τ-sinθc)]

Jτ秒之后,阵列运动距离为v·Jτ,故在时刻ti+lτ表达式为:

B(f0,θs)=Σi=1Jb(f0,θs)exp[-jΦi]

式中:i-子波束经过J次相位补偿并相干求和后产生合成孔径波束输出,i=1,…,J, Φi-相位修正因子,Φi=2πf0(1±vsinθsc).

运动拖线阵被动合成孔径方法中重叠阵元数目直接决定相位修正因子的估计结 果,常规被动合成孔径算法要求阵列相继两次运动时对空间位置上重叠部分的水听 器接收信号做互相关平均,阵元应完全重叠以精确作为后次未重叠水听器上接收信 号的相位修正因子,最优重叠阵元数目为N/2。实际基阵在运动时由于受水下复杂环 境介质和路径的扰动的影响,不可能使阵列相继两次运动前后精确地达到重合。提 出的一种运动非重叠孔径拖线阵被动合成孔径信号检测方法可以直接用于相位延时 补偿,不用考虑阵元相互完全重叠,在波束域代替其在阵元域上进行相位修正。

t=0时刻n阵元接收到信号xn(ti),对其作M点FFT,对应第k阵元为X0(k,K), K=1,…,M,进一步作频域波束形成后各阵元输出累加,将各阵元输出作累加将其由 阵元域转换为波束域:

S0=Σk=1NX0(k,K)exp[-j2π(K-1)fsM(k-1)Δτ]

式中fs-采样频率,同样将运动τ秒后的信号xn(ti+τ),对其作M点FFT,对应 第k阵元为X1(k,K),K=1,…,M,结合步骤(2)、(3)进一步作频域波束形成后各阵元 输出累加,有:

S1=Σk=1NX1(k,K)exp[-j2π(K-1)fsM(k-1)Δτ]

技术方案中步骤(4)分别对时间延迟及空间位置移动进行相位估计,为保持相位 一致,分别对空间位置移动及时间延迟变化予以考虑,对运动τ秒后S1进行补偿, 空间移动补偿,运动距离为v·τ,在此v·τ可以为各阵元间距d的非整数倍,

P1=S1·exp[-j2π(K-1)fsMdΔτ]

考虑时间延迟补偿,运动τ秒,有:

P2=S1·exp[-j2π(K-1)fsMτ]

联合考虑空间及时间上变化,即时间延迟及空间位置移动相位修正,将P1和P2相加,得到阵列移动前后总相位修正补偿:

P0=P1+P2

所述方案步骤(5)考虑将分时间段各次相位修正因子用于波束输出补偿,相干组 合输出得到目标波束对应方位,实现对目标信号的有效检测。总相位修正补偿累加 得到对应合成输出与角度有关,虚拟阵元长度为vτ,即扩展后阵元总长度为 Nd+vτ,以此在运动Jτ秒后,N阵元基阵扩展为长度为Nd+vJτ的线列阵。由此 相干组合的累加输出即为运动非重叠孔径拖线阵被动合成孔径检测方法,由于被动 合成孔径算法在移动前后不用考虑阵元相互完全重叠,可直接进行相位修正补偿, 从而实现对目标信号的有效检测。

上述技术方案中,用于运动非重叠孔径拖线阵被动合成孔径信号检测及分辨方 法流程图如图3所示(见附图说明),依次对舰船辐射噪声特性进行分析并构建信号在 拖线阵移动下运动多普勒接收模型,并在此信号接收模型基础上将拖线阵移动中接 收个阵元接收信号分时间段处理,对不同时间段拖线阵基阵各阵元接收信号进行频 域波束形成处理,考虑多普勒频移等因素影响,对于频域波束形成后的输出分频带 进行能量积分进一步得到波束输出,结合构建的信号运动接收构造模型,分别对时 间延迟及空间位置移动进行相位估计,最后将将分时间段各次相位修正因子用于波 束输出的相位补偿修正,相干组合累加输出即得到目标波束对应方位,从而实现对 目标信号的有效检测。

上述方案中,包含对水下舰船等目标辐射噪声的分析及拖线阵移动下运动多普 勒接收信号模型的构建,其中分析舰船噪声特性不仅为水下螺旋桨切割形成线谱信 号的被动合成孔径技术奠定基础,线列阵阵列移动的多普勒接收信号模型构建对信 号形成、阵元移动接收等作清晰认识,更加明确被动合成孔径的合成阵列接收信号 形成及相位修正补偿方法。对于线列阵接收信号时多普勒频域带来的误差,综合考 虑时间延迟、空间位置移动、多普勒频移等影响因子带来的相位不一致。

如图1所示,该图为本发明利用水平线列阵对水下目标的辐射噪声进行噪声检 测的简图,当水下舰船或被测目标经过水平线列阵时,拖曳线列阵对噪声信号进行 采样,水听器阵元的运动接收完成对噪声源的检测,各水听器编号分别为1号水听 器,2号水听器,…(N-1)号水听器,N号水听器,未移动时各水听器接收信号之间 有一定的时间延迟,即接收信号形式相同、相位不同,考虑水下环境噪声,分析水 下舰船等目标辐射噪声特性,构建线列阵处于静止态接收信号模型。

本发明提出一种运动非重叠孔径拖线阵被动合成孔径目标信号检测和分辨方 法,在综合考虑实际水声复杂水声环境中拖线阵运动不规则导致阵元孔径不完全重 叠的情况下,应用被动合成孔径技术实现对水下弱目标信号进行有效检测,在构建 线列阵静止态接收信号模型的基础上,按如下步骤进行后续处理:

步骤(1)构造在拖线阵移动下对目标信号的运动多普勒接收模型;

步骤(2)依据被动合成孔径声纳算法利用阵列在时间间隔确定的相继两次运动 时,对空间位置上重叠部分的水听器接收信号做互相关平均,即将接收信号进行分 时间段处理,分析每相邻两次时间段的接收信号,并对不同时间段各阵元接收信号 进行频域波束形成处理;

步骤(3)对频域波束形成后的输出分频带进行能量积分得到各时间段波束输出;

步骤(4)按拖线阵移动下构建的多普勒接收模型,分别对时间延迟及空间位置移 动进行相位估计;

步骤(5)将分时间段各次相位修正因子用于波束输出补偿,相干组合累加输出由 其时间方位历程图得到目标波束对应方位。

上述方案中步骤(1)考虑线列阵接收信号时存在运动多普勒频移,其中阵元移动 时构建线列阵被动合成孔径算法按各接收时间段接收信号如图2所示,t=0时刻,N 元基阵对声场进行空间采样,τ秒后,移动q个基元位置(孔径可不完全重叠),运动 Jτ后,扩展为(N+Jq)个阵元即可视为一个虚拟阵。步骤(2)、(3)考虑线列阵接收信号 时多普勒频域带来的误差,在线列阵运动接收信号时由于时间延迟及空间位置移动 只要保证相邻时间间隔移动前后两次阵列有超过阵列长度一半的孔径长度重合即可 对其做修正补偿,联合考虑空间及时间上变化,即时间延迟及空间位置移动相位修 正,将时间延迟和空间位置移动相位修正补偿相加,得到阵列移动前后总相位修正 补偿,继而将分时间段各次相位修正因子用于波束输出补偿,相干累加组合输出得 到目标波束对应方位,实现对目标信号的有效检测。

如图3所示,该图为运动非重叠孔径拖线阵被动合成孔径信号检测及分辨方法 流程图,结合对水下舰船等目标辐射噪声分析综合考虑实际水声复杂水声环境中拖 线阵运动不规则导致阵元孔径不完全重叠的情况被动合成孔径用于信号检测方法, 对拖线阵移动下运动多普勒接收模型构建,分频带、分时间段波束输出,时间延迟 和空间位置移动相位估计,相位修正补偿用于合成输出等步骤做具体阐述。

总之,本发明的核心在于:首先,利用舰船辐射噪声特性分析,完成对拖线阵 移动下对信号的运动多普勒接收模型的构建;其次,在考虑多普勒频移的情况下分 时间段对各阵元接收信号进行频域波束形成处理,分频带进行能量积分得到各时间 段波束输出;然后,利用线列阵信号接收运动多普勒模型考虑阵元孔径不完全重叠 的情况下,由于时间延迟及空间位置移动只要保证相邻时间间隔移动前后两次阵列 有超过阵列长度一半的孔径长度重合即可对其做修正补偿,进一步说明不必细化要 求阵列孔径完全重合,满足水下复杂水声环境情况对拖线阵沿直线运动产生的影响, 符合实际使用条件;最后,基于运动非重叠孔径的被动合成孔径信号检测方法中综 合考虑多普勒频偏及水下舰船噪声辐射特性,利于运动信号检测及拖船噪声抵消等 方法的合理使用,具有一定的工程实用性。

实施例

如图1所示,水下舰船或被测目标经过水平线列阵时,各阵元对噪声信号进行 采样,由于拖曳速度的存在相互运动,使接收到的信号与辐射声源存在频率不一致 情况。结合图2线列阵基阵做直线运动,对于N个等间距为d的各向同性线列阵, 速度为v,以t=0时刻第1阵元接收到舰船辐射噪声信号为参考标准,第2个阵元相 对于第1阵元传播时延为△τ,则第n阵元接收到信号为

xn(ti)=Aexp[j2πf(tin)]+ξn(ti)

式中A-幅度;f-频率;ti-第i个采样时间,τn为第n号水听器阵元相对于第1 阵元传播时延

τn=(Rn-R1)/c

ξn(ti)表示独立零均值海洋环境噪声。

以速度v运动τ秒后,第n阵元接收到信号为

xn(ti+τ)=Aexp[j2πf(ti+τ-τn(ti+τ))]+ξn(ti+τ)

考虑t=0时刻,将拖线阵移动中接收信号分时间段处理,对于每一个水听器时间 序列的傅里叶变换为

Xn(f)=Σi=1Jxn(ti)exp(-j2πfti)

对不同时间段拖线阵基阵各阵元接收信号进行频域波束形成处理,在时刻t0的 波束输出为:

b(f0,θs)t0=Σn=1NXn(f0)exp[j2πf0d(n-1)sinθsc]

式中θs变化的角度。在t=ti+τ时刻,阵响应为:

b(f0,θs)t=Σn=1N{Σi=2Jxn(ti+τ)exp(-j2πf0ti)}exp[j2πf0d(n-1)sinθsc]

当拖船继续按速度v运动,可连续不断的将空间信息合成为虚拟阵元,在相位 修正因子估计精确时,虚拟得到的合成孔径可以等效为实际阵元构成的物理孔径。 考虑实际基阵在运动时由于受水下复杂环境介质和路径的扰动的影响,阵列相继两 次运动前后不可能精确地达到重合。在不用考虑阵元相互完全重叠的情况下,在波 束域代替其在阵元域上进行相位修正。t=0时刻n阵元接收到信号xn(ti),对其作M 点FFT,对应第k阵元为X0(k,K),将不同时间段拖线阵基阵各阵元接收信号进行频 域波束形成处理后各阵元输出累加,将各阵元输出作累加将其由阵元域转换为波束 域:

S0=Σk=1NX0(k,K)exp[-j2π(K-1)fsM(k-1)Δτ]

fs-采样频率,同样将运动τ秒后的信号xn(ti+τ),对其作M点FFT,对应第k 阵元为X1(k,K),K=1,…,M,同样将不同时间段拖线阵基阵各阵元接收信号作频域 波束形成后各阵元输出累加:

S1=Σk=1NX1(k,K)exp[-j2π(K-1)fsM(k-1)Δτ]

分别对时间延迟及空间位置移动进行相位估计,在保持相位一致的基础上,分 别对空间位置移动及时间延迟变化予以考虑,对运动τ秒后S1进行补偿,空间移动 补偿,运动距离为v·τ,在此v·τ可以为各阵元间距d的非整数倍,

P1=S1·exp[-j2π(K-1)fsMdΔτ]

时间延迟补偿,运动τ秒,有:

P2=S1·exp[-j2π(K-1)fsMτ]

联合考虑空间及时间上变化,即时间延迟及空间位置移动相位修正,将P1和P2相加,得到阵列移动前后总相位修正补偿:

P0=P1+P2

将各次相位修正因子用于波束输出补偿,联合时间、空间相位修正补偿,相干 组合累加输出得到目标波束对应方位,总相位修正补偿累加得到对应合成输出与角 度有关,虚拟阵元长度为vτ,即扩展后阵元总长度为Nd+vτ,以此在运动Jτ秒后, N阵元基阵扩展为长度为Nd+vJτ的线列阵。由此相干组合的累加输出即为运动非 重叠孔径拖线阵被动合成孔径检测方法,由于被动合成孔径算法在移动前后不用考 虑阵元相互完全重叠,可直接进行相位修正补偿,从而实现对目标信号的有效检测。

总之,本发明公开了一种基于运动非重叠孔径拖线阵被动合成孔径目标信号的 检测和分辨方法,利用水下舰船等目标辐射噪声特性分析,完成对拖线阵移动下对 信号的运动多普勒接收模型的构建,避免由于复杂水声环境影响而使拖曳线阵列难 以维持恒定速度,继而不能保证连续测量时重叠水听器的空间位置相同,提出的非 重叠孔径被动合成孔径算法相邻时间间隔两次移动前后阵元不用完全重合,分别利 用时延及空间位置移动等相位修正因子能够精确补偿运动相位误差。由于时间延迟 及空间位置移动只要保证相邻时间间隔移动前后两次阵列有超过阵列长度一半的孔 径长度重合即可对其做修正补偿,满足水下复杂水声环境情况对拖线阵沿直线运动 产生的影响,符合实际水下舰船等目标信号的检测条件,利于对水下安静型弱目标 信号进行有效检测和分辨。

说明文档中的其他内容针对本专业领域内的普通技术人员,均可进行技术实现, 这里不再赘述。最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非 限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解, 对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范 围,其均应涵盖在本发明的权利要求范围当中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号