首页> 中国专利> 一种时效硬化薄带连铸低碳微合金钢带制造方法

一种时效硬化薄带连铸低碳微合金钢带制造方法

摘要

一种时效硬化薄带连铸低碳微合金钢带制造方法,包括如下步骤:1)在双辊连铸机中铸造厚度为1-5mm的铸带,其成分重量百分比为:C0.01-0.25%,Si≤0.4%,Mn 0.6-2.0%,P≤0.015%,S≤0.01%,N≤0.012%,此外,还包含Nb、V、Ti、Mo中至少一种,Nb 0.005-0.1%,V 0.005-0.1%,Ti 0.005-0.1%,Mo 0.05-0.5%,其余为Fe和不可避免杂质;2)铸带冷却,冷却速率大于20℃/s;3)热轧,热轧温度1050-1250℃,压下率20-50%,形变速率>20s-1;4)冷却,冷却速率10-80℃/s;5)卷取,卷取温度550-700℃;6)时效硬化处理,时效温度500-800℃,加热时间0.1-30分钟。本发明实现铸带热轧后奥氏体在线再结晶,获得钢带的显微组织主要由细小的多边形铁素体和珠光体构成,且组织中包含铌碳氮化物等纳米级析出物,从而同时具有较高的强度和延伸率。

著录项

  • 公开/公告号CN103305754A

    专利类型发明专利

  • 公开/公告日2013-09-18

    原文格式PDF

  • 申请/专利权人 宝山钢铁股份有限公司;

    申请/专利号CN201210066963.2

  • 申请日2012-03-14

  • 分类号C22C38/14(20060101);C22C38/12(20060101);B22D11/06(20060101);C21D8/02(20060101);

  • 代理机构31114 上海开祺知识产权代理有限公司;

  • 代理人竺明

  • 地址 201900 上海市宝山区富锦路885号

  • 入库时间 2024-02-19 20:16:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-09-23

    授权

    授权

  • 2013-10-23

    实质审查的生效 IPC(主分类):C22C38/14 申请日:20120314

    实质审查的生效

  • 2013-09-18

    公开

    公开

说明书

技术领域

本发明涉及薄带连铸产品制造领域,特别涉及一种时效硬化薄带连铸 低碳微合金钢带制造方法,钢带的屈服强度≥380MPa,抗拉强度≥480MPa, 延伸率≥15%,具有优良的强塑性匹配,钢带显微组织主要由细小的多边 形铁素体和珠光体构成,且组织中包含铌碳氮化物等纳米级析出物。

背景技术

目前,生产含有Nb、V、Ti、Mo等微合金元素的低碳高强薄规格钢 带产品,主要是通过传统热轧和冷轧工艺实现。但利用传统热轧或冷轧工 艺进行生产,存在一些问题。

首先,传统工艺流程长、能耗高、机组设备多、基建成本高,导致生 产成本高。

其次,利用传统热轧工艺生产含有Nb、V、Ti、Mo等微合金元素的 微合金高强薄规格产品时,由于微合金元素在热轧过程中不能保持为固溶 体,发生部分析出,导致钢材强度提高,因此会显著增加轧制载荷,增加 能耗和辊耗,对装备的损伤较大,从而就限制了可经济地和实际地生产热 轧产品的厚度范围,通常是≥2mm。对传统热轧产品继续进行冷轧,可 进一步降低钢带厚度,然而热轧钢带的高强度导致冷轧也存在困难。一是 高的冷轧载荷对装备的要求较高,损伤较大;二是热轧产品中由合金元素 析出的第二相,使冷轧后钢带的再结晶退火温度显著增加。

再次,利用传统热轧工艺生产含有Nb、V、Ti、Mo等微合金元素的 微合金高强产品时,通常是利用形变细化奥氏体晶粒原理,因此精轧的开 轧温度通常低于950℃,终轧温度在850℃左右,在较低温度下进行轧制, 再加上随轧制过程进行形变量的增加,会导致钢带强度显著增加,这也会 显著增加热轧难度和消耗。

总之,虽然利用传统热轧和冷轧工艺可以实现低碳微合金高强薄规格 钢带产品的生产,成本都相对较高,在商业上并不经济。

薄带连铸技术是冶金及材料研究领域内的一项前沿技术,它的出现为 钢铁工业带来一场革命,它改变了传统治金工业中钢带的生产过程,将连 续铸造、轧制、甚至热处理等整合为一体,使生产的薄带坯经过一道次在 线热轧就一次性形成薄钢带,大大简化了生产工序,缩短了生产周期,其 工艺线长度仅50m左右。设备投资也相应减少,产品成本显著降低。

双辊薄带连铸工艺是薄带连铸工艺的一种主要形式,也是世界上唯一 实现产业化的一种薄带连铸工艺。在双辊薄带连铸过程中,熔融钢水从钢 包经过长水口、中间包和浸入式水口,被引入到一对相对旋转且内部水冷 的结晶辊和侧封板形成的熔池之内,在移动的辊面上形成凝固壳,凝固壳 在结晶辊之间的辊隙处聚集在一起,形成从辊隙向下拉出的铸带。之后通 过摆动导板、夹送辊将铸带输送至辊道,再经过在线热轧机,喷淋冷却, 飞剪直至卷取机,完成薄带连铸产品的生产。

利用薄带连铸技术生产低碳微合金高强薄规格钢带,主要的优点如 下:

(1)薄带连铸省去了板坯加热、多道次反复热轧等复杂过程,对薄 铸带直接进行一道次在线热轧,生产成本大幅降低。

(2)薄带连铸的铸带厚度通常在1-5mm,通过在线热轧至期望产品 厚度,通常在1-3mm,薄规格产品的生产不需要经过冷轧。

(3)薄带连铸工艺生产低碳微合金钢,所添加的Nb、V、Ti、Mo 等合金元素,在热轧过程中主要以固溶态存在,因此钢带强度相对较低, 从而使单机架热轧压下率可高达30-50%,钢带减薄效率高。

(4)薄带连铸工艺生产低碳微合金钢,高温铸带直接热轧,所添加 的Nb、V、Ti、Mo等合金元素主要以固溶态存在,可提高合金利用率。 从而克服传统工艺板坯冷却过程中发生合金元素析出,板坯再加热时合金 元素回溶不充分而降低合金元素利用率的问题。

国际专利WO 2008137898、WO 2008137899、WO 2008137900,以及 中国专利200880023157.9、200880023167.2、200880023586.6中报导了一 种利用薄带连铸连轧工艺生产厚度在0.3-3mm的微合金钢薄带的方法。该 方法采用C<0.25%,Mn 0.20-2.0%,Si 0.05-0.50%,Al<0.01%,Nb 0.01-0.20%,V 0.01-0.20%,Mo 0.05-0.50%(Nb、V、Mo至少包含一种) 成分体系,在热轧压下率为20-40%,卷取温度≤700℃工艺条件下,热轧带 的显微组织为贝氏体+针状铁素体。该专利通过添加合金元素抑制奥氏体 热轧后发生再结晶,保持薄带连铸奥氏体晶粒粗大特征以提高淬透性,从 而获得了贝氏体+针状铁素体的室温组织。在该专利中没有给出热轧所采 用的温度范围。

利用这种方法生产的薄带连铸低碳微合金钢产品,强度较高,在以上 成分体系范围内,屈服强度可达到650MPa,抗拉强度可达到750MPa,但 最主要的问题是产品的延伸率不高。导致延伸率不高主要原因是:通过薄 带连铸工艺获得的铸带,奥氏体晶粒尺寸粗大,且非常不均匀,小到几十 微米,大到七八百微米甚至毫米量级。而薄带连铸工艺热轧压下率通常不 超过50%,通过形变细化晶粒的效果非常小,如果不通过再结晶细化奥氏 体晶粒,粗大的不均匀奥氏体不会在热轧后得到有效改善,由尺寸粗大的 不均匀奥氏体相变后产生的贝氏体+针状铁素体组织也很不均匀,因此延 伸率不高。由此导致产品在一些要求较高延伸率的领域应用受到限制,例 如冲压用钢,汽车用钢等。

中国专利02825466.X也公开,由于薄带连铸产品具有粗大奥氏体晶 粒特征、铸带中添加了Si、Cr、Ni、V、Nb等合金元素或微合金元素、轧 制速率低等因素,在小于1050℃下的低速率轧制,热轧后奥氏体再结晶只 不过是局部的。最终产品的组织为具有粗大晶粒的非均匀组织,对产品的 性能不利。该专利为了改善薄带连铸微合金钢的强塑性匹配,提出了另外 一种利用薄带连铸连轧工艺生产厚度在1-6mm的微合金钢薄带的方法。 该方法所采用的微合金钢成分体系为C 0.02-0.20%,Mn 0.1-1.6%,Si 0.02-2.0%,Al<0.05%,S<0.03%,P<0.1%,Cr 0.01-1.5%,Ni 0.01-0.5%, Mo<0.5%,N 0.003-0.012%,Ti<0.03%,V<0.10%,Nb<0.035%,B<0.005%, 其余为Fe和不可避免的杂质。铸带的热轧温度在1150-(Ar1-100)℃范 围内,对应奥氏体区,奥氏体铁素体两相区,或者铁素体区进行热轧,热 轧压下率为15-80%。该方法在薄带连铸连轧机组后,设计了在线加热系 统,加热温度范围是670-1150℃,目的是使得铸带在不同相区热轧后,保 温一段时间后发生完全再结晶,从而使钢带获得较好的强塑性匹配。

利用这种方法来生产薄带连铸低碳微合金钢产品,的确可以使钢带获 得良好的强塑性匹配,例如成分为C 0.048%,Mn 0.73%,Si 0.28%,Cr 0.07%,Ni 0.07%,Cu 0.18%,Ti 0.01%,Mo 0.02%,S 0.002%,P 0.008%, Al 0.005%,N 0.0065%的钢带屈服强度为260MPa,抗拉强度365MPa,延 伸率为28%。但利用这种方法进行生产,需要在产线设计时增加在线加热 系统,而且由于加热时间的长短,取决于带速和加热炉长度,加热炉必须 有足够长度,才能保证加热均匀性。这不仅增加了投资成本,也会显著增 加薄带连铸连轧产线的占地面积,降低了该产线的优势。

发明内容

本发明的目的在于提供一种时效硬化薄带连铸低碳微合金钢带制造 方法,该方法通过合理的成分和工艺设计,在不增加生产装备情况下,实 现铸带热轧后奥氏体在线再结晶,细化奥氏体晶粒并改善奥氏体晶粒尺寸 均匀性,使产品获得分布更加均匀的尺寸细小的铁素体加珠光体组织,通 过时效处理使处于固溶态微合金元素以纳米级碳氮化物形式析出,充分发 挥其沉淀强化效果,从而使钢带同时具有较高的强度和延伸率。

为达到上述目的,本发明的技术方案是:

一种时效硬化薄带连铸低碳微合金钢带制造方法,其包括如下步骤:

1)在双辊连铸机中铸造厚度为1-5mm的铸带,其化学成分重量百分 比为:C 0.01-0.25%,Si≤0.4%,Mn 0.6-2.0%,P≤0.015%,S≤0.01%, N≤0.012%,此外,还包含Nb、V、Ti、Mo中至少一种,Nb 0.005-0.1%, V 0.005-0.1%,Ti 0.005-0.1%,Mo 0.05-0.5%,其余为Fe和不可避 免的杂质;

2)对铸带进行冷却,冷却速率大于20℃/s;

3)对铸带进行热轧,热轧温度为1050-1250℃,热轧压下率为20-50%, 热轧形变速率>20s-1;热轧后钢带的厚度为0.5-3.0mm;钢带热轧 后发生奥氏体在线再结晶;

4)对热轧带进行冷却,冷却速率为10-80℃/s;

5)对热轧带进行卷取,卷取温度为550-700℃;

6)对热轧带进行时效硬化处理,时效温度为500-800℃,加热时间为 0.1-30分钟;

最终获得钢带的显微组织主要由细小的多边形铁素体和珠光体构 成,且组织中包含铌碳氮化物等纳米级析出物。

进一步,所述步骤1)中,C的含量范围为0.01-0.1%,以重量百分比 计。

所述步骤1)中,Nb、V、Ti的含量范围均为0.005-0.05%,或均为 0.005-0.01%,以重量百分比计。

所述步骤1)中,Mo的含量范围为0.05-0.25%,以重量百分比计。

所述步骤3)中,热轧温度为1100-1250℃,或热轧温度为1150-1250℃。

所述步骤3)中,热轧压下率为30-50%。

所述步骤3)中,热轧形变速率>30s-1

所述步骤4)中,热轧带冷却速率为30-80℃/s。

所述步骤5)中,卷取温度为600-700℃。

所述步骤6)中,时效温度为550-750℃。

本发明与前述发明的最根本不同在于,采用不同的工艺技术路线,控 制实现奥氏体热轧后在线再结晶,生产出具有尺寸细小的多边形铁素体加 珠光体组织,且组织中包含铌碳氮化物等纳米级析出物的钢带,从而具有 良好的强度和延伸率匹配。

本发明的技术构思如下:

(1)在低碳钢中适量添加微合金元素,主要发挥两方面作用:

其一是发挥其沉淀析出作用,提高钢带强度;

其二是通过溶质原子拖曳奥氏体晶界,在一定程度上抑制奥氏体晶粒 长大,从而细化奥氏体晶粒,促进奥氏体再结晶。奥氏体晶粒尺寸越细小, 形变时产生的位错密度越高,形变储存能将越大,从而增大再结晶驱动力 而促进再结晶过程的进行;而且再结晶核心主要在原大角晶界处或其附近 形核的,因此晶粒尺寸越细(晶界面积越大),再结晶形核越容易,从而 促进再结晶过程的进行。

(2)适当提高在奥氏体区的热轧温度(形变再结晶温度),促进奥 氏体再结晶。再结晶形核率和长大速率均随形变温度的升高而呈指数型关 系的增长(雍岐龙著,微合金钢-物理和力学冶金),温度越高,越容易 发生再结晶。

(3)控制热轧压下率(形变量)在合适的范围内,促进奥氏体再结 晶。形变是发生再结晶的基础,是再结晶的驱动力——形变储存能的来源, 由于必须超过一定的驱动力之后才会发生再结晶,故只有超过一定的形变 量之后才会发生再结晶。形变量越大,形变储存能越大,而形变储存能越 大,再结晶形核和长大速率均越大,即使在较低温度下也能足够迅速地开 始和完成再结晶。而且,形变量增大,还会减小奥氏体再结晶后的晶粒尺 寸,这是因为再结晶形核率随形变储存能的升高而呈指数型关系的增长 (雍岐龙著,微合金钢-物理和力学冶金),因此有利于获得更加细小的 γ→α相变的产物,对提高钢带的强塑性都是有利的。

(4)控制形变速率在合适的范围内,促进奥氏体再结晶。增大形变 速率,将增大形变储存能,从而增大再结晶驱动力,促进再结晶过程的进 行。

在本发明的化学成分设计中:

C:C是钢中最经济、最基本的强化元素,通过固溶强化和析出强化 来提高钢的强度。C是奥氏体转变过程中析出渗碳体必不可少的元素,因 此C含量的高低在很大程度上决定钢的强度级别,即较高的C含量对应较 高的强度级别。但是,由于C的间隙固溶和析出对钢的塑性和韧性有较大 危害,因此C含量不能过高,钢的强度通过适当添加合金元素来弥补。本 发明采用的C含量范围是0.01-0.25%。

Si:Si在钢中起固溶强化作用,且钢中加Si能提高钢质纯净度和脱氧, 但Si含量过高会损害钢的焊接性能。本发明采用的Si含量≤0.4%。

Mn:Mn是价格最便宜的合金元素之一,它在钢中具有相当大的固溶 度,通过固溶强化提高钢的强度,同时对钢的塑性和韧性基本无损害,是 在降低C含量情况下提高钢的强度最主要的强化元素。但Mn含量过高会 损害钢的焊接性能和抗腐蚀性能。本发明采用的Mn含量范围是0.6-2.0%。

P:在通常情况下P是钢中有害元素,增加钢的冷脆性,使焊接性能 变坏,降低塑性,使冷弯性能变坏。在本发明中,P是作为杂质元素来控 制,其含量≤0.015%。

S:在通常情况下S也是钢中有害元素,使钢产生热脆性,降低钢的 延展性和韧性,在轧制时造成裂纹。S还会降低焊接性能和耐腐蚀性。在 本发明中,S是作为杂质元素来控制,其含量≤0.01%。

N:与C元素类似,N元素可通过间隙固溶提高钢的强度,但是,N 的间隙固溶对钢的塑性和韧性有较大危害,因此N含量不能过高。本发明 采用的N含量≤0.012%。

Nb:在常用的Nb、V、Ti、Mo四种微合金元素中,Nb是最强的抑 制热轧后奥氏体再结晶的合金元素。在传统控制轧制用的钢中,一般都添 加Nb,一是起到强化的作用,二是抑制热轧后奥氏体发生再结晶,实现 形变细化奥氏体晶粒的目的。Nb可通过溶质原子拖曳机制,以及所析出 的碳氮化铌第二相质点钉扎机制而有效地阻止大角晶界及亚晶界的迁移, 从而显著地阻止再结晶过程,其中第二相质点阻止再结晶的作用更为显 著。

在薄带连铸工艺中,由于其独特的钢带快速凝固和快速冷却特性,可 以使添加的合金元素Nb主要以固溶态存在于钢带中,即使钢带冷却到室 温,也几乎观察不到Nb的析出。因此,尽管Nb元素可有效地抑制奥氏 体再结晶,但仅靠溶质原子而不发挥第二相质点的作用来阻止再结晶,在 很多情况下是非常困难的,例如在形变温度较高、形变量较大的情况下, 即使添加Nb元素,奥氏体也会发生再结晶。

另一方面,固溶于钢中的Nb元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, Nb对于促进奥氏体热轧后再结晶是有利的。

本发明既要发挥Nb的固溶强化作用提高钢的强度,又要尽量降低Nb 对再结晶的抑制作用,设计其含量范围是0.005-0.1%。

优选的,Nb的含量范围是0.005-0.05%,或者是0.005-0.01%,钢带 可具有更优的强度和塑性配比。

V:在常用的Nb、V、Ti、Mo四种微合金元素中,V对奥氏体再结 晶的抑制作用最弱。在再结晶控轧钢中,通常是添加V,既可以起到强化 作用,同时对再结晶的抑制作用相对来说又比较小,实现再结晶细化奥氏 体晶粒的目的。

在薄带连铸工艺中,V也主要以固溶态存在于钢带中,即使钢带冷却 到室温,也几乎观察不到V的析出。因此,V元素对奥氏体再结晶的抑制 作用非常有限。在既要发挥合金元素的固溶强化作用提高钢的强度,又要 降低合金元素对再结晶抑制作用的情况下,V是比较理想的合金元素,最 为符合本发明的构思。

另一方面,固溶于钢中的V元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, V对于促进奥氏体热轧后再结晶是有利的。

本发明采用V的含量范围是0.005-0.1%。

优选的,V的含量范围是0.005-0.05%,或者是0.005-0.01%,钢带可 具有更优的强度和塑性配比。

Ti:在常用的Nb、V、Ti、Mo四种微合金元素中,Ti对奥氏体再结 晶的抑制作用次于Nb,但高于Mo、V。从这一点上讲,Ti对促进奥氏体 再结晶是不利的。但Ti有一个突出的优点,它的固溶度很低,它可以在 高温下形成相当稳定的尺寸约为10nm左右的第二相质点TiN,可阻止均 热时奥氏体晶粒粗化,因此,在再结晶控轧钢中,通常添加微量Ti,细化 奥氏体晶粒。

在薄带连铸工艺中,Ti主要以固溶态存在于热态钢带中,如果钢带冷 却到室温,可能观察到少许Ti的析出。因此,Ti元素对奥氏体再结晶的 抑制作用是有限的。

另一方面,固溶于钢中的Ti元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, 对于促进奥氏体热轧后再结晶是有利的。

本发明既要发挥Ti的固溶强化作用提高钢的强度,又要尽量降低Ti 对再结晶的抑制作用,设计其含量范围是0.005-0.1%。

优选的,Ti的含量范围是0.005-0.05%,或者是0.005-0.01%,钢带可 具有更优的强度和塑性配比。

Mo:在常用的Nb、V、Ti、Mo四种微合金元素中,Mo对奥氏体再 结晶的抑制作用相对来说也是较弱的,仅高于V。

在薄带连铸工艺中,Mo也主要以固溶态存在于钢带中,即使钢带冷 却到室温,也几乎观察不到Mo的析出。因此,Mo元素对奥氏体再结晶 的抑制作用非常有限。

另一方面,固溶于钢中的Mo元素,可通过溶质原子拖曳奥氏体晶界, 在一定程度上抑制奥氏体晶粒长大,从而细化奥氏体晶粒,从这一点上讲, 对于促进奥氏体再结晶是有利的。

本发明采用Mo的含量范围是0.05-0.5%。

优选的,Mo的含量范围是0.05-0.25%,钢带可具有更优的强度和塑 性配比。

在本发明制造工艺中:

铸带冷却,铸带从结晶辊连铸出来后,经过密闭室,在密闭室内进行 冷却。为了快速降低铸带温度,以防止奥氏体晶粒在高温下长大过快,控 制铸带的冷却速率大于20℃/s。铸带冷却采用气冷方式,冷却气体的压力、 流量和气喷嘴位置可以调节和控制。冷却气体可以是氩气、氮气、氦气等 惰性气体,或者是几种气体的混和气体。通过控制冷却气体的类型、压力、 流量,以及喷嘴到铸带之间的距离等,实现对铸带冷却速率的控制。

铸带在线热轧,控制轧制温度为1050-1250℃,目的是实现热轧后奥 氏体发生完全再结晶,细化奥氏体晶粒。在本发明的化学成分设计中,添 加了Nb、V、Ti、Mo合金元素,如前所述,合金元素的添加对奥氏体再 结晶有一定的抑制作用,尽管在薄带连铸工艺下这种抑制作用会降低,但 在低于1050℃下进行热轧,很难发生奥氏体完全再结晶。而在高于1250℃ 下进行热轧,由于带钢强度低,使得热轧过程很难控制。因此本发明选择 1050-1250℃轧制温度范围。优选的,热轧温度范围是1100-1250℃,或者 是1150-1250℃。控制热轧压下率为20-50%,热轧压下量增加会促进奥氏 体再结晶,细化奥氏体晶粒,优选的热轧压下率范围是30-50%。控制热 轧形变速率>20s-1,形变速率增加会促进奥氏体再结晶,优选的形变速率 范围是>30s-1。热轧后钢带的厚度范围是0.5-3.0mm。

热轧带冷却,采用气雾冷却、层流冷却或者喷淋冷却等方式对热轧带 进行冷却。冷却水的流量、流速,以及出水口位置等可以调节,从而实现 对热轧带冷却速率的控制。控制热轧带的冷却速率为10-80℃/s,冷却热轧 带到所需要的卷取温度。冷却速率是影响奥氏体相变实际开始温度的重要 因素之一,冷却速率越大,奥氏体相变实际开始温度越低,这样相变后所 获得的组织晶粒尺寸也就越细小,对提高钢带的强韧性都是有利的,优选 的冷却速率范围是30-80℃/s。

热轧带卷取,控制热轧带的卷取温度为550-700℃,以使热轧带具有 细小的铁素体+珠光体的组织特征。优选的,卷取温度范围是600-700℃。

热轧带时效处理,通过薄带连铸工艺获得的热轧带,微合金元素主要 处于固溶状态,这是由于薄带连铸工艺中钢带的冷却速率极快,微合金元 素来不及析出。处于固溶状态的微合金元素,强化效果是有限的,以一定 尺寸的颗粒形式沉淀析出后,才能充分发挥其沉淀强化效果,固对热轧带 进行时效处理。由于沉淀强化的效果随第二相质点的尺寸减小而显著增 大,因此,需严格控制时效析出温度条件,以获得最佳的沉淀强化效果。 控制热轧带的时效处理温度范围是500-800℃,加热时间范围是0.1-30分 钟,目的是控制热轧带中固溶的合金元素以纳米级碳氮化物的形式析出。 优选的,时效温度范围是550-700℃。

本发明的有益效果:

与现有中国专利200880023157.9、200880023167.2、200880023586.6 相比,本发明的不同之处在于:中国专利200880023157.9、200880023167.2、 200880023586.6通过添加微合金元素抑制奥氏体热轧后的再结晶,保留粗 大奥氏体晶粒的高淬透性,使钢带获得贝氏体和针状铁素体组织,强度较 高,延伸率较低。本发明通过控制微合金元素添加量、热轧温度、热轧压 下率、热轧形变速率,实现热轧后奥氏体再结晶,细化奥氏体晶粒,使钢 带获得细小均匀的铁素体+珠光体组织,具有良好的强塑性匹配。

与现有中国专利02825466.X相比,本发明的不同之处在于:中国专 利02825466.X控制热轧后奥氏体发生再结晶是通过增加在线加热系统实 现的。本发明控制热轧后奥氏体发生再结晶是通过控制微合金元素添加 量、热轧温度、热轧压下率、热轧形变速率实现的。

本发明的有益效果:

本发明通过薄带连铸生产过程中合理的成分设计,合理的热轧温度、 热轧压下率、热轧形变速率设计,在不增加生产装备情况下,控制实现铸 带热轧后奥氏体在线再结晶,生产出具有尺寸细小的多边形铁素体加珠光 体组织,且组织中包含铌的碳氮化物等纳米级析出物的钢带,从而具有良 好的强度和延伸率匹配。

附图说明

图1为薄带连铸工艺过程示意图。

具体实施方式

参见图1,本发明的薄带连铸工艺过程,大包1中的钢水经过长水口 2、中间包3和浸入式水口4,浇入到由两个相对旋转的水冷结晶辊5a、 5b和侧封板6a、6b形成的熔池7内,经过水冷结晶辊的冷却形成1-5mm 铸带11,铸带经过在密闭室10内的二次冷却装置8控制其冷却速率,通 过摆动导板9、夹送辊12将铸带送至热轧机13,热轧后形成0.5-3mm的 热轧带,再经三次冷却装置14,之后热轧带进入卷取机15。将钢卷从卷 取机上取下后,自然冷却至室温。

本发明实施例1-10的钢水均采用电炉冶炼得到,具体化学成分如表1 所示。薄带连铸后得到的铸带厚度,铸带冷却速率,热轧温度,热轧压下 率,热轧形变速率,热轧带厚度,热轧带冷却速率,卷取温度,时效处理 温度等工艺参数,以及钢带的拉伸性能见表2。

从表2可以看出,本发明钢带的屈服强度≥380MPa,抗拉强度≥ 480MPa,延伸率≥15%,具有优良的强塑性匹配。

表1实施例1-10的钢水化学成分(wt.%)

表2实施例1~10的工艺参数及产品性能

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号