首页> 中国专利> 一种提高太阳能无人机应用性能的飞行方法

一种提高太阳能无人机应用性能的飞行方法

摘要

本发明公开了一种提高太阳能无人机应用性能的飞行方法,将多个太阳能无人机编队,以一昼夜24小时为一个周期,在一个周期内,每架太阳能无人机依次经历“高空巡航—下降—低空巡航—爬升”四个飞行阶段,太阳能无人机在“高空巡航”阶段下开启工作载荷执行相应任务,其余阶段均关闭工作载荷;每架太阳能无人机的“高空巡航”的时刻实现无缝对接。本发明方法即保证了载荷工作高度和时间,又提高了太阳能无人机的稳定工作高度,减小了太阳能无人机尺寸,降低了生产制造难度和成本、提高了太阳能无人机的可行性。

著录项

  • 公开/公告号CN103135556A

    专利类型发明专利

  • 公开/公告日2013-06-05

    原文格式PDF

  • 申请/专利权人 北京航空航天大学;

    申请/专利号CN201310030315.6

  • 发明设计人 马东立;包文卓;乔宇航;

    申请日2013-01-25

  • 分类号G05D1/10;

  • 代理机构北京永创新实专利事务所;

  • 代理人周长琪

  • 地址 100191 北京市海淀区学院路37号

  • 入库时间 2024-02-19 19:06:55

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-01-28

    授权

    授权

  • 2015-01-07

    著录事项变更 IPC(主分类):G05D1/10 变更前: 变更后: 申请日:20130125

    著录事项变更

  • 2013-07-10

    实质审查的生效 IPC(主分类):G05D1/10 申请日:20130125

    实质审查的生效

  • 2013-06-05

    公开

    公开

说明书

技术领域

本发明属于航空航天技术领域,涉及太阳能无人机的应用,具体是一种提高太阳能无人 机应用性能的飞行方法。

背景技术

太阳能无人机是一种极具发展潜力的新型飞行器。它以太阳能为动力来源,无需携带任 何燃料,理论上可以实现永久空中飞行。白天,依靠铺设于飞行器表明的光伏电池,太阳能 无人机将太阳能转化为电能,一部分电能直接供螺旋桨和机载用电设备使用,维持无人机的 正常飞行,另一部分电能储存在储能电池中,供夜间使用。能源动力系统以一天为一个循环, 不需消耗任何燃料,因此太阳能无人机具有数周至数月的超长航时。相比常规无人机,太阳 能无人机优势明显,应用前景非常广阔,甚至可以充当“大气层卫星”的角色。

太阳辐射强度较弱,光伏电池的光电转化率也较低,导致太阳能无人机许用功率小、飞 行速度低。为了在有限的许用功率下维持正常飞行和工作,太阳能无人机一般采用大展弦比 轻质机翼,抗风能力较弱。对流层中由于大气对流的影响,不适合太阳能无人机长期飞行; 平流层至临近空间高度是太阳能无人机较为理想的飞行区域,该空域气流只有水平运动,风 速较小,方向稳定。

太阳能无人机的飞行高度和可行性是相互矛盾的。不管是军用还是民用,都希望太阳能 无人机的飞行高度越高越好:军事用途上,提高飞行高度可增加任务载荷的探测距离,尤其 对于探测隐形目标,高度越高,发现目标的概率越大、距离越远,预警时间越长;对于民用 目的,例如遥感探测和通讯保障,提高飞行高度可以增加传输作用距离。但从可行性上考虑, 飞行高度越高,大气密度越低,太阳能无人机的尺寸越大,各种结构/气动/气弹问题越加突 出,甚至达到了无法解决和不可行的地步。

针对这一问题,目前的主要解决方法是提高太阳能各分系统的技术水平,例如提高光伏 电池光电转化率,提高储能系统的能量密度和循环效率,提高电机和螺旋桨效率,降低光伏 电池面密度和机体结构重量等,以此增加太阳能无人机的飞行高度,减小尺寸。但这些措施 依赖于相关技术进步,需耗费大量的时间、人力和物力,短期内无法取得大的质的突破,对 太阳能无人机的性能提升效果也不明显。

发明内容

本发明的目的是在相同技术水平条件下,通过改变太阳能无人机的飞行策略,提高太阳 能无人机应用性能:增加太阳能无人机的工作高度,但不增加无人机尺寸;或保持太阳能无 人机的工作高度不变,但减小无人机尺寸,提高可行性。

本发明提供了一种提高太阳能无人机应用性能的飞行方法,具体是:将两个以上的太阳 能无人机编队,以一昼夜24小时为一个周期,在一个周期内,每架太阳能无人机依次经历“高 空巡航—下降—低空巡航—爬升”四个飞行状态,太阳能无人机在高空巡航阶段开启工作载 荷执行相应任务,其余阶段均关闭工作载荷;每架太阳能无人机的“高空巡航”时刻实现无 缝对接,以保证24小时不间断执行任务。

高空巡航与低空巡航的高度是相对定义的,一般高空巡航是指在要求的工作高度巡航工 作,低空巡航是指比要求的工作高度要低的高度巡航但关闭工作。

本发明的优点与积极效果在于:

1、在相同技术水平和太阳能无人机尺寸下,可以有效提高太阳能无人机的工作高度,提 高太阳能无人机的使用性能,取得更好的应用效果。飞行高度越低,空气密度越大,太阳能 无人机需用功率越小。通过降低非工作阶段的巡航高度,可以有效减少能量消耗,节约下的 能量可供工作阶段使用,使太阳能无人机的工作高度提高。通过编队飞行的方式,可以保证 任何时刻都有一架太阳能无人机在工作高度工作,避免了单个太阳能无人机工作高度不稳定 的缺点。

2、在相同技术水平和工作高度下,可以有效减小太阳能无人机的重量和尺寸,降低太阳 能无人机的制造难度和成本,提高可行性。通过降低非工作阶段的飞行高度,可以减小太阳 能无人机在每个循环周期总需用能量,从而减小太阳能电池铺设面积以及储能电池重量,进 而减小太阳能无人机的总重和尺寸。太阳能无人机尺寸巨大,一般实用的太阳能无人机的展 长达到百米左右,导致其结构实现难度大,强度低,抗风能力弱,制造难度大、成本高。减 小太阳能无人机的尺寸对于降低提高太阳能无人机的生产制造难度和成本,提高其抗风能力 和结构强度,提高全系统可行性有重大意义。

附图说明

图1是双机编队太阳能无人机飞行高度与时刻关系曲线;

图2是三机编队太阳能无人机飞行高度与时刻关系曲线。

具体实施方式

下面将结合附图和实施例对本发明作进一步的详细说明。

结合图1和图2说明本发明实施方式,本实施方式要求的编队的太阳能无人机的数量大 于等于二,可以是双机编队,也可是三机、四机、五机编队等。

以双机编队为例说明本发明实施方式。采用双机编队,轮流工作的模式执行任务。工作 巡航高度为h1,非工作巡航高度h2,h1>h2。在工作巡航高度,太阳能无人机在维持正常飞 行的前提下开启任务载荷执行相应任务;在非工作高度,太阳能无人机只需维持正常飞行, 不必开启任务载荷。

如图1所示,1号机在t0至t3时刻在高度h1巡航并工作,t3-t0=12(小时),在t3时 关闭任务载荷,并开始下降,至t4时下降至h2高度,t4至t5时无人机保持在h2高度巡航, 在t5时开始爬升,至t6时爬升至h1高度,并重新开启任务载荷。t6-t3=12(小时),t6-t0=24 (小时),从t0至t6为一个昼夜,以此循环往复。

2号机在t0时关闭任务载荷,并开始下降,至t1时下降至h2高度,t1至t2时2号机 保持在h2高度巡航,在t2时开始爬升,至t3时爬升至h1高度,并重新开启任务载荷,在 t3至t6时刻在高度h1巡航并工作,t3-t0=12(小时),t6-t3=12(小时),t6-t0=24(小时), 从t0至t6为一个昼夜,以此循环往复。

每架无人机在一个循环周期内(24小时)分别在h1高度工作12小时,在t3时刻实现 任务交接。h1、h2高度,t0、t1、t2、t3、t4、t5、t6时刻的具体数值,根据设计指标和优 化设计方法计算得出。t0在0时左右,t3在12时左右,t6在24时左右。

结合图2以三机编队为例说明本发明实施方式。采用三机编队,轮流工作的模式执行任 务。工作巡航高度为h1,非工作巡航高度h2,h1>h2。在工作巡航高度,无人机在维持正常 飞行的前提下开启任务载荷执行相应任务;在非工作高度,无人机只需维持正常飞行,不必 开启任务载荷。

1号机在t0至t3时刻在高度h1巡航并工作,t3-t0=8(小时),在t3时关闭任务载荷, 并开始下降,至t4时下降至h2高度,t4至t8时无人机保持在h2高度巡航,在t8时开始 爬升,至t9时爬升至h1高度,并重新开启任务载荷。t9-t3=16(小时),t9-t0=24(小时), 从t0至t9为一个昼夜,以此循环往复。

2号机t0时在h2高度巡航并关闭任务载荷,在t2时开始爬升,至t3时爬升至h1高度, 并开启任务载荷开始工作,至t6时开始下降并关闭任务载荷,t6-t3=8(小时),t7时下降 至h2高度,并保持巡航飞行,直至t9时。(t9-t6)+(t3-t0)=16(小时),t9-t0=24(小 时),从t0至t9为一个昼夜,以此循环往复。

3号机在t0时关闭任务载荷,并开始下降,至t1时下降至h2高度,从t1至t5时3号 机保持在h2高度巡航,在t5时开始爬升,至t6时爬升至h1高度,并重新开启任务载荷, 在t6至t9时刻在高度h1巡航并工作,t6-t0=16(小时),t9-t6=8(小时),t9-t0=24(小 时),从t0至t9为一个昼夜,以此循环往复。

每架太阳能无人机在一个循环周期内(24小时)分别在h1高度工作8小时,在t3、t6 和t9(t0)时刻实现任务交接。h1、h2高度,t0、t1、t2、t3、t4、t5、t6、t7、t8、t9 时刻的具体数值,根据设计指标和优化设计方法计算得出。t0在0时左右,t3在8时左右, t6在16时左右,t9在24时左右。

太阳能无人机在“下降”阶段采用无动力滑翔方法,尽量减小能量消耗,延长滑翔时间。

太阳能无人机在“高空巡航”和“低空巡航”阶段均在最小需用功率状态下飞行,即 CL1.5/CD最大状态,其中CL为太阳能无人机全机升力系数,CD为太阳能无人机全机阻力系数。

太阳能无人机在“爬升”阶段以最大爬升角度,最快爬升速度爬升,以减小能量消耗。

对于N个太阳能无人机编队,一般每个太阳能无人机处于高空巡航的时间段为24/N个 小时。

实施例:

设计要求:飞行时间在春分(3月21日)至秋分(9月23日),有效载荷200kg,有效载 荷需用功率2kw,工作高度20km,机翼展弦比为25。

对于单独飞行的太阳能无人机,全天总保持20km飞行高度,需要机翼面积为634㎡,展 长126m,无人机总重2858kg;采用双机编队的太阳能无人机,不工作时下降至15km高度(h2), 单个太阳能无人机机翼面积为215㎡,展长为73m,无人机总重1107kg,分别比单独飞行的 太阳能无人机减小66%、42%和61%,即使将编队飞行的两机太阳能无人机的机翼面积和总重 相加,机翼面积和总重也比单独飞行的太阳能无人机分别减小32%和23%。

单独飞行的太阳能无人机的最大使用高度为21.9km。双机编队的太阳能无人机,不工作 时下降至15km高度(h2),最大使用高度为26.6km,比单独飞行的太阳能无人机提高4.7km。

以上实例说明本发明的太阳能无人机飞行方法能有效减小太阳能无人机尺寸和重量,提 高使用性能和可行性,降低生产成本。

以h1=20km,h2=15km为例,说明双机编队的具体实施过程。

1号机在4.6时至16.6时在20km高度巡航并工作,在16.6时关闭任务载荷,并开始下 降,至20.4时下降至15km高度,20.4时至(第二天)3.1时无人机保持在15km高度巡航, 在(第二天)3.1时开始爬升,至(第二天)4.6时爬升至20km高度,并重新开启任务载荷, 以此循环往复。

2号机在4.6时关闭任务载荷,并开始下降,至8.4时下降至15km高度,8.4时至15.1 时2号机保持在15km高度巡航,在15.1时开始爬升,至16.6时爬升20km高度,并重新开 启任务载荷,在16.6时至(第二天)4.6时在20km高度巡航并工作,以此循环往复。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号