首页> 中国专利> 成像透镜和使用该成像透镜的显微镜装置

成像透镜和使用该成像透镜的显微镜装置

摘要

提供了一种成像透镜(IL),用于通过接收从观察目标物体发出并从显微镜的无限远设计的物镜出射的平行光束而在预定位置处形成观察目标物体的像。该成像透镜由从物体侧开始顺序布置的具有正折射能力的第一透镜组(G1)和具有负折射能力的第二透镜组(G2)构成。第一透镜组(G1)由正透镜(例如,双凸透镜(L1))和负透镜(例如,负凹凸透镜(L2))构成。构成第一透镜组(G1)的正透镜和负透镜的玻璃材料满足预定的vdht和部分色散比Pht的条件,并且对于每10mm的玻璃厚度而言,所有透镜的玻璃材料相对于具有340nm波长的光的透射率等于或大于50%,以及对于每10mm的玻璃厚度而言,相对于具有360nm波长的光的透射率等于或大于80%。

著录项

  • 公开/公告号CN103430076A

    专利类型发明专利

  • 公开/公告日2013-12-04

    原文格式PDF

  • 申请/专利权人 株式会社尼康;

    申请/专利号CN200880111983.9

  • 发明设计人 中山浩明;

    申请日2008-10-15

  • 分类号G02B21/02;

  • 代理机构中原信达知识产权代理有限责任公司;

  • 代理人孙志湧

  • 地址 日本东京

  • 入库时间 2024-02-19 22:01:39

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-22

    授权

    授权

  • 2017-03-15

    实质审查的生效 IPC(主分类):G02B21/02 申请日:20081015

    实质审查的生效

  • 2013-12-04

    公开

    公开

说明书

技术领域

本发明涉及用于通过无限远设计的物镜来成像的成像透镜,以及 使用该透镜的显微镜装置。

背景技术

用于通过无限远设计(infinity-designed)的物镜来成像的成像透 镜被开发来作为校正各种像差的成像透镜(例如,参见日本专利公开 No.2521959或日本专利特许公开No.05-113540)。近年来,已经积极地 将荧光观测用于生物研究。特别地,一种积极使用的技术是如下的技 术,其通过使用具有多个不同荧光波长的荧光制造者来同时观察多个 蛋白质的行为。在此情况下,如果荧光制造者的荧光波长彼此接近, 则其波长范围彼此重叠,并且不能确定从哪个荧光制造者发出了荧光。 因此,期望的是,单个的荧光制造者的荧光波长以一定程度间隔开。 因此,采用具有从近红外到近紫外的各种荧光波长的荧光制造者,并 且要求用于观察荧光制造者的显微镜的光学系统具有对宽波长范围的 灵活性。此外,要执行通过使用红外线来试着降低对细胞的损害的双 光子激发发光观察,和将近紫外线用于提高分辩率的发光观察,并且 要求显微镜具有校正其波范围中的像差和呈现出高透射率的光学系 统,并且对成像透镜及物镜也提出该要求。

然而,迄今使用的成像透镜具有不能充分地校正色差,此外,也 没有考虑透射率的问题。

发明内容

鉴于这些问题,设计本发明的目的是提供一种在宽波长范围中对 色差进行校正并且呈现出高透射率的成像透镜,以及使用该成像透镜 的显微镜装置。

为实现该目的,根据本发明,用于接收从观察目标物体发出并从 显微镜的无限远设计的物镜出射的平行光束,并且用于在预定位置处 形成观察目标物体的像的成像透镜,按照从物体侧开始的顺序,包括: 具有正折射能力的第一透镜组;具有负折射能力的第二透镜组;第一 透镜组包括正透镜(例如,本实施例中的双凸透镜L1)和负透镜(例 如,本实施例中的负凹凸透镜(meniscus lens)L2)。在此,当nd表 示构成第一透镜组和第二透镜组的透镜的玻璃材料的相对于d线的折 射率、nh表示玻璃材料的相对于h线的折射率、并且nt表示玻璃材料 的相对于t线的折射率时,vdht和部分色散比(partial dispersion ratio) Pht由下述条件表达式定义:

vdht=(nd-1)/(nh-nt)

Pht=(nh-nd)/(nd-nt)

满足下述条件表达式:

vdht1>24

vdht1-vdht2>5

|(Pht1-Pht2)/(vdht1-vdht2)|<0.015

其中,vdht1和Pht1分别表示构成第一透镜组的正透镜的玻璃材 料的vdht和部分色散比Pht,以及vdht2和Pht1分别表示构成第一透 镜组的负透镜的玻璃材料的vdht和部分色散比Pht,

满足下述条件表达式:

0.7<f1/fT<0.9

其中,fT表示成像透镜的焦距,以及f1表示第一透镜组的焦距,

对于每10mm的玻璃厚度而言,构成第一透镜组和第二透镜组的 所有透镜的玻璃材料中的每一种相对于具有340nm波长的光的透射率 等于或大于50%;以及对于每10mm的玻璃厚度而言,构成第一透镜 组和第二透镜组的所有透镜的玻璃材料中的每一种相对于具有360nm 波长的光的透射率等于或大于80%。

此外,在根据本发明的成像透镜中,优选地,第二透镜组包括正 透镜(例如,本实施例中的正凹凸透镜L4)和负透镜(例如,本实施 例中的负凹凸透镜L3),并且满足下述条件表达式:

vdht3>20

vdht3-vdht4>2

|(Pht3-Pht4)/(vdht3-vdht4)|<0.045

其中,vdht3和Pht3分别表示构成第二透镜组的正透镜的玻璃材 料的vdht和部分色散比Pht,以及vdht4和Pht4分别表示构成第二透 镜组的负透镜的玻璃材料的vdht和部分色散比Pht。

另外,在根据本发明的成像透镜中,优选地,满足下述条件表达 式:

-3<f1n/f1<-0.5

其中,f1n表示构成第一透镜组的正透镜的焦距,以及f1表示第 一透镜组的焦距。

此外,在根据本发明的成像透镜中,优选地,第一透镜组包括由 双凸透镜与负凹凸透镜胶合形成的胶合透镜,并且胶合透镜的胶合面 具有面对物体侧的凹面,并且

满足下述条件表达式:

0.0010<Φ<0.0030

其中,Φ表示胶合面的折射能力。

此外,在根据本发明的成像透镜中,优选地,第二透镜组的最靠 近物体侧(most object side)的面凸向物体侧。

此外,根据本发明的显微镜装置包括上述成像透镜中的任何一个, 来作为第二物镜。

当如上构造根据本发明的成像透镜时,在宽波长范围中,能良好 地校正色差,以及能实现高透射率。因此,当将成像透镜作为第二物 镜应用于显微镜装置时,可以实现如下的显微镜装置,其能够在宽波 长范围中以高分辩率和高对比度来观察目标物体。

附图说明

图1是示例说明根据本发明的示例1的成像透镜的结构的透镜结 构图;

图2是根据示例1的成像透镜的各种像差的图。

图3是示出根据示例1的成像透镜中的波长和透射率间的关系的 图;

图4是在示例1中,使从物体侧表面到入射光瞳的距离延长70mm 的情况下,各种像差的图。

图5是示例说明根据本发明的示例2的成像透镜的结构的透镜结 构图。

图6是根据示例2的成像透镜的各种像差的图。

图7是示出在根据示例2的成像透镜中,波长和透射率间的关系 的图。

图8是在示例2中,使从物体侧表面到入射光瞳的距离延长70mm 的情况下,各种像差的图。

图9是示例说明根据本发明的示例3的成像透镜的结构的透镜结 构图。

图10是根据示例3的成像透镜的各种像差的图。

图11是示出在根据示例3的成像透镜中,波长和透射率间的关系 的图。

图12是在示例3中,使从物体侧表面到入射光瞳的距离延长70mm 的情况下,各种像差的图。

图13是示例说明根据本发明的示例4的成像透镜的结构的透镜结 构图。

图14是根据示例4的成像透镜的各种像差的图。

图15是示出在根据示例4的成像透镜中,波长和透射率间的关系 的图。

图16是在示例4中,使从物体侧表面到入射光瞳的距离延长70mm 的情况下,各种像差的图。

图17是示例说明根据本发明的示例5的成像透镜的结构的透镜结 构图。

图18是根据示例5的成像透镜的各种像差的图。

图19是示出在根据示例5的成像透镜中,波长和透射率间的关系 的图。

图20是在示例5中,使从物体侧表面到入射光瞳的距离延长70mm 的情况下,各种像差的图。

具体实施方式

在下文中,将参考附图,描述本发明的优选实施例。根据本发明 的成像透镜在显微镜等等中接收从观察目标物体发出并从无限远设计 的物镜出射的平行光束,并且在预定位置处形成观察目标物体的像。 如图1中所示,按照从物体侧开始的顺序,成像透镜IL由具有正折射 能力的第一透镜组G1和具有负折射能力的第二透镜组G2构成,并且 还配置成在像面I上形成从未示出的物镜入射的光束的像。在此,第一 透镜组G1由正透镜(图1中的双凸透镜L1)和负透镜(图1中的负 凹凸透镜L2)构成。应注意到在该成像透镜IL中,如将在下文的示例 中所述,第一透镜组G1也可以构造为通过正透镜与负透镜胶合形成的 胶合透镜,并且第一透镜组G1还可以以在其间具有预定空气间隙的方 式被布置。

此外,如将在下文的示例中所述,第二透镜组G2可以由正透镜(图 1中的正凹凸透镜L4)和负透镜(图1中的负凹凸透镜L3)构成,其 还可以由单个负透镜(图17中的负凹凸透镜L3)构成,并且在其由正 透镜和负透镜构成的情况下,可以进一步构造成胶合透镜,并且所述 第二透镜组G2还可以以在其间具有预定空气间隙的方式被布置。在 此,如果第二透镜组G2的最靠近物体的表面由面向所述物体侧的凹面 形成,则离轴光束的上部慧差(upper coma)的入射角增加,导致出现 色差。因此,期望第二透镜组G2的最靠近物体的表面是凸的。

在这种情况下,在下文中,将描述用于构成根据本发明的成像透 镜IL的条件。首先,当nd表示构成成像透镜IL的透镜的玻璃材料的 相对于d线的折射率、nh表示玻璃材料的相对于h线的折射率、以及 nt表示玻璃材料的相对于t线的折射率,并且vdht由下述条件表达式 (a)定义以及部分色散比Pht由下述条件表达式(b)定义时,构造根 据工作示例的成像透镜IL,以便使其满足下述条件表达式(1)-(3):

vdht1>24            (1)

vdht1-vdht2>5       (2)

|(Pht1-Pht2)/(vdht1-vdht2)|<0.015    (3)

其中,

vdht=(nd-1)/(nh-nt)    (a)

Pht=(nh-nd)/(nd-nt)    (b),并且

其中,vdht1和Pht1分别表示构成成像透镜IL中的第一透镜组 G1的正透镜(例如,图1中的双凸透镜L1)的玻璃材料的vdht和部 分色散比Pht,以及vdht2和Pht1分别表示构成第一透镜组G1的负透 镜(例如,负凹凸透镜L2)的玻璃材料的vdht和部分色散比Pht。

条件表达式(1)表示用于降低在第一透镜组G1中出现的色差的 条件。期望的是,抑制第一透镜组G1中的色差包含将低色散玻璃用于 正透镜。如果小于条件表达式(1)的下限值,则色差增加,这是不期 望的方面。

条件表达式(2)也表示用于降低在第一透镜组G1中出现的色差 的条件。期望的是,通过在第一透镜组G1中使用负透镜来校正在正透 镜中引起的色差包含将具有比正透镜更大的色散的玻璃用于负透镜。 如果小于条件表达式(2)的下限值,则色差增加,这是不期望的方面。

条件表达式(3)表示用于降低在第一透镜组G1中出现的色差的 二级光谱的条件。如果高于条件表达式(3)的上限值,则在第一透镜 组G中引起的二级光谱增加,并且难以在宽波长范围中将色差抑制在 焦深内,这是不期望的方面。

注意的是,对构成成像透镜IL的所有透镜的玻璃材料进行配置, 以便对于每10mm的玻璃厚度,相对于波长为340nm的光的透射率等 于或大于50%,以及使得对于每10mm的玻璃厚度,相对于波长为 360nm的光的透射率等于或大于80%。因此,所有透镜包含使用在透 射率变低的近紫外区中显示出高透射率的玻璃,由此能实现在宽波长 范围中具有高透射率的成像透镜IL。

此外,成像透镜IL的第二透镜组G2由正透镜(图1中的双凸透 镜L3)和负透镜(图1中的双凹透镜L4)组成,其中,根据本实施例的 成像透镜IL构造成满足下述条件表达式(4)-(6):

vdht3>20        (4)

vdht3-vdht4>2   (5)

|(Pht3-Pht4)/(vdht3-vdht4)|<0.045  (6)

其中,vdht3和Pht3分别表示由上述条件表达式(a)和(b)定 义的正透镜(例如,双凸透镜L3)的玻璃材料的vdht和部分色散比Pht, 以及vdht4和Pht4分别表示负透镜(例如双凹透镜L4)的玻璃材料的 vdht和部分色散比Pht。

条件表达式(4)表示用于降低在第二透镜组G2中出现的色差的 条件。期望的是,抑制第二透镜组G2中的色差包含将低色散玻璃用于 正透镜。如果小于条件表达式(4)的下限值,则色差增加,这是不期 望的方面。

条件表达式(5)也表示用于降低在第二透镜组G2中出现的色差 的条件。期望的是,通过在第二透镜组G2中使用负透镜来校正在正透 镜中引起的色差包含将具有比正透镜更大的色散的玻璃用于负透镜。 如果小于条件表达式(5)的下限值,则色差增加,这是不期望的方面。

条件表达式(6)表示用于降低在第二透镜组G2中出现的色差的 二级光谱的条件。如果高于条件表达式(6)的上限值,则在第二透镜 组G2中引起的二级光谱增加,并且难以在宽波长范围中将色差抑制在 焦深内,这是不期望的方面。

此外,期望成像透镜IL满足下述条件表达式(7):

0.7<f1/fT<0.9    (7)

其中,fT表示成像透镜的焦距,以及f1表示第一透镜组G1的焦 距。

条件表达式(7)表示用于抑制当成像透镜IL的入射光瞳的位置 改变时引起的像差的波动的条件。在物镜和成像透镜间提供预定间隔 以便允许引入落射照明(epi-illumination)(垂直照明)光学系统。显 微镜的物镜的出射光瞳通常存在于物镜的内侧,因此,在设计成像透 镜的情况下,假定物镜的出射光瞳,即,成像透镜的入射光瞳存在于 与成像透镜的最前面的表面相隔预定间隔的位置处,则要求对像差进 行校正。此外,此时利用无限远设计的物镜,因此,当产生需要时, 主流装置是允许通过进一步扩大物镜和成像透镜间的间隔来引入多个 落射照明光学系统的显微镜装置。在这种情况下,也拉长了从成像透 镜的最前面的表面到物镜的出射光瞳的距离。物镜的出射光瞳用作用 于成像透镜的入射光瞳,因此,要求成像透镜即使当成像透镜的位置 远离物镜的出射光瞳的位置,即,成像透镜的入射光瞳的位置时,也 不会产生像差波动。如果入射光瞳的位置改变,在离轴光束入射到成 像透镜IL的高度会有变化,导致离轴像差波动,以及弧矢像面和子午 (meridional)像面的位置改变。因此,如果小于条件表达式(7)的下 限值,则弧矢像面和子午像面变得比当物镜的出射光瞳远离成像透镜 IL时的低,这是不期望的方面。而如果高于条件表达式(7)的上限值, 则弧矢像面和子午像面变得比当物镜的出射光瞳远离成像透镜IL时的 高,这是不期望的方面。

此外,期望的是,成像透镜IL满足下述条件表达式(8):

-3<f1n/f1<-0.5    (8)

其中,f1n表示构成第一透镜组G1的正透镜(例如双凸透镜L1) 的焦距,以及f1表示第一透镜组G1的焦距。

条件表达式(8)表示用于校正像差的条件。如果低于条件表达式 (8)的下限值,则构成第一透镜组G1的负透镜的能力变弱,因此, 不能充分地校正在第一透镜组G1中产生的色差,这是不期望的方面。 而如果高于条件表达式(8)的上限值,则负透镜的能力过分增强,因 而高次色差出现,由此导致难于进行校正,这是不期望的方面。

此外,在成像透镜IL中,期望第一透镜组G1由双凸透镜与负凹 凸透镜胶合形成的胶合透镜构成,其中,胶合面(图1中的第三表面) 具有面向物体侧的凹面,在这种结构的情况下,期望的是,满足下述 条件表达式(9):

0.0010<Φ<0.0030    (9)

其中,Φ表示胶合透镜的胶合面的折射能力。

条件表达式(9)表示用于校正像差的条件。如果低于条件表达式 (9)的下限值,则胶合面的能力变弱,因此,不能充分地校正在第一 透镜组G1中引起的色差,这是不期望的方面。而如果高于条件表达式 (9)的上限值,则胶合面的能力过分增强,因而高次色差出现,由此 导致难于对色差进行校正,这是不期望的方面。

(示例)

在下文中,将示例根据本发明的成像透镜IL的五个示例。

[示例1]

图1是示例说明根据本发明的示例1的成像透镜IL1的结构的图。 如上所述,按照从物体侧开始的顺序,成像透镜IL1由具有正折射能力 的第一透镜组G1和具有负折射能力的第二透镜组G2构成。第一透镜 组G1由双凸透镜L1与具有面向物体侧的凹面的负凹凸透镜L2胶合形 成的胶合透镜构成,以及第二透镜组G2由具有面向物体侧的凸面的凹 凸透镜L3和具有面向物体侧的凸面的正凹凸透镜L4胶合形成的胶合 透镜构成。注意,将成像透镜IL1的入射光瞳形成为与未示出的物镜的 出射光瞳P重合,或位于出射光瞳P的附近。

下表1给出了示例1中的各种数据值。在表1中,分别地,第一 列表示沿来自于物体侧的光束行进的方向的透镜表面编号;第二列表 示每一透镜表面的曲率半径;第三列表示表面距离,其表示从每一光 学表面到下一光学表面,沿光轴的距离;第四列表示在公式(a)中表 达的vdht;第五列表示nd,其代表相对于d线(λ=587.56nm)的折射 率;第六列表示在条件表达式(b)中表达的部分色散比Pht;第七列 表示透射率1,其代表对于每10mm的玻璃厚度而言,玻璃材料的相对 于具有340nm波长的光的透射率;以及第八列表示透射率2,代表对 于每10mm的玻璃厚度而言,玻璃材料的相对于具有360nm的波长的 光的透射率。注意,在表1中给出的表面编号1-7对应于图1中示出的 表面编号1-7,以及第一表面表示与根据示例1的成像透镜IL1一起使 用的物镜的出射光瞳表面。此外,曲率半径0.000表示平面,并且空气 的折射率1.000000被忽略。此外,表1还表示对应于条件表达式(1) -(9)的值,即[用于条件表达式的值]。在此,[mm]通常用作与焦 距fT、f1、f1n、曲率半径、表面距离等等有关的长度单位,其被写入 下述所有数据值中,然而,类似的光学性能即使通过成比例放大或缩 小其尺寸的光学系统也能获得,因此,不限于该单位[mm]。应注意 到这些符号的说明和数据表的说明在下述示例中是相同的。

(表1)

i    r         d        vdht     nd          Pht      t1      t2

1    0.000     160.000

2    128.670   5.000    29.47    1.497820    1.494    80%    97%

3    -65.000   3.000    20.32    1.622801    1.537    75%    93%

4    -154.409  0.500

5    84.000    3.000    15.67    1.613397    1.611    75%    93%

6    47.000    3.000    20.32    1.622801    1.537    75%    93%

7    69.966    186.441

[条件表达式的值]

(1)vdht1=29.5

(2)vdht1-vdht2=9.1

(3)|(Pht1-Pht2)/(vdht1-vdht2)|=0.00466

(4)vdht3=20.3

(5)vdht3-vdht4=4.7

(6)|(Pht3-Pht4)/(vdht3-vdht4)|=0.01604

(7)f1/fT=0.842

(8)f1n/f1=-1.084

(9)Φ=0.00192

在表1中,“i”表示表面编号,“r”表示曲率半径,“d”表示与下 一光学表面的表面距离,“t1”表示透射率1,以及“t2”表示透射率2。

因此,可以理解,示例1满足所有条件表达式(1)-(9),并且 构成成像透镜IL1的所有透镜的透射率满足上述条件。图2示出在示例 1中的各种像差的图,所述像差为相对于t线(λ=1013.98nm)、d线 (λ=587.56nm)和h线(λ=404.66nm)的光的球面像差、像散、畸变、 放大率色差、以及彗形像差。注意到,垂直轴表示在球面像差图中离 光轴的垂直高度H的值;在像散图、畸变图、和放大率色差图中的像 的高度Y的值;以及在彗形像差图中半视角ω的像差量。此外,虚线 表示子午像面,而实线表示像散图中的孤矢像面,并且在球面像差图 中,虚线表示的正弦条件。各种像差图的说明在下述示例中相同。如 从图2中所示的各种像差图中显而易见的是,相对于短波长侧,h线的 轴上色差被限制在d线的半焦深0.33内。此外,相对于长波长侧,t 线的轴上色差被限制在t线的半焦深0.56内。此外,当考虑对d线附 近的波长范围中的轴上色差的校正和放大率色差的校正时,期望的是, h线和t线的放大率色差和轴上色差均采取正值。

此外,图3示出根据示例1的成像透镜IL1的透射率,并且从图3 中可认识到,在宽波长范围中高透射率得以保持。此外,图4示出在 将从成像透镜IL1的最靠近物体的面(图1中的第二表面)到物镜的出 射光瞳P(图1中的第一表面)的距离延长70mm的情况下的各种像差 的图,并且,从图4中可认识到,像差的波动被抑制为小。

[示例2]

图5是示例说明根据本发明的示例2的成像透镜IL2的结构的图。 如上所述,按照从物体侧开始的顺序,成像透镜IL2也由具有正折射能 力的第一透镜组G1和具有负折射能力的第二透镜组G2构成。第一透 镜组G1由双凸透镜L1与具有面向物体侧的凹面的负凹凸透镜L2胶合 形成的胶合透镜构成,并且第二透镜组G2由双凸透镜L3与双凹透镜 L4胶合形成的胶合透镜构成。注意到,形成成像透镜IL2的入射光瞳, 使其与未示出的物镜的出射光瞳P重合,或位于出射光瞳P的附近。

下表2给出了示例2中的各种数据值。注意到,在表2中所示的 表面编号1-7对应于图5中所示的表面编号1-7,以及第一表面表示与 根据示例2的成像透镜IL2一起使用的物镜的出射光瞳表面。

(表2)

i    r         d        vdht     nd          Pht      t1      t2

1    0.000     160.000

2    128.670   5.000    29.47    1.497820    1.494    80%    97%

3    -56.000   3.000    19.93    1.568829    1.537    64%    93%

4    -149.124  0.500

5    97.408    5.000    22.54    1.516800    1.423    95%    99%

6    -150.000  3.000    19.93    1.568829    1.537    64%    93%

7    83.883    183.994

[条件表达式的值]

(1)vdht1=29.5

(2)vdht1-vdht2=9.5

(3)|(Pht1-Pht2)/(vdht1-vdht2)|=0.00452

(4)vdht3=22.5

(5)vdht3-vdht4=2.6

(6)|(Pht3-Pht4)/(vdht3-vdht4)|=0.04380

(7)f1/fT=0.786

(8)f1n/f1=-0.947

(9)Φ=0.00127

因此,可理解的是,示例2满足所有条件表达式(1)-(9),并 且构成成像透镜IL2的所有透镜的透射率满足上述条件。图6示出在示 例2中各种像差的图,所述各种像差为相对于t线、d线和h线的光的 球面像差、像散、畸变、放大率色差、和彗形像差。从图2中所示的 各种像差图中显而易见的是,与示例1类似,从短波长范围侧到长波 长范围侧,良好地校正各种像差。此外,图7示出根据示例2的成像 透镜IL2的透射率,并且从图7意识到,在宽波长范围中高透射率得以 保持。此外,图8示出在将从成像透镜IL2的最靠近物体侧的表面(图 1中的第二表面)到物镜的出射光瞳P的距离延长70mm的情况下的各 种像差的图,并且从图8可认识到,像差的波动被抑制为小。

[示例3]

图9是示例说明根据本发明的示例3的成像透镜IL3的结构的图。 如上所述,按照从物体侧开始的顺序,成像透镜IL3也由具有正折射能 力的第一透镜组G1和具有负折射能力的第二透镜组G2构成。第一透 镜组G1由双凸透镜L1与具有面对物体侧的凹面的负凹凸透镜L2胶合 形成的胶合透镜构成,以及第二透镜组G2由具有面对物体侧的凸面的 负凹凸透镜L3和具有面对物体侧的凸面的正凹凸透镜L4构成。注意 到,形成成像透镜IL3的入射光瞳,使其与未示出的物镜的出射光瞳P 重合,或位于出射光瞳P的附近。

下表3给出了示例3中的各种数据值。注意表3中所示的表面编 号1-8对应于图9中所示的表面编号1-8,以及第一表面表示与根据示 例3的成像透镜IL3一起使用的物镜的出射光瞳面。

(表3)

i    r         d        vdht     nd          Pht      t1      t2

1    0.000     160.000

2    210.000   5.000    24.59    1.592400    1.566    90%    98%

3    -45.500   3.000    19.14    1.713000    1.510    68%    87%

4    -122.832  0.500

5    84.000    3.000    15.67    1.613397    1.611    75%    93%

6    50.000    3.000

7    44.722    3.000    22.54    1.516800    1.423    95%    99%

8    65.041    187.000

[条件表达式的值]

(1)vdht1=24.6

(2)vdht1-vdht2=5.5

(3)|(Pht1-Pht2)/(vdht1-vdht2)|=0.01018

(4)vdht3=22.5

(5)vdht3-vdht4=6.9

(6)|(Pht3-Pht4)/(vdht3-vdht4)|=0.02744

(7)f1/fT=0.841

(8)f1n/f1=-0.613

(9)Φ=0.00265

因此,可以理解的是,示例3满足所有条件表达式(1)-(9), 并且构成成像透镜IL3的所有透镜的透射率满足上述条件。图10示出 在示例3中的各种像差的图,所述各种像差为相对于t线、d线和h线 的光的球面像差、像散、畸变、放大率色差、以及彗形像差。如从图 10中所示的各种像差图中显而易见的是,与示例1类似,从短波长范 围侧到长波长范围侧,良好地校正了各种像差。此外,图11示出根据 示例3的成像透镜IL3的透射率,并且从图3中可认识到,在宽波长范 围中高透射率得以保持。此外,图12示出在将从成像透镜IL3的最靠 近物体侧的表面(图1中的第二表面)到物镜的出射光瞳P的距离延 长70mm的情况下的各种像差的图,并且从图12中可认识到,像差的 波被抑制为小。

[示例4]

图13是示例说明根据本发明的示例4的成像透镜IL4的结构的图。 如上所述,根据从物体侧开始的顺序,成像透镜IL4也由具有正折射能 力的第一透镜组G1和具有负折射能力的第二透镜组G2构成。第一透 镜组G1由双凸透镜L1和具有面对物体侧的凹面的负凹凸透镜L2构 成,并且第二透镜组G2由具有面对物体侧的凸面的负凹凸透镜L3与 具有面对物体侧的凸面的正凹凸透镜L4胶合形成的胶合透镜构成。注 意到,形成成像透镜IL4的入射光瞳,使其与未示出的物镜的出射光瞳 重合,或位于出射光瞳P的附近。

下表4给出了示例4中的各种值。注意到,表4中所示的表面编 号1-8对应于图13中所示的表面编号1-8,并且第一表面表示与根据示 例3的成像透镜IL3一起使用的物镜的出射光瞳表面。在此,在示例4 中的成像透镜IL4中,第一透镜组G1不是由胶合透镜构成,因此,条 件表达式(9)不适用。

(表4)

i    r         d        vdht     nd          Pht      t1    t2

1    0.000     160.000

2    128.597   5.000    29.47    1.497820    1.494    80%  97%

3    -112.000  2.000

4    -94.582   3.000    14.06    1.654115    1.684    47%  83%

5    -144.659  0.500

6    84.000    3.000    15.67    1.613397    1.611    75%  93%

7    48.000    3.000    20.83    1.612720    1.516    72%  94%

8    70.594    183.363

[条件表达式的值]

(1)vdht1=29.5

(2)vdht1-vdht2=15.4

(3)|(Pht1-Pht2)/(vdht1-vdht2)|=0.01229

(4)vdht3=20.8

(5)vdht3-vdht4=5.2

(6)|(Pht3-Pht4)/(vdht3-vdht4)|=0.01849

(7)f1/fT=0.844

(8)f1n/f1=-2.534

因此,可以理解的是,示例4满足所有条件表达式(1)-(8), 并且构成成像透镜IL4的所有透镜的透射率满足上述条件。图14示出 在示例4中的各种像差的图,所述各种像差为相对于t线、d线和h线 的光的球面像差、像散、畸变、放大率色差、以及彗形像差。如从图 14中所示的各种像差图中显而易见的是,与示例1类似,从短波长范 围侧到长波长范围侧,良好地校正了各种像差。此外,图15示出了根 据示例4的成像透镜IL4的透射率,并且从图15中可认识到,在宽波 长范围中高透射率得以保持。此外,图16示出在将从成像透镜IL4的 最靠近物体侧的表面(图13中的第二表面)到物镜的出射光瞳P的距 离延长70mm的情况下的各种像差的图,并且从图16中认识到像差的 波动被抑制为小。

[示例5]

图17是示例说明根据本发明的示例5的成像透镜IL5的结构的图。 如上所述,根据从物体侧开始的顺序,成像透镜IL5也由具有正折射能 力的第一透镜组G1和具有负折射能力的第二透镜组G2构成。第一透 镜组G1由双凸透镜L1与具有面对物体侧的凹面的负凹凸透镜L2胶合 的胶合透镜构成,并且第二透镜组G2由具有面对物体侧的凸面的负凹 凸透镜L3构成。注意到,形成成像透镜IL5的入射光瞳,使其与未示 出的物镜的出射光瞳P重合,或位于出射光瞳P的附近。

下表5给出了示例5中的各种数据值。注意到,表5中所示的表 面编号1-6对应于图17中的表面编号1-6,并且第一表面表示与根据示 例3的成像透镜IL3一起使用的物镜的出射光瞳表面。在此,在示例5 的成像透镜IL5中,第二透镜组G2由单个透镜(负凹凸透镜L3)构 成,因此,条件表达式(4)-(6)不适用。

(表5)

i    r         d        vdht     nd          Pht      t1      t2

1    0.000     160.000

2    150.000   5.000    29.47    1.497820    1.494    80%    97%

3    -62.000   3.000    15.67    1.613397    1.611    75%    93%

4    -135.473  0.500

5    85.000    3.000    22.54    1.516800    1.423    95%    99%

6    70.927    194.803

[条件表达式的值]

(1)vdht1=29.5

(2)vdht1-vdht2=13.8

(3)|(Pht1-Pht2)/(vdht1-vdht2)|=0.00850

(7)f1/fT=0.842

(8)f1n/f1=-1.125

(9)Φ=0.00186

因此,应理解的是,示例5满足条件表达式(1)-(3)和(7)- (9),并且构成成像透镜IL5的所有透镜的透射率满足上述条件。图 18示出在示例5中的各种像差的图,所述各种像差为相对于t线、d线 和h线的光的球面像差、像散、畸变、放大率色差、以及彗形像差。 如从图18中所示的各种像差图中显而易见的是,与示例1类似,从短 波长范围侧到长波长范围侧,良好地校正了各种像差。此外,图19示 出根据示例5的成像透镜IL5的透射率,从图19中可认识到,在宽波 长范围中高透射率得以保持。此外,图20示出在将从成像透镜IL5的 最靠近物体侧的表面(图1中的第二表面)到物镜的出射光瞳P的距 离延长70mm的情况下的各种像差的图,并且从图20中可认识到,像 差的波动被抑制为小。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号