首页> 中国专利> 用于分布式天线系统的能够带电连接和/或断开连接的配电模块及相关电力单元、组件与方法

用于分布式天线系统的能够带电连接和/或断开连接的配电模块及相关电力单元、组件与方法

摘要

本发明公开分布式天线系统(DAS)中的能够“带电”连接和/或断开连接的配电模块及相关组件、电力单元和方法。配电模块经配置以分配电力到一或多个耗电DAS组件,例如一或多个远程天线单元(RAU)。通过“带电”连接和/或断开连接,意味着配电模块可在电力提供到配电模块的同时连接到电力单元和/或一或多个耗电DAS组件及/或与所述电力单元和/或一或多个耗电DAS组件断开连接。不需要在配电模块连接和/或断开连接之前在电力单元中禁用电力。作为非限制性实例,配电模块可经配置以免受或减少电弧或电接触烧蚀,所述电弧或电接触烧蚀可能另外由配电模块的“带电”连接和/或连接造成。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-08

    授权

    授权

  • 2013-11-06

    实质审查的生效 IPC(主分类):H04L12/413 申请日:20111122

    实质审查的生效

  • 2013-09-18

    公开

    公开

说明书

优先申请案

本申请案请求2010年11月24日提出申请的题为“Power Distribution  Devices,Systems,and Methods for Radio-over-Fiber(RoF)Distributed  Communication”的美国临时专利申请案第61/416,780号的优先权,所述申请 案全文以引用的方式并入本文中。

相关申请案

本申请案涉及2009年5月15号提出申请的并且题为“Power Distribution  Devices,Systems,and Methods For Radio-Over-Fiber(RoF)Distributed  Communication”的美国专利申请案第12/466,514号,所述申请案全文以引用 的方式并入本文中。

技术领域

本公开案的技术涉及用于向分布式天线系统中的远程天线单元提供电力 的电力单元。

背景技术

随着对高速移动数据通信日益增长的需求,无线通信急速发展。举例来说, 所谓的“无线保真”或“WiFi”系统和无线局域网(WLAN)正配备在许多不 同类型的区域(例如,咖啡店、机场、图书馆等)中。分布式通信或天线系统 与称为“客户端”的无线装置通信,所述无线装置必须常驻于无线范围或“小 区覆盖范围”内以便与接入点装置通信。

配备分布式天线系统的一种方法涉及使用射频(RF)天线覆盖区域(也 被称为“天线覆盖区域”)。例如,天线覆盖区域可能具有几米至达二十米的 范围内的半径。结合众多接入点装置形成天线覆盖区域阵列。因为天线覆盖区 域各自覆盖小区域,所以每一天线覆盖区域通常仅存在一些用户(客户端)。 这允许最小化无线系统用户之间共享的RF带宽量。可能需要在建筑物或其他 设施中提供天线覆盖区域来向建筑物或设施内的客户端提供分布式天线系统 访问。然而,可能需要采用光纤来分配通信信号。光纤的益处包括增加带宽。

一种类型的用于形成天线覆盖区域的分布式天线系统包括通过电导体介 质(例如同轴电缆或双绞线)分配RF通信信号。另一类型的用于形成天线覆 盖区域的分布式天线系统(称为“光纤无线电”或“RoF”)利用通过光纤发 送的RF通信信号。两种类型的系统均可包括前端设备,所述前端设备耦接到 多个远程天线单元(RAU),所述多个远程天线单元(RAU)各自提供天线覆 盖区域。RAU可各自包括RF收发器,所述收发器耦接到天线来无线传输RF 通信信号,其中RAU通过通信介质耦接到前端设备。远程天线单元中的RF 收发器可透射RF通信信号。RAU中的天线还接收来自天线覆盖区域中的客户 端的RF信号(即,电磁辐射)。RF信号随后通过通信介质发送到前端设备。 在光纤或RoF分布式天线系统中,RAU通过光电(O/E)转换器将来自光纤 下行链路的输入光学RF信号转换成电学RF信号,所述电学RF信号随后传 递到RF收发器。RAU还通过电光(E/O)转换器将通过天线来自客户端的所 接收电学RF通信信号转换成光学RF通信信号。光学RF信号随后通过光纤 上行链路发送到前端设备。

RAU含有耗电组件(例如RF收发器)来传输和接收RF通信信号,并且 因此RAU需要电力来作业。在基于光纤的分布式天线系统的情况下,RAU可 含有O/E转换器和E/O转换器,所述O/E转换器和E/O转换器也需要电力来 作业。举例来说,RAU可含有壳体,所述壳体包括电源供应器以在RAU处本 地提供电力给RAU。电源供应器可经配置以连接到电源(例如交流(AC)电 源)并将AC功率转换成直流(DC)电信号。或者,电力可从远程电源供应 器提供到RAU。远程电源供应器可经配置以向多个RAU提供电力。可能需要 在模块化单元或装置中提供所述电源供应器来提供电力,所述电源供应器可容 易地插入壳体或从壳体移除。提供模块化配电模块允许更容易地按需要为分布 式天线系统设置电力。举例来说,可提供远程电力单元,所述远程电力单元含 有多个端口或槽以允许多个配电模块插入端口或槽中。电力单元可具有端口, 所述端口允许通过电导体介质向RAU提供电力。因此,当配电模块插入电力 单元于端口或槽中时,来自配电模块的电力供应到RAU,所述端口或槽对应 于给定RAU。

可能需要在不停用向其他RAU提供电力的其他配电模块的情况下允许所 述配电模块插入电力单元或从电力单元移除。如果需要停用提供给电力单元的 电力,那么即使插入电力单元或从电力单元移除的配电模块经配置以向从电力 单元接收电力的RAU的仅一个子集供应电力,也可禁用从电力单元接收电力 的所有RAU的RF通信。然而,在电力起作用或提供电力于电力单元中的同 时于电力单元中插入和移除配电模块可导致电弧和电接触烧蚀,所述电弧和电 接触烧蚀可损坏配电模块或连接到配电模块的耗电组件。

发明内容

详细描述中公开的实施方式包括分布式天线系统(DAS)中能够“带电” 连接和/或断开连接的配电模块。还公开相关电力单元、组件和方法。通过“带 电”连接和/或断开连接,意味着配电模块可在电力提供到配电模块的同时连 接到电力单元和/或耗电组件及/或与所述电力单元和/或耗电组件断开连接。就 这点而言,不需要在配电模块连接到电力单元和/或耗电组件及/或与电力单元 和/或耗电组件断开连接之前停止向配电模块提供电力。作为非限制性实例, 配电模块可经配置以免受或减少电弧或电接触烧蚀,所述电弧或电接触烧蚀可 能另外由“带电”连接和/或断开连接造成。

在本文所公开实施方式中,配电模块可安装在或连接到用于向一或多个耗 电DAS组件(例如一或多个远程天线单元(RAU)(作为非限制性实例))提 供电力的电力单元。主电力提供到电力单元并分配到配电模块,所述配电模块 安装并连接在所述电力单元中。来自由电力单元提供的主电力的电力由每一配 电模块分配到连接到配电模块的任何耗电DAS组件。配电模块向耗电DAS组 件分配电力来为耗电DAS组件中的耗电组件提供电力。

就这点来说,在一个实施方式中,提供一种在分布式天线系统中用于分配 电力的配电模块。配电模块包含输入功率端口,所述输入功率端口经配置以接 收来自外部电源的输入功率。配电模块也包含至少一个输出功率端口,所述至 少一个输出功率端口经配置以接收输出功率并向至少一个分布式天线系统 (DAS)耗电装置分配输出功率,所述至少一个DAS耗电装置电气耦接到至 少一个输出功率端口。配电模块也包含至少一个功率控制器,所述至少一个功 率控制器经配置以基于功率使能信号选择性地将输出功率作为输入功率分配 到至少一个输出功率端口,所述功率使能信号耦合到使能输入端口。也在本文 中公开其他实施方式。

包括附图以提供进一步理解,且附图并入本说明书中并构成本说明书的一 部分。图式说明各种实施方式,且与描述一起用于解释所公开的概念的原理和 操作。

附图说明

图1为示范性分布式天线系统的示意图;

图2为可配备在图1的分布式天线系统中的示范性前端设备和远程天线单 元(RAU)的更详细示意图;

图3A为示范性建筑物基础结构的部分示意性剖示图,在所述示范性建筑 物基础结构中,可采用图1中的分布式天线系统;

图3B为图3A中的分布式天线系统的替代性图式;

图4为示范性前端设备(HEE)的示意图,所述示范性前端设备(HEE) 用以向分布式天线系统中的RAU或其他远程通信装置提供射频(RF)通信服 务;

图5为示范性分布式天线系统的示意图,所述示范性分布式天线系统具有 替代性设备用以向分布式天线系统中的RAU或其他远程通信装置提供RF通 信服务和数字数据服务;

图6为向图5的分布式天线系统中的RAU或其他远程通信装置提供数字 数据服务和RF通信服务的示意图;

图7为示范性配电模块的示意图,所述示范性配电模块由电力单元支持并 且能够“带电”连接和/或断开连接;

图8为图7中的配电模块的内部组件的示意图,所述内部组件允许配电模 块与分布式天线系统中的电力单元和远程天线单元(RAU)“带电”连接和/ 或断开连接;

图9为图7的配电模块中的输入功率连接器和电力电缆的输出功率连接器 的侧面透视图,所述配电模块经配置以插入电力单元中的输入功率连接器中以 接收来自电力单元的输入功率,所述电力电缆经配置以插入图7的配电模块的 输出功率连接器来通过输出功率连接器和电力电缆将来自配电模块的输出功 率分配到至少一个耗电DAS装置;

图10A图示安装有盖的示范性配电模块的前方侧面透视图;

图10B图示移除盖的图10A中的配电模块的前方侧面透视图;

图10C图示图10A中的配电模块的后方侧面透视图;

图11为图8中的配电模块中的功率控制器的示意图;

图12为图8中的配电模块中的输入功率连接器的输入功率插座的侧视图, 所述输入功率插座经对准以连接到图8中的电力单元的输入功率连接器中的 输入功率端口;

图13为图8中的电力电缆的输出功率连接器的输出功率插脚的侧视图, 所述输出功率插脚经对准以连接到图8中的配电模块的输出功率连接器中的 输出功率插座;

图14为示范性电力单元的示意图,所述示范性电力单元经配置以支持一 或多个配电模块向分布式天线系统中的RAU提供电力;及

图15为示范性计算机系统的泛化表现的示意图,所述示范性计算机系统 可包括在本文所公开的配电模块中,其中示范性计算机系统适用于执行来自示 范性计算机可读媒体的指令。

具体实施方式

现在将详细参考实施方式,所述实施方式的实例在附图中加以图示,在附 图中图示一些实施方式而非所有实施方式。事实上,概念可以多种不同形式来 体现且在本文中不应被解释为限制性的;相反,提供所述实施方式以使得本公 开案将满足合适的法律要求。只要可能,将使用相同元件符号来表示相同的组 件或零件。

详细描述中公开的实施方式包括分布式天线系统(DAS)中的能够“带 电”连接和/或断开连接的配电模块。也公开相关组件、电力单元和方法。通 过“带电”连接和/或断开连接,意味着配电模块可在电力提供到配电模块的 同时连接到电力单元和/或耗电组件及/或与所述电力单元和/或耗电组件断开 连接。就这点而言,不需要在配电模块连接到电力单元和/或耗电组件及/或与 电力单元和/或耗电组件断开连接之前停止向配电模块提供电力。作为非限制 性实例,配电模块可经配置以免受或减少电弧或电接触烧蚀,所述电弧或电接 触烧蚀可能另外由“带电”连接和/或断开连接造成。

在本文所公开实施方式中,配电模块可安装在或连接到用于向一或多个耗 电DAS组件(例如一或多个远程天线单元(RAU)(作为非限制性实例))提 供电力的电力单元。主电力提供到电力单元并分配到配电模块,所述配电模块 安装并连接在所述电力单元中。来自由电力单元提供的主电力的电力由每一配 电模块分配到连接到配电模块的任何耗电DAS组件。配电模块向耗电DAS组 件分配电力来为耗电DAS组件中的耗电组件提供电力。

在论述分布式天线系统(DAS)中能够“带电”连接和/或断开连接的配 电模块的实例之前,首先关于图1至图6描述能够将RF通信信号分配到分布 式或远程天线单元(RAU)的示范性分布式天线系统。图1至图6中的分布式 天线系统可包括远离RAU定位的电力单元,所述电力单元向RAU提供电力 以供作业。从图7开始分布式天线系统中能够“带电”连接和/或断开连接的 配电模块的实施方式,所述分布式天线系统包括图1至图6中的分布式天线系 统。以下论述的图1至图6中的分布式天线系统包括分配射频(RF)通信信 号;然而,分布式天线系统不限于分配RF通信信号。也应注意,尽管以下论 述的图1至图6中的分布式天线系统包括通过光纤分配通信信号,但所述分布 式天线系统不限于通过光纤分配。分配介质也可包括(但不限于)同轴电缆、 双绞线导体、无线传输与接收和以上的任何组合。同样,可采用任何组合,所 述任何组合也包含用于分布式天线系统的部分光纤。

就这点而言,图1为分布式天线系统的实施方式的示意图。在所述实施方 式中,系统为基于光纤的分布式天线系统10。分布式天线系统10经配置以形 成用于与无线客户端装置建立通信的一或多个天线覆盖区域,所述无线客户端 装置位于天线覆盖区域的RF范围中。分布式天线系统10提供RF通信服务(例 如,蜂窝电话服务)。在所述实施方式中,分布式天线系统10包括前端设备 (HEE)12(例如前端单元(HEU))、一或多个远程天线单元(RAU)14和 光纤16,所述光纤16将HEE12光学耦接到RAU14。RAU14为一种远程通 信单元。一般来说,远程通信单元可支持无线通信、有线通信或无线通信和有 线通信两者。RAU14可支持无线通信并且也可支持有线通信。HEE12经配置 以通过下行链路电学RF信号18D接收来自一个源或多个源(例如作为实例的 网络或载波)的通信并将所述通信提供到RAU14。HEE12也经配置以通过上 行链路电学RF信号18U将从RAU14接收的通信返回到一个源或多个源。就 这点而言,在所述实施方式中,光纤16包括携载从HEE12传送到RAU14 的信号的至少一个下行链路光纤16D和携载从RAU14传送回HEE12的信号 的至少一个上行链路光纤16U。

可提供一个下行链路光纤16D和一个上行链路光纤16U来支持多个通道, 所述通道各自使用波分复用(WDM),如题为“Providing Digital Data Services  in Optical Fiber-based Distributed Radio Frequency(RF)Communications Systems, And Related Components and Methods”的美国专利申请案第12/892,424号中所 论述,所述申请案全文以引用的方式并入本文中。对于WDM和频分复用 (FDM)的其他选项公开在美国专利申请案第No.12/892,424号中,可在本文 公开的任何实施方式中采用所述申请案中的任何内容。另外,美国专利申请案 第12/892,424号也公开分布式天线系统中的分布式数字数据通信信号,所述分 布式数字数据通信信号也可能连同或不连同RF通信信号一起分布在基于光纤 的分布式天线系统10中。

基于光纤的分布式天线系统10具有天线覆盖区域20,所述天线覆盖区域 20可安置在RAU14周围。RAU14的天线覆盖区域20形成RF覆盖区域21。 HEE12适用于执行或促进众多光纤无线电(RoF)应用中的任何一个,例如 RF识别(RFID)、无线局域网(WLAN)通信或蜂窝电话服务。例如,呈移 动装置形式的客户端装置24图示在天线覆盖区域20中,所述客户端装置24 可为(例如)蜂窝电话。客户端装置24可为能够接收RF通信信号的任何装 置。客户端装置24包括天线26(例如,无线卡),所述天线26适用于接收和 /或发送电磁RF信号。

继续参看图1,为通过下行链路光纤16D将电学RF信号传送到RAU14 以又将所述电学RF信号传送到由RAU14所形成的天线覆盖区域20中的客户 端装置24,HEE12包括呈电光(E/O)转换器28形式的无线接口。E/O转换 器28将下行链路电学RF信号18D转换为下行链路光学RF信号22D,以通 过下行链路光纤16D传送。RAU14包括光电(O/E)转换器30以将接收的下 行链路光学RF信号22D转换回电学RF信号,以通过RAU14的天线32无线 地传送到位于天线覆盖区域20中的客户端装置24。

类似地,天线32也经配置以从天线覆盖区域20中的客户端装置24接收 无线RF通信。就这点来说,天线32从客户端装置24接收无线RF通信并将 代表无线RF通信的电学RF信号传送到RAU14中的E/O转换器34。E/O转 换器34将电学RF信号转换为上行链路光学RF信号22U,以通过上行链路光 纤16U传送。提供于HEE12中的O/E转换器36将上行链路光学RF信号22U 转换为上行链路电学RF信号,所述上行链路电学RF信号随后可作为上行链 路电学RF信号18U传送回网络或其它源。所述实施方式中的HEE12不能辨 别所述实施方式中的客户端装置24的位置。客户端装置24可处于由RAU14 形成的任何天线覆盖区域20的范围中。

图2为图1的示范性分布式天线系统10的更详细示意图,所述示范性分 布式天线系统10为特定RF服务或应用提供电学RF服务信号。在示范性实施 方式中,HEE12包括服务单元37,所述服务单元37通过借助网络链路39传 递(或调节并随后传递)来自一或多个外部网络38的所述信号来提供电学RF 服务信号。在特定示范性实施方式中,所述操作包括提供400兆赫(MHz)至 2.7千兆赫(GHz)的频率范围内的蜂窝信号分配。任何其他电学RF信号频率 均为可能的。在另一示范性实施方式中,服务单元37通过直接生成信号来提 供电学RF服务信号。在另一示范性实施方式中,服务单元37协调天线覆盖 区域20内的客户端装置24之间的电学RF服务信号的递送。

继续参看图2,服务单元37电气耦接到E/O转换器28,所述E/O转换器 28接收来自服务单元37的下行链路电学RF信号18D并将所述下行链路电学 RF信号18D转换成相应的下行链路光学RF信号22D。在示范性实施方式中, E/O转换器28包括激光器,并且可选地包括激光器驱动器/放大器,所述激光 器适用于实现用于本文中所描述的RoF应用的足够动态范围,所述激光器驱 动器/放大器电气耦接到激光器。用于E/O转换器28的合适激光器的实例包括 (但不限于)激光二极管、分布式反馈(DFB)激光器、法布里-伯罗(FP) 激光器及垂直空腔表面发射激光器(VCSEL)。

继续参看图2,HEE12也包括O/E转换器36,所述O/E转换器36电气 耦接到服务单元37。O/E转换器36接收上行链路光学RF信号22U并将所述 上行链路光学RF信号22U转换成相应的上行链路电学RF信号18U。在示范 性实施方式中,O/E转换器36为电气耦接到线性放大器的光电探测器或光探 测器。E/O转换器28和O/E转换器36构成“转换器对”35,如图2中所示。

根据示范性实施方式,HEE12中的服务单元37可包括用于分别调节下行 链路电学RF信号18D和上行链路电学RF信号18U的RF信号调节器单元40。 服务单元37可包括数字信号处理单元(“数字信号处理器”)42,所述数字 信号处理单元42用于向RF信号调节器单元40提供调制到RF载波上以生成 所需下行链路电学RF信号18D的电学信号。数字信号处理器42也经配置以 处理通过由RF信号调节器单元40解调上行链路电学RF信号18U而提供的 解调信号。HEE12也可包括可选中央处理单元(CPU)44和存储单元46,所 述中央处理单元44用于处理数据并另外执行逻辑与计算操作,所述存储单元 46用于储存数据,例如待通过WLAN或其他网络传输的数据。

继续参看图2,RAU14也包括转换器对48,所述转换器对48包含O/E 转换器30和E/O转换器34。O/E转换器30将从HEE12接收的下行链路光学 RF信号22D转换回下行链路电学RF信号50D。E/O转换器34将从客户端装 置24接收的上行链路电学RF信号50U转换成上行链路光学RF信号22U以 传送到HEE12。O/E转换器30和E/O转换器34通过RF信号引导元件52(例 如环行器)电气耦接到天线32。RF信号引导元件52用以引导下行链路电学 RF信号50D和上行链路电学RF信号50U,如以下所论述。根据示范性实施 方式,天线32可包括任何类型的天线,包括(但不限于)一或多个贴片天线, 例如在2006年8月16日提出申请的题为“Radio-over-Fiber Transponder With A  Dual-Band Patch Antenna System”的美国专利申请案第11/504,999号和2006 年6月12日提出申请的题为“Centralized Optical Fiber-Based Wireless  Picocellular Systems and Methods”的美国专利申请案第11/451,553号中所公开 的贴片天线,所述申请案均以全文引用的方式并入本文中。

继续参看图2,基于光纤的分布式天线系统10也包括电力单元54,所述 电力单元54包括电源供应器并提供电功率信号56。电力单元54电气耦接到 HEE12以为所述HEE12中的耗电元件提供电力。在示范性实施方式中,电 力线路58延行穿过HEE12并越过到RAU14来为转换器对48中的O/E转换 器30和E/O转换器34、可选RF信号引导元件52(例如,除非RF信号引导 元件52为例如环行器的无源装置)及提供的任何其他耗电元件提供电力。在 示范性实施方式中,电力线路58包括两条线60和62,所述两条线60和62 携载电压并且所述两条线60和62电气耦接到RAU14处的DC功率转换器64。 DC功率转换器64电气耦接到转换器对48中的O/E转换器30和E/O转换器 34并且所述DC功率转换器64将电功率信号56的电压或电平改变为RAU14 中的耗电组件所需的一或多个功率电平。在示范性实施方式中,取决于由电力 线路58携载的电功率信号56的类型,DC功率转换器64为DC/DC功率转换 器或AC/DC功率转换器。在另一示范性实施方式中,电力线路58(虚线)直 接从电力单元54延行到RAU14而不是从HEE12延行或延行穿过HEE12。 在另一示范性实施方式中,电力线路58包括两个以上的线并且所述电力线路 58可携载多个电压。

为提供可如何在室内配备分布式天线系统的进一步示范性说明,提供图 3A。图3A为建筑物基础结构70的部分示意性剖示图,所述建筑物基础结构 70采用基于光纤的分布式天线系统。系统可为图1和图2的基于光纤的分布 式天线系统10。建筑物基础结构70一般代表可在建筑物中配备基于光纤的分 布式天线系统10的任何类型的所述建筑物。例如,如先前关于图1和图2所 论述的,基于光纤的分布式天线系统10合并HEE12以为建筑物基础结构70 内的覆盖区域提供各种类型的通信服务。

举例来说,如下文更详细论述,本实施方式中的分布式天线系统10经配 置以接收无线RF信号并将RF信号转换为RoF信号以通过光纤16传送到RAU 14。本实施方式中的基于光纤的分布式天线系统10可为(例如)在建筑物基 础结构70内提供无线服务的室内分布式天线系统(IDAS)。例如,所述无线 信号可包括蜂窝服务、无线服务(例如RFID追踪、无线保真(WiFi))、局域 网(LAN)、安防、无线建筑物自动化和以上各者的组合。

继续参看图3A,本实施方式中的建筑物基础结构70包括第一(底)楼层 72、第二楼层74和第三楼层76。楼层72、楼层74、楼层76由HEE12通过 主配线架78服务,以在建筑物基础结构70中提供天线覆盖区域80。为简单 说明起见,图3A中仅图示了楼层72、楼层74、楼层76的天花板。在示范性 实施方式中,主电缆82具有有助于在建筑物基础结构70中置放大量RAU14 的众多不同部分。每一RAU14转而为天线覆盖区域80中自己的覆盖区域服 务。主电缆82可包括(例如)直立电缆84,所述直立电缆84从HEE12携载 所有下行链路光纤16D和上行链路光纤16U并将所有下行链路光纤16D和上 行链路光纤16U携载到HEE12。直立电缆84可通过电力单元85布线。电力 单元85还可经配置以通过电力线路58向RAU14提供电力,如图2中所示及 上文所论述,所述电力线路58提供于阵列电缆87或尾缆或室内延行拴缆 (home-run tether cable)(作为其他实例)中并且借下行链路光纤16D和上行 链路光纤16U分配到RAU14。举例来说,如图3B中的建筑物基础结构70 中所示,尾缆89可从电力单元85延伸到阵列电缆93中。阵列电缆93的拴缆 95中的下行链路光纤和上行链路光纤布线到每一RAU14,如图3B中所示。 主电缆82可包括一或多个多电缆(MC)连接器,所述一或多个多电缆(MC) 连接器经调适以将所选的下行链路光纤16D和上行链路光纤16U与电力线路 一起连接到众多光纤电缆86。

主电缆82使得多个光纤电缆86能够遍及建筑物基础结构70分配(例如, 固定到每一楼层72、74、76的天花板或其它支撑表面),以为第一楼层72、 第二楼层74和第三楼层76提供天线覆盖区域80。在示范性实施方式中,HEE 12位于建筑物基础结构70内(例如,位于密室或控制室中),而在另一示范 性实施方式中,HEE12可能在远端位置处位于建筑物基础结构70外。基站收 发信台(BTS)88连接到HEE12,且可共同定位或远离HEE12定位,所述 基站收发信台(BTS)88可通过第二方(例如蜂窝服务提供者)提供。BTS 为向HEE12提供输入信号且可从HEE12接收返回信号的任何信台或信号源。

在典型蜂窝系统中,例如,多个BTS配备在多个远端位置处以提供无线 电话覆盖。每一BTS为相应小区服务且当移动客户端装置进入小区时,BTS 与移动客户端装置通信。每一BTS可包括至少一个无线收发器,所述至少一 个无线收发器用于使与在相关联小区中作业的一或多个用户单元通信成为可 能。作为另一实例,也可使用无线中继器或双向放大器来替代BTS服务相应 小区。或者,作为其他实例,可由中继器、微微区或毫微微区提供无线输入。

图1至图3B中和上文描述的基于光纤的分布式天线系统10提供HEE12 与RAU14之间的点对点通信。多点构架也是可能的。关于图1至图3B,每 一RAU14通过独立的下行链路与上行链路光纤对与HEE12通信,以提供点 对点通信。只要RAU14安装在基于光纤的分布式天线系统10中,那么RAU 14连接到独立的下行链路与上行链路光纤对,所述下行链路与上行链路光纤 对连接到HEE12。下行链路光纤16D和上行链路光纤16U可提供在光纤电缆 中。多个下行链路与上行链路光纤对可提供在光纤电缆中以由共用光纤电缆服 务多个RAU14。

举例来说,参看图3A,安装在给定楼层72、给定楼层74或给定楼层76 上的RAU14可由同一光纤16服务。就这点而言,光纤16可具有多个节点, 独立下行链路与上行链路光纤对可在所述多个节点处连接到给定RAU14。可 提供一个下行链路光纤16D来支持多个通道,每一通道使用波分复用(WDM), 如题为“Providing Digital Data Services in Optical Fiber-based Distributed Radio  Frequency(RF)Communications Systems,And Related Components and  Methods”的美国专利申请案第12/892,424号中所论述,所述申请案全文以引 用的方式并入本文中。对于WDM和频分复用(FDM)的其他选项也公开在 美国专利申请案第No.12/892,424号中,可在本文公开的任何实施方式中采用 所述申请案中的任何内容。

HEE12可经配置以支持所需的任何频率,包括(但不限于):美国FCC 与加拿大工业局频率(上行链路824MHz至849MHz和下行链路869MHz至 894MHz)、美国FCC与加拿大工业局频率(上行链路1850MHz至1915MHz 和下行链路1930MHz至1995MHz)、美国FCC与加拿大工业局频率(上行 链路1710MHz至1755MHz和下行链路2110MHz至2155MHz)、美国FCC 频率(上行链路698MHz至716MHz及776MHz至787MHz和下行链路728 MHz至746MHz)、EU R&TTE频率(上行链路880MHz至915MHz和下行 链路925MHz至960MHz)、EU R&TTE频率(上行链路1710MHz至1785 MHz和下行链路1805MHz至1880MHz)、EU R&TTE频率(上行链路1920 MHz至1980MHz和下行链路2110MHz至2170MHz)、美国FCC频率(上 行链路806MHz至824MHz及下行链路851MHz至869MHz)、美国FCC频 率(上行链路896MHz至901及下行链路929MHz至941MHz)、美国FCC 频率(上行链路793MHz至805MHz及下行链路763MHz至775MHz)及美 国FCC频率(上行链路及下行链路2495MHz至2690MHz)。

图4为示范性HEE90的示意图,可与本文所公开的任何分布式天线系统 一起采用所述示范性HEE90,所述分布式天线系统包括(但不限于)图1至 图3中的分布式天线系统10。所述实施方式中的HEE90经配置以通过光纤分 配RF通信服务。在如图4中所示的本实施方式中,HEE90包括前端控制器 (HEC)91,所述前端控制器(HEC)91管理HEE90组件的功能并通过(例 如)接口(例如RS-232端口92、通用串行总线(USB)端口94和以太网端 口96)与外部装置通信。HEE90可通过BTS输入端101(1)-101(T)和BTS输 出端102(1)-102(T)连接到多个BTS、收发器100(1)-100(T)等等。符号“1-T” 指示可提供任何数量(至多达T数量)的具有相应BTS输入端和BTS输出端 的BTS收发器。

继续参看图4,BTS输入端101(1)-101(T)为下行链路连接,并且BTS输 出端102(1)-102(T)为上下链路连接。每一BTS输入端101(1)-101(T)连接到在 本实施方式中呈下行链路BTS接口卡(BIC)104形式的下行链路无线接口, 所述下行链路无线接口位于HEE90中,并且每一BTS输出端102(1)-102(T) 连接到呈上行链路BIC106形式的无线接口,所述无线接口也位于HEE90中。 下行链路BIC104经配置以接收来自BTS输入端101(1)-101(T)的输入信号或 下行链路RF信号并将下行链路RF信号分解为副本以传送到RAU14,如图2 中所示。在本实施方式中,三十六个(36)RAU14(1)-14(36)由HEE90支持, 但任何数量的RAU14可由HEE90支持。上行链路BIC106经配置以接收来 自RAU14的组合输出信号或上行链路RF信号并将上行链路RF信号分解到 作为返回通信路径的个别BTS输出端102(1)-102(T)中。

继续参看图4,在本实施方式中,下行链路BIC104连接到中面接口卡108。 上行链路BIC106也连接到中面接口卡108。下行链路BIC104和上行链路BIC 106可提供于印刷电路板(PCB)中,所述印刷电路板包括能直接插入中面接 口卡108中的连接器。中面接口卡108与在本实施方式中呈光学接口卡(OIC) 110形式的多个光学接口电气通信,所述多个光学接口通过下行链路光纤16D 和上行链路光纤16U以及下行链路BIC104和上行链路BIC106在RAU14之 间提供光学到电气通信接口,反之也提供电气到光学通信接口。OIC110包括 如关于图1论述的E/O转换器28,所述E/O转换器28将来自下行链路BIC104 的电学RF信号转换为光学RF信号,所述光学RF信号随后通过下行链路光 纤16D传送到RAU14并且随后传送到客户端装置。OIC110还包括如图1中 的O/E转换器36,所述O/E转换器36转换通过上行链路光纤16U从RAU14 传送到HEE90且随后传送到BTS输出端102(1)-102(T)的光学RF信号。

继续参看图4,本实施方式中的OIC110各自支持多达三(3)个RAU14。 OIC110还可提供于PCB中,所述PCB包括可直接插入中面接口卡108中以 将OIC110中的链路耦接到中面接口卡108的连接器。OIC110可由一或多个 光学接口模块(OIM)构成。如此,在本实施方式中,由于HEE90可支持多 达十二(12)个OIC110,所以HEE90可扩展到支持多达三十六(36)个RAU 14。如果少于三十六(36)个RAU14待由HEE90支持,那么少于十二(12) 个OIC110可包括于HEE90中并且少于十二(12)个OIC110可插入中面接 口卡108中。在本实施方式中,为由HEE90支持的每三(3)个RAU14提供 一个OIC110。如果需要超越初始设置来支持额外RAU14,那么OIC110还 可添加到HEE90并且可连接到中面接口卡108。继续参看图4,也可提供HEU 91,所述HEU91经配置以能够与下行链路BIC104、上行链路BIC106和OIC 110通信,以提供各种功能,包括放大器和放大器中提供的衰减器的设置。

图5为另一示范性基于光纤的分布式天线系统120的示意图,根据本文所 公开的实施方式,所述分布式天线系统120可用以提供RF通信服务。在本实 施方式中,基于光纤的分布式天线系统120包括用于分配RF通信服务的光纤。 本实施方式中的基于光纤的分布式天线系统120由三(3)个主要组件组成。 在HEE124中提供在本实施方式中以无线接口模块(RIM)122(1)-122(M)形 式提供的一或多个无线接口,以在下行链路电学RF通信信号126D(1)-126D(R) 光学转换成下行链路光学RF通信信号之前接收并处理所述下行链路电学RF 通信信号126D(1)-126D(R)。RIM122(1)-122(M)提供下行链路接口和上行链路 接口。对下行链路电学RF通信信号126D(1)-126D(R)的处理可包括先前在上 文中描述的在图1至图4中的HEE12中的处理中的任何处理。符号“1-R” 及“1-M”指示可分别提供任何数量的参考组件(1-R及1-M)。如下文将更详 细描述,HEE124经配置以接受多个RIM122(1)-122(M)作为能易于在HEE124 中安装及移除或替代的模块化组件。在一个实施方式中,HEE124经配置以支 持多达八(8)个RIM122(1)-122(M)。

每一RIM122(1)-122(M)可经设计以支持特定类型的射频源或射频源范围 (即,频率),以提供在设置HEE124及基于光纤的分布式天线系统120来支 持所要射频源方面的灵活性。举例来说,一个RIM122可经配置以支持个人 通信服务(PCS)无线电波段。另一RIM122可经配置以支持700MHz无线 电波段。在本实例中,通过包括所述RIM122,HEE124将经配置以支持并分 配在PCS和LTE700无线电波段上的RF通信信号。RIM122可提供于HEE124 中,所述RIM122支持任何所要的频段,包括(但不限于):美国蜂窝(US  Cellular)波段、个人通信服务(PCS)波段、先进无线服务(AWS)波段、 700MHz波段、全球移动通信系统(GSM)900、GSM1800及通用移动通信 系统(UMTS)。RIM122可提供于HEE124中,所述RIM122支持任何所要 的无线技术,包括(但不限于):码分多址(CDMA)、CDMA200、lxRTT、演 进数据最优化(EV-DO)、UMTS、高速分组接入(HSPA)、GSM、通用分组 无线服务(GPRS)、增强型数据GSM环境(EDGE)、时分多址(TDMA)、 长期演进(LTE)、iDEN及蜂窝数字分组数据(CDPD)。RIM122可提供于 HEE124中,所述RIM122支持在上文作为非限制性实例引用的任何所要的频 率。

将下行链路电学RF通信信号126D(1)-126D(R)提供到在本实施方式中以 光学接口模块(OIM)128(1)-128(N)形式提供的多个光学接口,以将下行链路 电学RF通信信号126D(1)-126D(N)转换为下行链路光学RF通信信号 130D(1)-130D(R)。符号“1-N”指示可提供任何数量(1到N)的参考组件。 OIM128可经配置以提供一或多个光学接口组件(OIC),所述一或多个光学 组件(OIC)含有O/E转换器及E/O转换器,如将在下文中更详细描述。OIM 128支持可由RIM122提供的无线电波段,包括先前在上文所描述的实例。因 此,在本实施方式中,例如,OIM128可支持从400MHz至2700MHz的无线 电波段范围,因此不需要针对更窄的无线电波段提供OIM128的不同类型或 模型来支持提供于HEE124中的不同无线电波段支持的RIM122的可能性。 另外,例如,可针对在400MHz至2700MHz(例如,400MHz至700MHz、 700MHz至1GHz、1GHz至1.6GHz及1.6GHz至2.7GHz)的频率范围内 的次波段优化OIM128。

OIM128(1)-128(N)各自包括E/O转换器以将下行链路电学RF通信信号 126D(1)-126D(R)转换为下行链路光学RF通信信号130D(1)-130D(R)。下行链 路光学RF通信信号130D(1)-130D(R)通过一或多个下行链路光纤133D传送到 多个RAU132(1)-132(P)。符号“1-P”指示可提供任何数量(1到P)的参考 组件。提供于RAU132(1)-132(P)中的O/E转换器将下行链路光学RF通信信 号130D(1)-130D(R)转换回下行链路电学RF通信信号126D(1)-126D(R),所述 下行链路电学RF通信信号126D(1)-126D(R)通过耦接到RAU132(1)-132(P)中 的天线136(1)-136(P)的链路134(1)-134(P)提供到天线136(1)-136(P)的接收范 围中的客户端装置。

E/O转换器还提供于RAU132(1)-132(P)中,以将通过天线136(1)-136(P) 从客户端装置接收的上行链路电学RF通信信号126U(1)-126U(R)转换为上行 链路光学RF通信信号138U(1)-138U(R),以通过上行链路光纤133U传送到 OIM128(1)-128(N)。OIM128(1)-128(N)包括O/E转换器,所述O/E转换器将 上行链路光学RF通信信号138U(1)-138U(R)转换为上行链路电学RF通信信号 140U(1)-140U(R),所述上行链路电学RF通信信号140U(1)-140U(R)由RIM 122(1)-122(M)处理并经提供作为上行链路电学RF通信信号 142U(1)-142U(R)。将通过下行链路电介质或媒体(在下文中为“介质”) 145D(1)-145D(P)传送的下行链路电学数字信号143D(1)-143D(P)以及通过上行 链路电介质145U(1)-145U(P)传送的上行链路电学数字信号143U(1)-143U(P) 单独地由RF通信服务提供到RAU132(1)-132(P),如同样在图6中所示。图5 与图6之间的共用元件用共用元件符号图示在图6中。可以下行链路和/或上 行链路电介质145D(1)-145D(P)和/或145U(1)-145U(P)提供电力给RAU 132(1)-132(P)。

在一个实施方式中,多达三十六(36)个RAU132可由OIM128支持, 在图5中的基于光纤的分布式天线系统120中,每一个OIM128支持三个RAU 132。基于光纤的分布式天线系统120可扩展到满足更大配置。在所图示基于 光纤的分布式天线系统120中,HEE124经配置以支持多达三十六(36)个 RAU132并适应6U机架空间(单位U意为1.75英寸高)。下行链路操作输入 功率电平可处于-15dBm至33dBm的范围中。可调节上行链路系统增益范围 可处于+15dB至-15dB的范围中。RIM122中的RF输入接口可为N型双工的 和N型单工的。基于光纤的分布式天线系统可包括分区开关,以可设置用于 分区性能,如2010年10月28日提出申请的并且题为“Sectorization In  Distributed Antenna Systems,and Related Components and Method”的美国专利 申请案第12/914,585号中所论述,所述申请案全文以引用的方式并入本文中。

在另一实施方式中,示范性RAU132可经配置以支持多达四(4)个不同 的无线电波段/载波(例如,ATT、VZW、TMobile、Metro  PCS:700LTE/850/1900/2100)。无线电波段升级可通过在同一光纤上添加远程 扩充单元(或在任何单个波段上升级成MIMO)来支持,如将在以下从图7 开始详细描述。RAU132和/或远程扩充单元可经配置以提供外部滤波器接口 来缓和700MHz波段(安防,CH51,56)下的潜在强烈干扰;单个天线端口(N 型)提供DL输出功率每波段(低波段(<1GHz):14dBm,高波段(>1GHz): 15dBm);并且单个天线端口满足UL系统RF规范(UL System RF spec)(UL 噪声指数:12dB,UL IIP3:-5dBm,UL AGC:25dB范围)。

图6为向图6的基于光纤的分布式天线系统120中的RAU或和/或其他远 程通信单元提供数字数据服务和RF通信服务的示意图。图5和图6以及所提 供的其他图式之间的共用组件具有相同元件符号并且因此将不重新描述。如图 6中所示,可提供电源供应器模块(PSM)153以向RIM122(1)-122(M)及无线 电分配卡(RDC)147提供电力,所述无线电分配卡(RDC)147通过RDC149 将来自RIM122(1)-122(M)的RF通信分配到128(1)-128(N)。在一个实施方式 中,RDC147、RDC149可支持不同分区需求。还可提供PSM155以向OIM 128(1)-128(N)提供电力。还可提供接口151以允许基于光纤的分布式天线系统 120的RIM122(1)-122(M)及其它组件的设置及通信,所述接口可包括网页及 网络管理系统(NMS)接口。HEE124(图7)中可包括微控制器、微处理器 或其他控制电路(称为前端控制器(HEC)157)以为HEE124提供控制操作。

RAU(包括上文论述的RAU14、RAU132)含有用于传输和接收RF通 信信号的耗电组件。在基于光纤的分布式天线系统的情况下,RAU可含有O/E 转换器和E/O转换器,所述O/E转换器和E/O转换器也需要电力来作业。举 例来说,RAU可含有电力单元,所述电力单元包括电源供应器以在RAU处本 地提供电力给RAU。或者,电力可从远程电力单元中提供的电源供应器提供 到RAU。在任何情况下,可能需要在模块化单元或装置中提供所述电源供应 器来提供电力,所述模块化单元或装置可容易地插入电力单元或从电力单元移 除。提供模块化配电模块允许更容易地按需要为分布式天线系统设置电力。可 能需要在不停用向其他RAU提供电力的其他配电模块的情况下允许所述配电 模块插入电力单元和从电力单元移除。如果需要停用提供给整个电力单元的电 力,那么即使插入电力单元和/或从电力单元移除的配电模块经配置以向从电 力单元接收电力的RAU的仅一个子集供应电力,也可禁用从电力单元接收电 力的所有RAU的RF通信。

就这点而言,本文公开的实施方式包括分布式天线系统(DAS)中的能够 “带电”连接和/或断开连接的配电模块。还公开相关组件、电力单元和方法。 通过“带电”连接和/或断开连接,意味着配电模块可在电力提供到配电模块 的同时连接到电力单元和/或耗电组件及/或与所述电力单元和/或耗电组件断 开连接。就这点而言,不需要在配电模块连接到电力单元和/或耗电组件及/或 与电力单元和/或耗电组件断开连接之前停止向配电模块提供电力。作为非限 制性实例,配电模块可经配置以免受或减少电弧或电接触烧蚀,所述电弧或电 接触烧蚀可能另外由“带电”连接和/或断开连接产生。

就这点而言,图7为示范性配电模块160的示意图,所述示范性配电模块 160可用以向RAU14、RAU132或其他耗电DAS组件(包括上文所描述的组 件)提供电力。在本实施方式中,配电模块160安置于电力单元162中。电力 单元162可为先前于上文描述的电力单元85以向RAU14、RAU132远程提 供电力。电力单元162可由机架164或经配置以支撑配电模块160的其他壳体 组成。电力单元162提供对从可为AC电源的外部电源166接收电力到电力单 元162以供随后在电力单元162内将电力分配到安置在所述电力单元162中的 配电模块160的支持,如下文将更详细描述。电力单元162可经配置以支撑多 个配电模块162。每一配电模块162可经配置以向多个RAU14、132提供电力。

继续参看图7,现将描述从外部电源166分配电力到配电模块160和从配 电模块160分配电力到输出功率端口,所述输出功率端口可电气耦接到耗电 DAS组件。在本实施方案中,电力单元162含有安置于机架164中的外部输 入功率端口168。外部输入功率端口168经配置以电气耦接到外部电源166以 向外部输入功率连接器168供应输入功率170。举例来说,外部电源166可为 AC电源,并且外部电源166可为110伏特(V)或220伏特(V)。为了将电 力从外部电源166分配到安置于电力单元162中的配电模块160,电力单元162 含有中面接口连接器172。在本实施方式中,中面接口连接器172由用以携载 AC信号的AC连接器172A和用以携载DC信号的DC连接器172B组成。配 电模块160含有互补连接器174,所述互补连接器174可连接到中面接口连接 器172以将配电模块160电气连接到电力单元162。举例来说,电力单元162 可含有中面接口总线,所述中面接口总线含有多个中面接口连接器172以允许 多个配电模块160与中面接口总线接合。

继续参看图7,配电模块160包括输入功率端口176,所述输入功率端口 176经配置以接收来自外部电源166的输入功率。输入功率端口176作为连接 器174的部分提供以允许外部电源166电气耦接到输入功率端口176并因此耦 接到配电模块160。本实施方式中的配电模块160含有可选功率转换器178以 将来自外部电源166的输入功率170转换成DC功率180。就这点而言,功率 转换器178电气耦接到输入功率端口176以接收来自外部电源166的输入功率 170。功率转换器178将来自外部电源166的输入功率170转换成输出功率180, 所述输出功率180在本实例中为DC功率。举例来说,功率转换器178可将输 入功率170转换成56VDC输出功率180(作为非限制性实例)。第二功率转换 器182可接收输出功率180并且可将输出功率180转换成(例如)如12VDC 的不同电压下的第二输出功率184以向配电模块160中的冷却风扇186提供电 力。

继续参看图7,功率转换器178也可将输出功率180分配到功率控制器 188。如下文将更详细描述,功率控制器188控制是否将输出功率180分配到 输出功率端口190以分配到耗电DAS装置,所述耗电DAS装置电气耦接到输 出功率端口190。本实施方式中的输出功率端口190通过连接器172、连接器 174电气耦接到输出功率连接器192,如图7中所示。因此,可通过将耗电DAS 装置电气耦接到配电模块160中的输出功率连接器192而分配输出功率180 到耗电DAS装置。就这点而言,功率控制器188含有功率使能端口194。功 率控制器188经配置以基于提供在功率使能线路198上的功率使能信号196 选择性地将输出功率180分配到输出功率端口190,所述功率使能线路198耦 接到功率使能端口194。就这点而言,功率控制器188经配置以如果功率使能 线路198上传送的功率使能信号196指示启动功率则将输出功率180分配到输 出功率端口190。启动功率意味着向输出功率端口190提供输出功率180以分 配到耗电DAS装置,所述耗电DAS装置电气耦接到输出功率端口190。当启 动输出功率180并将输出功率180供应到输出功率连接器192时,输出功率 180也可耦合到灯(例如发光二极管(LED)200),以表示输出功率180对输 出功率连接器192有效。功率控制器188也经配置以如果功率使能线路198 上传送的功率使能信号196指示停用功率则不将输出功率180分配到输出功率 端口190。在本实施方式中,所述功率控制器188和使能特征结构允许配电模 块160与电力单元162“带电”连接和与电力单元162断开连接,如以下将更 详细描述。

继续参看图7,在本实施方式中,功率使能信号196的一个源为功率禁用 /使能特征结构202。功率使能/禁用特征结构202可为配电模块160上的导体 或插脚,如将在以下更详细描述。功率使能/禁用特征结构202可通过其他方 式提供。当输出功率连接器204连接到配电模块160的输出功率连接器192 时,本实施方式中的功率使能/禁用特征结构202经配置以闭合功率使能线路 198上的电路。当已连接时,输出功率连接器204则将电气耦接到配电模块160 的连接器174,当安装了配电模块160时,所述连接器174连接到电力单元162 的中面接口连接器172。如以下将更详细论述,功率使能/禁用特征结构202 仅可经配置以闭合功率使能线路198上的电路,直至耦接到输出功率连接器 192的输出功率连接器204的所有其他导体通过连接器174全部电气耦接到中 面接口连接器172。通过所述方式,可避免输出功率连接器204与输出功率连 接器192之间的电弧,因为直到输出功率连接器204与输出功率连接器192 之间建立完全电气耦接,功率控制器188才提供输出功率180到输出功率端口 190和输出功率连接器192。

电弧为在强电流跳过电路中或两个导体之间的间隙时形成的发光放电。如 果在输出功率连接器204与输出功率连接器192之间形成完全电接触之前通过 功率控制器188将输出功率180提供到输出功率端口190和输出功率连接器 192,则可发生电弧。由于高电压和/或放电,电弧可导致对配电模块160和/ 或配电模块160的组件以及连接到输出功率连接器192的任何耗电DAS组件 的电导体腐蚀和/或损坏。

继续参看图7,如果在输出功率连接器192与输出功率连接器204之间形 成完全电气连接之前将输出功率180提供到输出功率端口190,则可发生电弧 和/或电导体腐蚀。由于输出功率180为“带电”的并且主动供应到输出功率 连接器192,可在输出功率连接器204与输出功率连接器192断开连接期间发 生电弧。本文中的功率控制器188允许在输入功率170为“带电”或有效时将 输出功率连接器204与输出功率连接器192断开连接,因为功率使能/禁用特 征结构202经配置以断开到功率使能线路198的电路,以使得在输出功率连接 器204与输出功率连接器192之间的电接触被解耦之前,功率控制器188不向 输出功率端口190提供输出功率180。就类似的一点而言,功率控制器188也 允许在输入功率170为“带电”或有效时将输出功率连接器204连接到输出功 率连接器192,因为功率使能/禁用特征结构202经配置以闭合到功率使能线路 198的电路,以在输出功率连接器204与输出功率连接器192之间建立完全电 接触之后使能功率控制器188向输出功率端口190提供输出功率180。

继续参看图7,就类似的一点而言,配电模块160也经配置以在安装(即, 连接)配电模块160到电力单元162或从电力单元162移除(即,断开连接) 配电模块160后启动和停止向输出功率连接器192提供输出功率180。更具体 地说,功率使能/禁用特征结构202经配置以仅闭合功率使能线路198上的电 路,以使能功率控制器188提供输出功率180,直至配电模块160的连接器174 的所有其他导体在将配电模块160安装于电力单元162期间完全耦接到中面接 口连接器172。以这种方式,当在输入功率170为“带电”的时将配电模块160 安装到电力单元162中时,可避免输出功率连接器204与输出功率连接器192 之间的电弧。这是因为直到配电模块160的连接器174与中面接口连接器172 之间建立完全电气耦接,功率控制器188才向输出功率端口190提供输出功率 180。如果负载放置在输出功率连接器204上,那么当在输入功率170为“带 电”的时将配电模块160连接到电力单元162或与电力单元162断开连接时, 所述举动降低或避免电弧风险,所述输出功率连接器204连接到输出功率连接 器192。

同样,功率使能/禁用特征结构202经配置以断开功率使能线路198上的 电路,以禁止在从电力单元162移除或断开连接配电模块160期间通过输出功 率端口190提供输出功率180。功率使能/禁用特征结构202经配置以断开功率 使能线路198上的电路,以在配电模块160的连接器174开始从中面接口连接 器172解耦之前禁用输出功率180。以这种方式,如果在输入功率170为“带 电”的情况下移除配电模块160,那么可避免输出功率连接器204与输出功率 连接器192之间的电弧。这是因为在移除配电模块160期间配电模块160的连 接器174与中面接口连接器172之间开始电气解耦之前,功率控制器188禁用 到输出功率端口190和输出功率连接器204的输出功率180。如果负载放置在 输出功率连接器204上,那么当在输入功率170为“带电”的时将配电模块 160与电力单元162断开连接时,所述举动降低或避免电弧风险,所述输出功 率连接器204连接到输出功率连接器192。

同样,参看图7,风扇186可经配置以向功率控制器188提供诊断数据或 其他操作数据195。举例来说,功率控制器188可经配置以如果风扇186向功 率控制器188报告故障或其他错误状态则禁止提供输出功率180。

图8为图7中的配电模块160和电力单元162的示范性内部组件的示意图, 所述内部组件允许配电模块160与分布式天线系统中的电力单元162和远程天 线单元(RAU)14、RAU132“带电”连接和/或断开连接。图7与图8之间的 共用元件符号表示共用元件和功能。仅图示一个配电模块160,但可在电力单 元162中提供一个以上配电模块160。如图8中所示,可存在两个输出功率连 接器192A、192B,所述两个输出功率连接器192A、192B允许两个电力电缆 210A、210B通过电力电缆210A、210B的输出功率连接器204A、204B连接 到输出功率连接器192A、输出功率连接器192B以向两个RAU14、132提供 电力。或者,需要更大功率的一个RAU14、132可连接到两个输出功率连接 器204A、204B。本实施方式中的配电模块160经配置以向多个RAU14、132 分配电力。输出连接器212A、输出连接器212B安置在与输出功率连接器204A、 输出功率连接器204B相反的电力电缆210A、电力电缆210B的末端。输出连 接器212A、输出连接器212B经配置以连接到RAU功率连接器214A、RAU 功率连接器214B以向RAU14、RAU132提供电力。当输出连接器212A、输 出连接器212B电气连接到RAU14、RAU132中的RAU功率连接器214A、 RAU功率连接器214B时,电力电缆210A、电力电缆210B经配置以使得两 个导体(如所示的插脚3和插脚4)短路。RAU功率连接器214A、RAU功率 连接器214B中对应于插脚3和插脚4的导体在RAU14、RAU132内部短路。

就这点而言,图9为输出功率连接器204的侧面透视图,所述输出功率连 接器204连接到配电模块160的输出功率连接器192。图9也图示配电模块160 的连接器174,所述连接器174将插入电力单元162的中面接口连接器172中 以将输入功率170耦合到配电模块160,从而通过输出功率连接器192分配到 输出功率连接器204再到至少一个耗电DAS装置。图10A图示安装有盖的示 范性配电模块160的前方侧面透视图。图10B图示移除盖的图10A的配电模 块160的前方侧面透视图。图10C图示图10A的配电模块160的后方侧面透 视图。

继续参看图8,当输出功率连接器204A、输出功率连接器204B电气连接 到电力电缆210A、电力电缆210B时,RAU功率连接器214A、RAU功率连 接器214B中的插脚3与插脚4之间形成的短路导致输出功率连接器204A、 输出功率连接器204B中的插脚3和插脚4短路,所述输出功率连接器204A、 输出功率连接器204B耦接到配电模块160的中面接口连接器172和连接器174 以及输出功率连接器192A、输出功率连接器192B。此为功率使能/禁用特征 结构202A。就这点而言,功率使能端口194A、功率使能端口194B通过功率 使能线路198A、功率使能线路198B启动,从而启动功率控制器188A、功率 控制器188B以通过中面接口连接器172向连接器174提供输出功率180并且 通过电力电缆210A、电力电缆210B向RAU14、RAU132提供输出功率180。 当输出功率连接器204A、输出功率连接器204B或输出连接器212A、输出连 接器212B断开连接时,输出功率连接器192A、输出功率连接器192B上的插 脚3和插脚4不为短路的。这导致功率使能端口194A、功率使能端口194B 通过功率使能线路198A、功率使能线路198B停用,从而导致功率控制器188A、 功率控制器188B停止通过中面接口连接器172和输出功率连接器192A、输 出功率连接器192B向连接器174提供输出功率180,所述中面接口连接器172 和输出功率连接器192A、输出功率连接器192B可电气连接到电力电缆210A、 电力电缆210B。就这点而言,RAU14、RAU132与输出功率连接器192A、 输出功率连接器192B的连接和断开连接导致功率控制器188A、功率控制器 188B分别启动和停用输出功率180。

继续参看图8,可提供替代性电路设置220。代替插脚3和插脚4在电力 电缆210A、电力电缆210B中一起短路,插脚3和插脚4可在RAU14、RAU 132的RAU功率连接器214A、RAU功率连接器214B中短路。当电力电缆 210A、电力电缆210B的输出连接器212A、输出连接器212B连接到RAU114、 RAU132的RAU功率连接器214A、RAU功率连接器214B时,这将在电力 电缆210A、电力电缆210B中导致插脚3与插脚4之间的短路。当已连接时, 功率使能端口194A、功率使能端口194B通过功率使能线路198A、功率使能 线路198B启动,从而启动功率控制器188A、功率控制器188B以通过中面接 口连接器172向连接器174提供输出功率180并且通过电力电缆210A、电力 电缆210B向RAU14、RAU132提供输出功率180。当输出功率连接器204A、 输出功率连接器204B或输出连接器212A、输出连接器212B断开连接时,输 出功率连接器192A、输出功率连接器192B上的插脚3和插脚4不为短路的。 这导致功率使能端口194A、功率使能端口194B通过功率使能线路198A、功 率使能线路198B停用,从而导致功率控制器188A、功率控制器188B停止通 过中面接口连接器172和输出功率连接器192A、输出功率连接器192B向连 接器174提供输出功率180,所述中面接口连接器172和输出功率连接器192A、 输出功率连接器192B可电气连接到电力电缆210A、电力电缆210B。就这点 而言,RAU14、RAU132与输出功率连接器192A、输出功率连接器192B的 连接和断开连接导致功率控制器188A、功率控制器188B分别启动和停用输 出功率180。

继续参看图8,当配电模块160连接器174连接到电力单元162中的中面 接口连接器172时,通过功率控制器188A、功率控制器188B使能输出功率 180A、输出功率180B。就这点而言,当配电模块160连接器174通过功率使 能/禁用特征结构202B连接到中面接口连接器172时,在中面接口连接器172 中的插脚11与插脚12之间形成短路。功率使能端口194A、功率使能端口194B 通过功率使能线路198A、功率使能线路198B启动,从而启动功率控制器188A、 功率控制器188B以通过中面接口连接器172向连接器174提供输出功率180 并且通过电力电缆210A、电力电缆210B向RAU14、RAU132提供输出功率 180。类似地,当配电模块160连接器174与电力单元162中的中面接口连接 器172断开连接时,通过功率控制器188A、功率控制器188B禁用输出功率 180A、输出功率180B。就这点而言,插脚11和插脚12不再为短路的。这导 致功率使能端口194A、功率使能端口194B通过功率使能线路198A、功率使 能线路198B停用,从而导致功率控制器188A、功率控制器188B停止通过中 面接口连接器172和输出功率连接器192A、输出功率连接器192B向连接器 174提供输出功率180,所述中面接口连接器172和输出功率连接器192A、输 出功率连接器192B可电气连接到电力电缆210A、电力电缆210B。就这点而 言,配电模块160与电力单元162的连接和断开连接导致功率控制器188A、 功率控制器188B分别启动和停用输出功率180。

可提供功率转换器178以产生所需的任何电压水平的DC功率。在一个实 施方式中,功率转换器178可产生相对低电压的DC电流。尽管不要求,但可 能需要限制功率并符合安全特低电压(Safety Extra Low Voltage;SELV)的低 电压。举例来说,根据保险商实验室(Underwriters Laboratories;UL)刊物第 60950期,符合SELV的电路产生在正常操作条件下并且在故障后触碰安全的 电压。在本实施方式中,提供两个功率控制器188A、188B,因此,在本实例 中通过输出功率端口190A、输出功率端口190B提供不大于100瓦特(W), 以遵守保险商实验室(UL)刊物第60950期并提供符合SELV的电路。本文 所论述的100VA限定用于2类DC电源,如NFPA70的第725章中的表11(B) 中所示。对于消防而言并且为了符合消防与其他安全规则和/或标准,可能需 要或必要提供符合SELV的功率转换器178和电力单元162。在本实例中,功 率转换器178经配置以提供达150W的功率。在输出功率端口190A、输出功 率端口190B之间分配150W。

图11为示范性功率控制器188的示意图,所述功率控制器188可提供在 图7中的配电模块160中。图11与图7之间的共用元件符号指示共用元件并 且因此将不重新描述。如图11中所示,提供集成电路(IC)芯片230来控制, 其中将提供来自功率转换器178的输出功率180到配电模块160的连接器174, 所述配电模块160经配置以连接到电力单元162的中面接口连接器172。

为提供配电模块160到电力单元162(且更详细地说,连接器174到中面 接口连接器172)的“带电”连接,功率控制器188在连接器174的导体与中 面接口连接器172之间形成完全电接触之前不应使能输出功率180。否则,可 能发生电弧。为提供配电模块160到电力单元162的“带电”断开连接,功率 控制器188应在连接器174的导体与中面接口连接器172之间解耦完全电接触 之前禁用输出功率180。类似地,为了提供耗电DAS装置到配电模块160的 输出功率连接器192的“带电”连接,重要的是,直到输出功率连接器192 与输出功率连接器204之间形成完全电接触,功率控制器188才使能输出功率 180。为提供配电模块160到电力单元162的“带电”断开连接,功率控制器 188应在输出功率连接器192的导体与输出功率连接器204之间形成完全电接 触之前使能输出功率180。

就这点而言,在中面接口连接器172和输出功率连接器204中提供短导体 插脚,所述中面接口连接器172和输出功率连接器204经配置以在建立接触时 耦接到功率使能线路198。所述情况图示在图12和图13中。图12为中面接 口连接器172的侧视图,所述中面接口连接器172包括短导体插脚202A,所 述短导体插脚202A为本实施方式中的功率使能/禁用特征结构202。图13为 电力电缆210的输出功率连接器204的输出功率插脚的侧视图,所述输出功率 插脚经对准以连接到配电模块160的输出功率连接器192。

参看图12,接口连接器174包括比短导体插脚202A长的其他导体225。 因此,当中面接口连接器172连接到连接器174时,在短导体插脚202A使能 功率使能线路198以使能功率控制器188分配输出功率180之前,充分建立与 其他导体225的电接触。因此,当中面接口连接器172与配电模块160的连接 器174之间形成“带电”连接时,可避免电弧。类似地,为提供“带电”断开 连接,在发生对其他导体225的电气解耦之前,首先将从连接器174电气解耦 短导体插脚202A。因此,在解耦其他导体225与连接器174之间的电接触之 前,功率控制器188将禁用输出功率180。因此,当中面接口连接器172与配 电模块160的连接器174之间形成“带电”断开连接时,可避免电弧。短导体 插脚202A可反向并且短导体插脚202A安置在配电模块160的连接器174中 并与中面接口连接器172相反地安置在输出功率连接器192中。

参看图13,提供类似布置。其中,输出功率连接器204包括其他导体227, 所述其他导体227比短导体插脚202B长。因此,当输出功率连接器204连接 到输出功率连接器192时,在短导体插脚202B使能功率使能线路198以使能 功率控制器188分配输出功率180之前,充分建立与其他导体227的电接触。 因此,当输出功率连接器204与配电模块160的输出功率连接器192之间形成 “带电”连接时,可避免电弧。类似地,为提供“带电”断开连接,在发生对 其他导体227的电气解耦之前,首先将从输出功率连接器192电气解耦短导体 插脚202B。因此,在解耦其他导体227与输出功率连接器192之间的电接触 之前,功率控制器188将禁用输出功率180。因此,当输出功率连接器204与 配电模块160的输出功率连接器192之间形成“带电”断开连接时,可避免电 弧。短导体插脚202B可反向并且与输出功率连接器204相反地安置在输出功 率连接器192中。

图14为示范性电力单元162的示意图,所述示范性电力单元162经配置 以支持一或多个配电模块160向分布式天线系统中的RAU14、RAU132提供 电力。就这点而言,图14为电力单元162的示意性顶部剖示图,所述电力单 元162可用于示范性RoF分布式通信系统中。电力单元162以与图3中所示 的电力单元85类似的方式提供电力到远程单元并提供与第一中央单元的连通 性。然而,电力单元162也可在RAU14、RAU132与第二中央单元244(未 图示)之间提供连通性。第二中央单元244可为(例如)向远程单元提供以太 网服务的单元。为了本实施方式的目的,第一中央单元将被称为HEU91,并 且第二中央单元将被称为中央以太网单元或CEU244。例如,在电学密室中, CEU244可与电力单元162并置,或者CEU244可与HEU91一起定位或可位 于HEU91中。

根据一个实施方式,如果以太网或一些其他额外的服务(例如,第二蜂窝 通信提供者)通过系统10提供,那么四个光纤(两个上行链路/下行链路光纤 对)可布线到每一远程单元位置。在这种情况下,两个光纤用于从HEU91到 远程单元的上行链路/下行链路,并且两个光纤用于来自CEU244的上行链路/ 下行链路。一或多个远程单元可装备额外的硬件或独立的附加模块,所述额外 的硬件或独立的附加模块经设计用于到第二光纤所连接的部分的以太网传输。 还可在每一远程单元位置处提供第三光纤以提供额外的服务。

如图14中所示,电力单元162可提供于外壳250中。外壳250的功能通 常可类似于壁装式外壳,除了电力单元162中的一或多个分叉集可在外壳250 内部以外。一或多个电力单元162可位于办公建筑物、多住户单元等的一个楼 层上,以向所述楼层上的远程单元提供电力和连通性。旨在将示范性电力单元 162作为1U机架安装式设置,尽管电力单元162也可设置为3U版本(例如) 以容纳额外的远程单元。

直立电缆84的位于外壳250内部的分叉260(例如,图3A)拆开来自直 立电缆84的光纤对,所述光纤对在上行链路末端处连接到HEU91,以提供到 HEU91的光学通信输入链路。分叉260可为可购自Hickory NC的Corning  Cable Systems LLC的Size2EdgeTMPlug分叉(零件02-013966-001)。如果CEU 244与HEU91一起定位,那么将CEU244连接到电力单元162的光纤可包括 在直立电缆84中。分叉270拆开来自CEU244的光纤对以提供到CEU244 的光学通信输入链路。分叉270可为可购自Corning Cable Systems LLC的Size 2EdgeTMPlug分叉(零件02-013966-001)。

来自HEU91和CEU244的光学通信输入链路为将连接到远程单元的下行 链路与上行链路光纤对。在本实施方式中,分叉管脚含有八(8)个光纤对以 提供从CEU244和HEU91到多达四(4)个远程单元的连接,尽管可使用任 何数量的光纤和远程单元。管脚在分叉280处连接到电力单元162,所述分叉 280可作为两排双光纤连接器布置在外壳250的一个表面上,每排四个双光纤 连接器。所示分叉280内部安装在外壳250中。在替代性实施方式中,分叉 280可安装在发射箱286上,所述发射箱286安装在外壳250的外部。

针对HEU91与远程单元之间的通信,来自分叉260的分叉管脚262可用 光纤连接器预连接化以帮助容易地连接到电力单元162中的第一适配器模块 290。第一适配器模块290包括多光纤连接器292,所述多光纤连接器292容 纳分叉管脚262的连接器。连接器292可为(例如)12光纤MTP连接器。第 一适配器模块290的另一侧处的(例如)一系列六个双光纤连接器294连接来 自每一分叉280的光纤对282。每一光纤对282可用双光纤连接器连接化,所 述双光纤连接器连接到第一适配器模块290的六个连接器294中的一个。在所 述布置中,第一适配器模块290具有在连接器292处接收12个光纤并接收六 个独立的连接化光纤对282的能力。所述示范性布置允许六个远程单元与HEU 91之间的光学通信,尽管所示实施方式中仅展示四个此类连接。第一适配器 模块290可为(例如)可购自Corning Cable Systems LLC的用于直立连接的 12/F LC EDGETM模块/07-016841。

针对CEU244与远程单元或远程单元的附加模块等之间的通信,来自分 叉270的分叉管脚272可用光纤连接器预连接化以帮助容易地连接到电力单元 162中的第二适配器模块300。在所示实施方式中,第二适配器模块300直接 处于第一适配器模块290下方并且因此在图14中不可见。第二适配器模块300 包括多光纤连接器293,所述多光纤连接器293容纳管脚272的连接器。连接 器293可为(例如)12光纤MTP连接器。第二适配器模块300的另一侧处的 (例如)一系列六个双光纤连接器连接来自每一分叉280的光纤对284。每一 光纤对284可用双光纤连接器连接化,所述双光纤连接器连接到第二适配器模 块300的六个连接器中的一个。在所述布置中,第二适配器模块300具有在连 接器293处接收12个光纤并接收六个独立的连接化光纤对284的能力。所述 布置允许(例如)六个以太网模块与CEU244之间的光学通信,尽管所示实 施方式中仅展示四个此类连接,所述以太网模块并置或处于各个远程单元内。 第二适配器模块300可为(例如)可购自Corning Cable Systems LLC的用于直 立连接的12/F LC EDGETM模块/07-016841。

一或多个配电模块160可包括于外壳250中。根据一个实施方式,一个配 电模块160可通过一对电导体连接到每一远程单元。电导体包括(例如)同轴 电缆、双绞铜导体对等。每一配电模块160图示为连接到导体324的双绞线。 配电模块160插入背板及导体中,所述导体为远程单元提供电力,通过来自光 纤的独立的电连接器连接到背板,尽管可使用混合光学/电连接器。延伸到远 程单元的每一电缆可包括两个光纤和两个双绞铜导体对,尽管可包括额外的光 纤和电导体。

配电模块160在外壳250中并排对准。可基于电力需求指定一个配电模块 160给每一远程单元。如果远程单元处包括附加模块(例如以太网模块),那 么第二配电模块160可经指定以为附加模块提供电力。如果远程单元和附加模 块电力预算低,那么单个配电模块160对于为所述位置提供电力可能已足够。 因此,电力和光学连通性的分配取决于远程单元、额外模块和硬件等的数量和 电力需求而可适用。配电模块160可连接到电源总线,所述电源总线在电力单 元162位置处接收本机电源。

如先前所论述,配电模块160可包括风扇186,所述风扇186由模块160 提供电力。每一配电模块160可具有两个输出插头以允许为大功率或小功率远 程单元提供电力。在图14中,未使用的双绞导体对326存放在位置328处。 导体对326可用以为以太网供电(Power-over-Ethernet)应用等或者额外的配 电模块160提供电力,尽管所述应用可能需要使用较少的远程单元。

所图示配电模块160可具有93W至95W的功率输出。配电模块可在没 有风扇的情况下作业,但额定功率可能下降,或者可能需要更大的外壳空间来 确保适当的冷却。如果不使用风扇,那么额定功率可(例如)从100W下降 到60W至70W。可遵循UL需求,所述UL需求将电力分配限制为每个远程 单元阵列100VA。在替代性1U模块设置中,电力单元162可具有六个配电模 块160并且不具有适配器模块。模块可为(例如)远程单元供应大于80W的 负载。在替代性3U模块设置中,电力单元162可具有十二个配电模块160并 且可支持十二个远程单元。

本文所论述的电力单元162可包含任何类型的光纤设备和任何类型的光 学连接,并且所述电力单元162可接收任何数量的光纤电缆或单光纤或多光纤 电缆或连接。电力单元162可包括光纤组件(例如适配器或连接器)以促进光 学连接。所述组件可包括(但不限于)LC、SC、ST、LCAPC、SCAPC、MTRJ 和FC类型的光纤组件。电力单元162可经配置以连接到任何数量的远程单元。 电力单元162内所含有的或与电力单元162相关联的一或多个电源供应器可提 供电力到电力单元162中的配电模块。配电模块可经配置以在具有或不具有电 压与电流保护和/或感测的情况下分配电力到远程单元。电力单元162中所含 有的配电模块可为模块化的,在所述电力单元162中,可移除所述配电模块, 并且所述配电模块服务电力单元162或永久安装在电力单元162中。

图15为关于示范性计算机系统340的额外细节的示意图表现,所述示范 性计算机系统340可包括在配电模块160中并且提供在功率控制器188中。计 算机系统340适用于执行来自示范性计算机可读介质的指令以执行电力管理 功能。就这点而言,计算机系统400可包括指令集,以用于使功率控制器188 使能和禁用到输出功率端口190的功率耦合,如先前所描述。功率控制器188 可连接(例如,联网)到LAN、内联网、外联网或互联网中的其他机器。功 率控制器188可在主从式网络环境中作业或者作为点对点(或分布式)网络环 境中的对等机作业。尽管仅图示单个装置,但术语“装置”也应考虑包括装置 的任何集合,所述装置个别地或联合地执行指令集(或多个指令集)以执行本 文所论述的方法中的一或多种方法。功率控制器188可为包括在电子板卡(例 如,印刷电路板(PCB))、服务器、个人计算机、台式计算机、便携式计算机、 个人数字助理(PDA)、计算本、移动装置或任何其它装置中,且所述功率控 制器188可代表(例如)服务器或用户的计算机。

本实施方式中的功率控制器188的示范性计算机系统340包括处理装置或 处理器344、主存储器356(例如,只读存储器(ROM)、闪速存储器、动态 随机存取存储器(DRAM)(例如同步DRAM(SDRAM))等)和静态存储器 348(例如,闪速存储器、静态随机存取存储器(SRAM)等),所述处理装置 或处理器344、主存储器356和静态存储器348可通过数据总线350彼此通信。 或者,处理装置344可直接或通过一些其他连通性手段连接到主存储器356 和/或静态存储器348。处理装置344可为控制器,并且主存储器356或静态存 储器348可为任何类型的存储器,所述存储器中的每一个可包括在功率控制器 188中。

处理装置344代表一或多个通用处理装置,例如微处理器、中央处理单元 等等。更详细地说,处理装置344可为复杂指令集计算(CISC)微处理器、 精简指令集计算(RISC)微处理器、超长指令字(VLIW)微处理器、实施其 它指令集的处理器或实施指令集组合的处理器。处理装置344经配置以执行指 令346中的处理逻辑以执行本文所论述的操作及步骤。

计算机系统340可进一步包括网络接口装置352。计算机系统340也可包 括或可不包括输入端354以在计算机系统340执行指令时接收将传送到计算机 系统340的输入及选择。计算机系统340也可包括或可不包括输出端364,包 括(但不限于)显示器、视频显示单元(例如,液晶显示器(LCD)或阴极射 线管(CRT))、字母数字输入装置(例如,键盘)及/或光标控制装置(例如, 鼠标)。

计算机系统340可包括或可不包括数据储存装置,所述数据储存装置包括 储存在计算机可读介质360中的指令358。指令358也可在通过计算机系统340 执行指令358的期间完全地或至少部分地常驻在主存储器356内及/或常驻在 处理装置344内,主存储器356及处理装置344也构成计算机可读介质。指令 358可进一步通过网络接口装置352经过网络362传输或接收。

此外,如本文所用,用意在于,术语“光纤电缆”和/或“光纤”包括所 有类型的单模和多模光波导管,包括可涂覆、着色、缓冲、带状化和/或在电 缆中具有其他规律化或保护结构(例如,一或多个管、强度构件、外套等)的 一或多个光纤。本文所公开的光纤可为单模或多模光纤。同样,其他类型的合 适的光纤包括对弯曲不敏感的光纤或用于传输光信号的任何其他合理的介质。 弯曲不敏感光纤或耐弯曲光纤的实例为可购自Corning Incorporated的 多模光纤。在(例如)美国专利申请案第2008/0166094号和第 2009/0169163号中公开此类型的合适的光纤,所述申请案的公开内容全部以引 用的方式并入本文中。

得益于前文描述和相关联图式中呈现的教示,所述实施方式所属领域的技 术人员将想到本文所阐述的多种修改和其他实施方式。举例来说,分布式天线 系统可包括任何类型或数量的通信介质,包括(但不限于)电导体、光纤和空 气(即,无线传输)。分布式天线系统可分配任何类型的通信信号,包括(但 不限于)RF通信信号和数字数据通信信号,所述信号的实例描述于题为 “Providing Digital Data Services in Optical Fiber-based Distributed Radio  Frequency(RF)Communications Systems,And Related Components and  Methods”的美国专利申请案第12/892,424号中,所述申请案全文以引用的方 式并入本文中。例如根据美国专利申请案第12/892,424号中提供的实例,多路 复用(例如WDM和/或FDM)可用于本文所描述的分布式天线系统中的任何 一个中。

因此,应理解,描述和权利要求书不受限于所公开的特定实施方式,且意 在将修改和其它实施方式包括在附加权利要求书的范围中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号