首页> 中国专利> 一种基于大气参数优化空间激光通信系统阈值的实验装置

一种基于大气参数优化空间激光通信系统阈值的实验装置

摘要

本发明公开了一种基于大气参数优化空间激光通信系统判决阈值的实验装置,包括有发射终端、接收端,发射终端的调制信号源输出编码信号控制半导体激光器发射高斯激光光束,高斯激光光束通过光纤输入固定在光具座上的扩束镜,经准直扩束后进入大气湍流,高斯激光光束在大气湍流中传输一段距离后被接收端的卡塞格林望远镜接收,聚焦后进入光电探测器的耦合光纤,光电探测器输出的电压信号被传输到计算机,计算机按所编制计算程序处理采集的数据后,输出空间激光通信系统在当前条件下的最佳固定阈值UST和误码率BER。本发明装置对光学元件无特殊要求,且结构简单,操作方便,优化效果好;同时本发明提供了判决阈值的计算方法,优化效果好且实现简单。

著录项

  • 公开/公告号CN102970075A

    专利类型发明专利

  • 公开/公告日2013-03-13

    原文格式PDF

  • 申请/专利号CN201210438690.X

  • 申请日2012-11-06

  • 分类号H04B10/07(20130101);H04B10/11(20130101);

  • 代理机构34112 安徽合肥华信知识产权代理有限公司;

  • 代理人余成俊

  • 地址 230031 安徽省合肥市蜀山区蜀山湖路350号

  • 入库时间 2024-02-19 17:47:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-03-02

    授权

    授权

  • 2013-04-10

    实质审查的生效 IPC(主分类):H04B10/07 申请日:20121106

    实质审查的生效

  • 2013-03-13

    公开

    公开

说明书

技术领域

本发明涉及空间激光通信技术领域,尤其涉及一种通过测量对数光强 起伏方差和接收信号均值等与大气特征相关的参数来估计开关键控(O OK)强度调制/直接检测(IM/DD)空间激光通信系统在当前大气信道中最 佳判决阈值的实验装置。

背景技术

空间激光通信具有成本低、架设灵活、通信容量大、无需频率申请和 抗电磁干扰等优点,已经成为无线通信领域研究的热点,开关键控(O OK)强度调制/直接检测(IM/DD)是目前最常用的一种工作方式。在采用 此工作方式的典型系统中,系统的误码率主要取决于信噪比和判决阈 值,而判决阈值通常采用一个固定值。在不受大气湍流影响时,对应 着最小误码率的最佳判决阈值通常使用以下经典公式计算得到:

UOT=σ1σ0σ12-σ02(U1-U0)2+2(σ12-σ02)ln(σ1/σ0)+U0σ12-U1σ02σ12-σ02,---(1)

式中U0、σ02分别为发送“0”码时电压信号的均值和方差,U1、σ12分别为发送“1”码时电压信号的均值和方差。当激光在大气中传输 时,由于光强起伏、光束漂移等湍流效应的影响,U1和σ12等参数会 产生随机波动。虽然由于大气扰动频率远低于数据传输率,在每个比 特时间内公式(1)依然有效,但是此时的误码率和最佳阈值UOT已经成为 快速变化的随机量。如果仍然使用无湍流条件下的固定阈值,系统误 码性能必然会受到影响。

空间激光通信技术中关于发射系统、接收系统、光束捕获对准跟踪分 系统、编解码方式等方面的研究已经相当成熟,而关于湍流条件下的 IM/DD空间激光通信系统判决阈值的研究仍处于理论仿真和实验室阶段 ,其中比较先进的方法是文献[H. R. Burris, C. I. Moore,  L. A. Swingen, et al, Proc. SPIE, 5892: 58920W-1-589 20W-20 (2005)]中使用的自适应阈值,即实时跟踪U0、σ02、U1和σ 12的变化,并将阈值调整为由公式(1)计算出的瞬时最佳阈值。这种方 法理论上可以校正大气扰动的影响,获得最低的系统误码率,但是要 实现此方法还有一定难度。一般认为大气湍流的扰动频率不大于1000  Hz,如果要根据大气扰动实时 调整判决阈值,那么必须在1毫秒以内完成对各项参数的精确跟踪并计 算出阈值,这对整个通信系统的反应速度提出了很高的要求。

目前用于测试大气对空间激光通信性能影响的实验装置只能定性验证 大气效应对通信性能的影响(佟首峰,赵馨,陈纯毅,大气湍流对空 间激光通信影响测试装置,专利申请号200810050575.9),或者是评 估指定阈值下的系统误码率(李菲,吴毅,侯再红,一种基于大气参 数评估空间激光通信系统误码率的实验装置,专利申请号2012100066 00.X),无法给出在大气湍流条件下的空间激光通信最佳判决阈值。

发明内容

本发明的目的是提供一种基于大气参数优化空间激光通信系统判决阈 值的实验装置,以解决现有技术中测试大气对通信性能影响的实验装 置不能准确地估计空间激光通信最佳判决阈值的问题。

为达到上述目的,本发明采用的技术方案为:

一种基于大气参数优化空间激光通信判决阈值的实验装置,其特征在 于:包括发射终端和接收终端,所述发射终端由调制信号源、半导体 激光器、光具座、扩束镜、第一俯仰转台和第一航向转台构成,所述 调制信号源通过同轴信号线与半导体激光器的调制信号接口连接,所 述半导体激光器通过光纤与扩束镜连接,所述扩束镜被固定在光具座 上,所述调制信号源、半导体激光器和光具座均被固定安装在第一俯 仰转台上,所述第一俯仰转台固定安装在第一航向转台上;所述接收 终端由卡塞格林望远镜、光电探测器、计算机、第二俯仰转台和第二 航向转台构成,所述卡塞格林望远镜与光电探测器之间通过光纤连接 ,光纤的一端安装在卡塞格林望远镜的焦点处,光纤的另一端安装在 光电探测器的光敏面处,所述卡塞格林望远镜和光电探测器均固定安 装在第二俯仰转台上,所述第二俯仰转台固定安装在第二航向转台上 ,所述光电探测器的输出端与计算机的高速采集卡输入接口通过同轴 信号线连接;所述发射终端与接收终端之间相隔一段距离,所述发射 终端由扩束镜发出激光光束,激光光束在大气中传输一段距离后由接 收终端的卡塞格林望远镜接收。

一种基于大气参数优化空间激光通信系统判决阈值的计算方法,基于 文献[李菲,吴毅,侯再红,光学学报,32(6): 0606002-1 – 06 06002-6(2012)]中提出的误码率公式:

BER=12[120pI(S)erfc(U1(S)-UT2σ12(S))dS+12erfc(UT-<U0>2σ02)],---(2)

U1(S)=S(<U1>-<U0>)+<U0>,(3)

σ12(S)=2eBMNRf(<U1>-<U0>)S+σ02,---(4)

pI(S)=1S2πσln>2exp[-(lnS+12σlnS2)2/2σln>2],---(5)

式中,< >表示统计平均,erfc( )为互补误差函数,UT为判决阈值 电压,e为电子电荷,M为探测器倍增因子,N为探测器噪声系数,B为 探测器工作带宽,Rf为前置放大倍数,S为归一化光强。

公式(2)的计算得到的是,在一段时间内使用一个固定判决阈值所得到 的平均误码率。如果每隔一段时间将判决阈值优化为最佳值,可以使 这段时间内的平均误码率达到最低,在一定程度上削弱大气湍流的影 响。相比自适应阈值,使用最佳固定阈值得到的平均误码率会有所上 升,但是上升幅度保持在1个数量级左右,仍然处于可以接受的范围。 对于参数已确定的空间激光通信系统,公式(4)中由系统参数组成的因 子2eBMNRf可以视为常数,对应背景光强和系统固有噪声的参数U0和σ 02在一段较长时间内也可以视为常数,因此最佳固定阈值UST主要与<U 1>和σ2lns等缓慢变化的统计量有关。相比U1和σ12等快速变化的随机 量,<U1>和σ2lns在短时间内可以认为是稳定的,因此使用最佳固定阈 值对通信系统反应速度的要求会大大降低。

直接从公式(2)推导出UST的解析表达式的难度较大,但是通过数据拟合 得到近似表达式就相对简单。首先使用数值仿真的方法,将UT、<U1> 和σ2lns作为变量代入公式(2)进行计算,得到在不同条件下所能得到的 误码率;再进行逐点扫描得到以<U1>和σ2lns为变量的UST2lns, <U1> )曲面。根据曲面的各项特征,可以推断出UST2lns, <U1>)函数符合 以下形式:

UST(σlnS2,<US>)=A<US>+B<US>(1+eC-σlnS2D)-1(1+eE-<US>F)-1,---(6)

式中A、B、C、D、E和F为待定系数,信号电压均值<US>=<U1>-<U0>; 最后以公式(6)中的模型为基础,对UST2lns, <U1>)曲面进行多元非 线性拟合就可以得到UST2lns, <U1>)函数的具体形式,拟合数据的统 计分析结果也验证了拟合函数的高可信度;只要得到<U1>和σ2lns的实 测值,就可以根据此函数计算出该时间段内的最佳固定阈值;通过事 先标定得到探测器工作带宽B、探测器倍增因子M、 探测器噪声系数N、探测器前置放大倍数Rf等系统固有参数,通过数据 处理得到实测参数<U0>、<U1>、σ02和σ2lns,代入事先标定好的UST2lns, <U1>)函数后得到最佳判决阈值。

本发明的有益效果为:

本发明提出的基于大气参数优化空间激光通信系统判决阈值的计算方 法,由于判决阈值会根据大气参数进行周期性更新,相对于现有的固 定阈值方法,系统性能受大气湍流的影响大大降低;由于最佳阈值是 根据缓慢变化的统计量计算得到,与现有自适应阈值方法相比,降低 了对系统反应速度的要求,具有更高实用性;由于计算过程中涉及的 参数都使用实测值,计算结果比较准确可信。

本发明提供的一种基于大气参数优化空间激光通信系统判决阈值的实 验装置,其光学元件无特殊要求,且结构简单,操作方便,优化效果 好。

附图说明

图1为本发明中发射终端的结构框图。

图2为本发明中接收终端的结构框图。

图3为本发明的实施例1的示意图。

图4为本发明的实施例2的示意图。

具体实施方式

如图1所示,本发明实验装置中的发射终端由调制信号源1、半导体激 光器2、光具座3、扩束镜4、第一俯仰转台5和第一航向转台6构成,调 制信号源1通过同轴信号线与半导体激光器2的调制信号接口连接,半 导体激光器2通过光纤与扩束镜4连接,扩束镜4被固定在光具座3上, 调制信号源1、半导体激光器2和光具座3均被固定安装在第一俯仰转台 5上,第一俯仰转台5固定安装在第一航向转台6上。

如图2所示,本发明实验装置中的接收终端由卡塞格林望远镜7、光电 探测器8、计算机9、第二俯仰转台10和第二航向转台11构成,卡塞格 林望远镜7与光电探测器8之间通过光纤连接,光纤的一端安装在卡塞 格林望远镜7的焦点处,光纤的另一端安装在光电探测器8的光敏面处 ,卡塞格林望远镜7和光电探测器8均固定安装在第二俯仰转台10上, 第二俯仰转台10固定安装在第二航向转台11上,光电探测器8的输出端 与计算机9的高速采集卡输入接口通过同轴信号线连接。

发射终端与接收终端之间相隔一段距离,发射终端由扩束镜4发出激光 光 束,激光光束在大气中传输一段距离后由接收终端的卡塞格林望远镜 7接收。

本发明实验装置的工作流程:调制信号源1输出编码信号控制半导体激 光器2发射高斯激光光束,高斯激光光束通过光纤输入固定在光具座3 上的扩束镜4,经准直扩束后进入大气湍流,大气湍流使高斯激光光束 的光强产生起伏;高斯激光光束在大气湍流中传输一段距离后被卡塞 格林望远镜7接收,聚焦后进入光电探测器8的耦合光纤,光电探测器 8输出的电压信号被传输到计算机9,计算机9按所编制计算程序处理采 集的数据后,输出空间激光通信系统在当前条件下的最佳固定阈值UST和误码率BER。

本发明的实验装置在使用过程中结合计算方法的具体操作步骤如下:

①、第一次使用本发明的实验装置前需要在无湍流的室内进行定标。 首先通过调制信号源控制半导体激光器发射连续激光,使用计算机中 的计算程序采集光电探测器输出的电压,然后关闭半导体激光器后采 集探测器输出电压。计算程序会根据采集的数据得到<U0>、<U1>、σ 02和σ12,计算出系统固有参数2eBMNRf并保存。

②、安装本发明的实验装置后,进行系统初始化。开启调制信号源和 半导体激光器,设置调制信号源输出持续10秒的全“0”信号,使用计 算程序采集探测器输出的电压信号,计算程序根据信号的均值<U0>和 方差σ02计算出UST函数的具体形式;再输出持续10秒的全“1”信号, 计算程序采集探测器输出电压,经统计处理得到其均值<U1>和对数值 的均值σ2lns,代入UST函数后得到最佳阈值的初始值。

③、发射终端的调制信号源按照载入的数据文件输出调制信号,接收 终端的计算机将采集到的电压信号按照初始判决阈值解调信号;计算 程序在解调过程中,以10秒为一个周期,对解调出的“0”码和“1” 码对应的信号电压分别做统计处理得到<U1>、σ2lns、<U0>和σ02,经 计算后输出更新最佳阈值和平均误码率。

④、为了消除环境变化对UST2lns, <U1>)的影响,每隔一小时执行一 次步骤2,对系统重新初始化。

实施例1

图3为本发明的一个实施例;本实施例中实验装置所用的调制信号源输 出信号为TTL信号;半导体激光器输出功率100 mW,输出波长为532  nm;扩束镜的透过率为0.8;卡塞格林望远镜的接收口径为100 mm, 透过率为0.8;光电探 测器为APD硅光电二极管AD500-8,响应度为50 A/W,工作带宽为0.1  GHz,噪声系数为2.5,倍增因子为100,前置放大倍数为100;计算 机内采集卡的采样频率为100 MHz。

本实施例中实验装置在第一次使用前先进行标定。在室内近距离安装 好发射终端和接收终端,调整发射天线使激光能够照射到接收天线上 ,同时控制激光功率以防止探测器饱和;控制半导体激光器发射10秒 连续激光后关闭激光器,计算程序根据计算机采集的电压信号完成定 标。

按照图3结构安装好实验装置,通过调整发射终端和接收终端的姿态使 输出信号的强度最大。调制信号源输出10秒全“0”码信号后再输出1 0秒全“1”码信号,控制半导体激光器发射高斯激光光束,高斯激光 光束经扩束镜后变换为发散角为0.5 mrad的准直高斯激光光束,随后 该高斯激光光束在大气湍流中传输1 km后被卡塞格林望远镜接收,聚 焦后进入光电探测器,光电探测器输出的电压信号被传输到计算机, 计算程序处理采集的数据后完成最佳阈值初始化。此后实验系统按照 需要进行空间激光通信,计算程序每1小时进行一次初始化,每10秒自 动更新一次最佳阈值和平均误码率。

计算机中安装的计算程序采用MATLAB 7.0编写。该计算程序可以是直 接用命令行组成的M文件,或者是GUIDE方式和命令行M文件方式创建的 一个GUI程序,所述计算程序处理数据的基本步骤如下:

在标定过程中,处理“1”码对应的电压信号得到均值<U1>和方差σ12,处理“0”码对应的电压信号得到均值<U0>和方差σ02,代入公式 (4)计算得到系统固有参数2eBMNRf

在系统初始化过程中,处理“0”码对应的电压信号得到均值<U0>和方 差σ02,代入公式(2)计算得到以<U1>、σ2lns和UT为变量的误码率,其 中<U1>的变化范围设为[0.01, 0.1],步长为0.001;σ2lns的变化范围 设为[0.01, 0.3],步长为0.01;UT的变化范围设为[0, <U1>],步 长为0.01 <U1>。使用逐点扫描的方法寻找对应最小误码率的最佳阈 值,得到以<U1>和σ2lns为变量的最佳阈值UST2lns, <U1>)曲面,以公 式(6)为基础,对该曲面进行多元非线性拟合得到UST2lns, <U1>)的 具体函数形式。处理“1”码对应的电压信号得到其均值<U1>和对数值 的均值σ2lns,代入UST函数后得到最佳阈值的初始值。

在通信过程中,根据最佳阈值对采集到的电压信号进行判断,分别对 “0”码和“1”码的电压信号统计得到<U0>、σ02、<U1>和σ2lns,代 入UST函数后计算 得到当前最佳阈值。计算程序每10秒自动更新一次最佳阈值和平均误 码率,每1小时进行一次初始化。

实施例2

如图4所示,本实施例中省略了实验装置的发射终端和接收终端除计算 机以外的部分,将装有计算程序的计算机作为一个功能模块接入待测 空间激光通信系统的接收终端。按照图4的结构将接收终端的输出电压 接入计算机,同时将计算机输出的计算结果接入接收终端以更新其判 决阈值。其它操作步骤和计算过程与实施例1相同,同样可以估算出该 通信系统在当前大气条件下的最佳阈值和误码率。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号