首页> 中国专利> 一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料

一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料

摘要

本发明公开了一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料,该方法是:将聚苯乙烯溶解在卤代烃溶剂中,再将有机相变材料加入溶解的聚苯乙烯中,搅拌至完全溶解,得到混合溶液;向混合溶液中加入交联剂及路易斯酸催化剂,搅拌反应12~24小时,反应结束后减压蒸除多余溶剂;将残余固体溶解在乙醇中,在碱性条件下超声分散0.5~1小时,再搅拌10~18小时;反应结束后减压蒸除溶剂,干燥,即得。本发明将超交联高分子骨架的形成步骤与相变材料的包覆步骤同步进行,保证了相变材料包覆高效,所得材料潜热高,不易泄露;同时将超交联催化剂在碱性条件下转化为相应的金属氧化物,无需去除金属催化剂,所得金属氧化物起到了强化传热的作用。

著录项

  • 公开/公告号CN109836598A

    专利类型发明专利

  • 公开/公告日2019-06-04

    原文格式PDF

  • 申请/专利权人 中国矿业大学;

    申请/专利号CN201910062305.8

  • 申请日2019-01-23

  • 分类号C08J3/24(20060101);C08L91/06(20060101);C08L25/06(20060101);C08L29/04(20060101);C09K5/06(20060101);

  • 代理机构32200 南京经纬专利商标代理有限公司;

  • 代理人周敏

  • 地址 221116 江苏省徐州市铜山区大学路1号

  • 入库时间 2024-02-19 09:48:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-03

    授权

    授权

  • 2019-06-28

    实质审查的生效 IPC(主分类):C08J3/24 申请日:20190123

    实质审查的生效

  • 2019-06-04

    公开

    公开

说明书

技术领域

本发明属于储能技术领域,涉及一种复合相变储能材料,尤其涉及一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料。

背景技术

随着工业化进程的加快,化石燃料逐渐枯竭,环境污染日益严重,自然平衡遭到破坏,促使全世界寻求可替代能源和清洁能源,提高能源的利用水平。利用相变材料(PHaseChange Material,PCM)的相变潜热来实现能量的存储和利用,有助于提高能效和开发可再生能源,是近年来能源科学与材料科学领域中的一个世界范围的研究热点。

相变材料根据化学结构的不同大致可分为有机类和无机类。无机类一般包括金属类,熔融盐类和结晶水合盐类等,有机类包括脂类、高级烷烃类、脂肪酸类、脂肪醇类和高分子聚合物类等。

有机相变材料具有适应性好、潜热高、凝固时过冷度小、无明显相分离现象、热稳定性好、相变温度范围广等优点,但其熔化时泄漏、液相时粘度较大、导热系数低、易腐蚀金属表面等缺点制约了有机相变材料的发展。

针对有机相变材料固-液相变时的泄漏问题,可将相变材料定形处理,常利用溶胶凝胶法即将溶胶经陈化,聚合形成具有空间网状结构的凝胶包覆相变材料,但此种方法会使材料相变潜热,导热系数降低;还可使用外壁材料包覆经分散的相变材料形成微胶囊相变材料,此种方法反应较复杂且多次循环储放热后易破裂;还可使用具有多孔结构的材料与相变材料进行物理混合,吸附得到复合相变材料。

针对导热系数低的问题,可以通过添加金属纳米颗粒及其氧化物或纳米材料,碳材料等来增强原材料导热系数。

发明内容

本发明的目的是提供一种超交联聚苯乙烯担载有机相变材料的制备方法,同时解决有机相变材料液相泄漏以及导热系数低的问题。

本发明的另一目的是由上述制备方法制得的超交联聚苯乙烯担载有机相变材料。

为实现上述目的,本发明采用的技术方案如下:一种超交联聚苯乙烯担载有机相变材料制备方法,包括以下步骤:

(1)将聚苯乙烯溶解在卤代烃溶剂中,再将有机相变材料加入溶解的聚苯乙烯中,在50~100℃下搅拌至完全溶解,得到混合溶液;

(2)向混合溶液中加入交联剂及路易斯酸催化剂,在50~100℃下搅拌反应12~24小时,反应结束后减压蒸除多余溶剂,得到残余固体;

(3)将残余固体溶解在乙醇中,在碱性条件下超声分散0.5~1小时,随后在50~100℃下搅拌10~18小时;

(4)反应结束后减压蒸除溶剂,干燥,得到超交联聚苯乙烯担载有机相变材料。

优选的,步骤(1)中所述卤代烃溶剂为二氯甲烷、三氯甲烷、1,2-二氯乙烷、四氯化碳中的一种或几种。

优选的,步骤(1)中所述有机相变材料为石蜡、聚乙烯醇、正十八烷、正二十烷中的一种或几种。

优选的,步骤(1)中所述有机相变材料与所述聚苯乙烯的质量比为(3~10): 1。

优选的,步骤(2)中所述交联剂为二甲氧基甲烷、1,2-二氯乙烷、二氯甲烷中的一种或几种,所述交联剂与所述聚苯乙烯的摩尔比为(1~3):1。

优选的,步骤(2)中所述路易斯酸催化剂为三氯化铁、三氯化铝、溴化铜、三氟甲烷磺酸铝、三氟甲烷磺酸钪中的一种或几种,所述路易斯酸催化剂与所述聚苯乙烯的摩尔比为(0.5~1):1。

优选的,步骤(3)中所述碱性条件为pH≥10。

优选的,步骤(3)中超声分散的装置为超声波细胞粉碎机,超声功率为20~60 kW。

优选的,步骤(4)中所述干燥的方式为真空干燥,干燥温度为45~80℃,干燥时间为12~24小时。

本发明还提供由上述制备方法制得的超交联聚苯乙烯担载有机相变材料。

与现有技术相比,本发明具有如下有益效果:

(1)本发明将超交联高分子骨架的形成步骤与有机相变材料的包覆步骤同步进行,保证了相变材料的充分及高效包覆,所得材料具有潜热高,不易泄露的优点。

(2)本发明将超交联催化剂在碱性条件下转化为相应的金属氧化物,不仅省去了去除金属催化剂的步骤,同时转化所得的金属氧化物起到了强化传热的作用。

(3)本发明的制备工艺简单,材料来源广泛、重复性好,易于推广应用。

附图说明

图1为本发明的超交联聚苯乙烯担载有机相变材料的制备流程示意图。

图2为超交联聚苯乙烯扫描电镜图;

图3为相变温度60度石蜡扫描电镜图;

图4为本发明实施例13制得的超交联聚苯乙烯/相变温度60度石蜡的扫描电镜图;

图5为本发明实施例14制得的超交联聚苯乙烯/相变温度60度石蜡的扫描电镜图;

图6为本发明实施例15制得的超交联聚苯乙烯/相变温度60度石蜡的扫描电镜图;

图7为本发明实施例16制得的超交联聚苯乙烯/相变温度60度石蜡的扫描电镜图;

图8为本发明实施例13制得的超交联聚苯乙烯/相变温度60度石蜡的DSC 测试图;

图9为本发明实施例14制得的超交联聚苯乙烯/相变温度60度石蜡的DSC 测试图;

图10为本发明实施例15制得的超交联聚苯乙烯/相变温度60度石蜡的DSC 测试图;

图11为本发明实施例16制得的超交联聚苯乙烯/相变温度60度石蜡的DSC 测试图;

图12为本发明实施例18制得的超交联聚苯乙烯/相变温度5度石蜡的DSC 测试图;

图13为本发明实施例19制得的超交联聚苯乙烯/相变温度25度石蜡的DSC 测试图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步详细说明。

以下实施例中所用的试剂或原料,如无特殊说明,均为市售商品试剂。制备路线如图1所示。

实施例1

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入15g石蜡(相变温度为5 度),50℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.3g,再加三氯化铁1.125g,50℃条件下加热搅拌12小时,将反应物取出,置于旋转蒸发器中蒸除多余溶剂。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为30kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为50℃,转速600r/min,加热搅拌10小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于45℃真空干燥箱中干燥12小时,得到超交联聚苯乙烯/5度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2884 W/(m·K)(25℃)。

实施例2

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL二氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入7.5g石蜡(相变温度为25 度),50℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷1.09g,再加三氯化铝1.912g,50℃条件下加热搅拌12小时,将反应物取出,置于旋转蒸发器中蒸除多余溶剂。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钠调节溶液 pH≥10,将所得混合物置于功率为20kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为50℃,转速600r/min,加热搅拌10小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于50℃真空干燥箱中干燥14小时,得到超交联聚苯乙烯/25度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2938 W/(m·K)(25℃)。

实施例3

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL三氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入4.5g石蜡(相变温度为30 度),60℃条件下加热搅拌至石蜡完全溶解,加入1,2-二氯乙烷1.7739g,再加三氟甲烷磺酸钪7.0577g,60℃条件下加热搅拌20小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钾调节溶液pH≥10,将所得混合物置于功率为50kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度为60℃,转速600r/min,加热搅拌16小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸发,随后置于60℃真空干燥箱中干燥16小时,得到超交联聚苯乙烯/30度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数: 0.2867W/(m·K)(25℃)

实施例4

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL四氯化碳,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入4.5g石蜡(相变温度为40 度),60℃条件下加热搅拌至石蜡完全溶解,加入二氯甲烷1.217g,再加溴化铜 3.203g,60℃条件下加热搅拌18小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为60℃,转速600r/min,加热搅拌14小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于60℃真空干燥箱中干燥18小时,得到超交联聚苯乙烯/40度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2780 W/(m·K)(25℃)。

实施例5

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL二氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入7.5g石蜡(相变温度为60 度),80℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷1.364g,再加三氟甲烷磺酸铝3.4g,80℃条件下加热搅拌18小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度为80℃,转速600r/min,加热搅拌18 小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥20小时,得到超交联聚苯乙烯/60度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2948 W/(m·K)(25℃)。

实施例6

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL三氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入15g石蜡(相变温度为80 度),100℃条件下加热搅拌至石蜡完全溶解,加入1,2-二氯乙烷4.25g,再加三氟甲烷磺酸钪7.05g,100℃条件下加热搅拌24小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钠调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1 小时,取出后置于磁力搅拌水浴锅中,调整温度为100℃,转速600r/min,加热搅拌18小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于 80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/80度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.3001 W/(m·K)(25℃)。

实施例7

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入7.5g聚乙烯醇,80℃条件下加热搅拌至聚乙烯醇完全溶解,加入二氯甲烷2.435g,再加三氯化铁1.163 g,80℃条件下加热搅拌14小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钾调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度为80℃,转速600r/min,加热搅拌16小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/聚乙烯醇复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2842 W/(m·K)(25℃)。

实施例8

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL四氯化碳,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入5g正十八烷,80℃条件下加热搅拌至正十八烷完全溶解,加入1,2-二氯乙烷1.774g,再加三氯化铝0.956g, 80℃条件下加热搅拌15小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钠调节溶液pH≥10,将所得混合物置于功率为50kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为80℃,转速600r/min,加热搅拌10小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/正十八烷复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2969 W/(m·K)(25℃)。

实施例9

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL二氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入4.5g正二十烷,80℃条件下加热搅拌至正二十烷完全溶解,加入二甲氧基甲烷2.182g,再加溴化铜3.202 g,80℃条件下加热搅拌12小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为80℃,转速600r/min,加热搅拌10小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥 20小时,得到超交联聚苯乙烯/正二十烷复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2872 W/(m·K)(25℃)。

实施例10

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL三氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入5.5g正二十烷,70℃条件下加热搅拌至正二十烷完全溶解,加入二甲氧基甲烷3.2739g,再加三氟甲烷磺酸铝3.4g,70℃条件下加热搅拌16小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钠调节溶液 pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度为70℃,转速600r/min,加热搅拌14小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥20小时,得到超交联聚苯乙烯/正二十烷复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2985 W/(m·K)(25℃)。

实施例11

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL四氯化碳,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入15g正二十烷,90℃条件下加热搅拌至正二十烷完全溶解,加入二氯甲烷1.5224g,再加三氯化铝1.912g, 90℃条件下加热搅拌24小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钾调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度为90℃,转速600r/min,加热搅拌18小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/正二十烷复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2923 W/(m·K)(25℃)。

实施例12

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL二氯甲烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入5g石蜡(相变温度为25 度),70℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷1.09g,再加三氯化铝1.912g,70℃条件下加热搅拌12小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钠调节溶液pH≥10,将所得混合物置于功率为30kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为70℃,转速600r/min,加热搅拌10 小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于70℃真空干燥箱中干燥14小时,得到超交联聚苯乙烯/25度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2958 W/(m·K)(25℃)。

实施例13

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入10g石蜡(相变温度为 60度),80℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.27g,再加三氯化铁2.23g,80℃条件下加热搅拌24小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度80℃,转速600r/min,加热搅拌18小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/60度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2746 W/(m·K)(25℃)。

图2为本实施例中的超交联聚苯乙烯扫描电镜图,图3为相变温度60度石蜡扫描电镜图,图4为该样品扫描电镜测试图,从图中可以看出,超交联聚苯乙烯与60度石蜡(质量比:1.5:10)复合均匀。图8为该样品DSC测试图,由图可知,熔化过程起始温度为56.10℃,峰值温度为65.54℃,相变潜热为137.54J/g,凝固过程起始温度为62.38℃,峰值温度为56.04℃,相变潜热为134.95J/g,该样品具有较高潜热,可用作蓄热材料。

实施例14

在100mL圆底烧瓶中加入2g聚苯乙烯和30mL1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入10g石蜡(相变温度为60 度),80℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.27g,再加三氯化铁2.23g,80℃条件下加热搅拌24小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液 pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度80℃,转速600r/min,加热搅拌18小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/60度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2710 W/(m·K)(25℃)。图5为该样品扫描电镜测试图,从图中可以看出,超交联聚苯乙烯与60度石蜡(质量比:2:10)复合均匀。图9为该样品DSC测试图,由图可知,熔化过程起始温度为56.62℃,峰值温度为65.58℃,相变潜热为137.53 J/g,凝固过程起始温度为62.26℃,峰值温度为56.84℃,相变潜热为131.40J/g,该样品具有较高潜热,可用作蓄热材料。

实施例15

在100mL圆底烧瓶中加入2.5g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入10g石蜡(相变温度为 60度),80℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.27g,再加三氯化铁2.23g,80℃条件下加热搅拌24小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度80℃,转速600r/min,加热搅拌18小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/60度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2698 W/(m·K)(25℃)。图6为该样品扫描电镜测试图,从图中可以看出,超交联聚苯乙烯与60度石蜡(质量比:2.5:10)复合均匀。图10为该样品DSC测试图,由图可知,熔化过程起始温度为58.02℃,峰值温度为65.50℃,相变潜热为124.64 J/g,凝固过程起始温度为62.46℃,峰值温度为56.64℃,相变潜热为121.94J/g,该样品具有较高潜热,可用作蓄热材料。

实施例16

在100mL圆底烧瓶中加入3g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入10g石蜡(相变温度为60 度),80℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.27g,再加三氯化铁2.23g,80℃条件下加热搅拌24小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液 pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度80℃,转速600r/min,加热搅拌18小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于80℃真空干燥箱中干燥24小时,得到超交联聚苯乙烯/60度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2687 W/(m·K)(25℃)。图7为该样品扫描电镜测试图,从图中可以看出,超交联聚苯乙烯与60度石蜡(质量比:3:10)复合均匀。图11为该样品DSC测试图,由图可知,熔化过程起始温度为59.65℃,峰值温度为65.86℃,相变潜热为109.84 J/g,凝固过程起始温度为62.58℃,峰值温度为56.00℃,相变潜热为115.78J/g,该样品具有较高潜热,可用作蓄热材料。

实施例17

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入7.5g石蜡(相变温度为 30度),60℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷1.6369g,再加溴化铜3.2g,60℃条件下加热搅拌16小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氢氧化钠调节溶液pH≥10,将所得混合物置于功率为60kW超声波细胞粉碎机中超声1小时,取出后置于磁力搅拌水浴锅中,调整温度为60℃,转速600r/min,加热搅拌18 小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于60℃真空干燥箱中干燥20小时,得到超交联聚苯乙烯/30度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2781 W/(m·K)(25℃)。

实施例18

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入10g石蜡(相变温度为5 度),50℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.3g,再加三氯化铁1.125g,50℃条件下加热搅拌12小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液 pH≥10,将所得混合物置于功率为30kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为50℃,转速600r/min,加热搅拌10小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于50℃真空干燥箱中干燥12小时,得到超交联聚苯乙烯/5度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2870 W/(m·K)(25℃)。图12为该样品DSC测试图,由图可知,熔化过程起始温度为4.39℃,峰值温度为7.1℃,相变潜热为72.79J/g,凝固过程起始温度为4.06 ℃,峰值温度为0.45℃,相变潜热为75.86J/g,该样品具有较高潜热,可用作蓄冷材料。

实施例19

在100mL圆底烧瓶中加入1.5g聚苯乙烯和30mL 1,2-二氯乙烷,将烧瓶置于磁力搅拌水浴锅中搅拌至聚苯乙烯完全溶解,再加入10g石蜡(相变温度为 25度),50℃条件下加热搅拌至石蜡完全溶解,加入二甲氧基甲烷3.3g,再加三氯化铁1.125g,50℃条件下加热搅拌12小时,将反应物取出,置于旋转蒸发器中,将多余溶剂蒸发。将减压蒸馏后固体溶解在无水乙醇中,加入氨水调节溶液pH≥10,将所得混合物置于功率为30kW超声波细胞粉碎机中超声0.5小时,取出后置于磁力搅拌水浴锅中,调整温度为50℃,转速600r/min,加热搅拌10 小时,将所得混合物取出置于旋转蒸发器中,将溶剂蒸除,随后置于50℃真空干燥箱中干燥12小时,得到超交联聚苯乙烯/25度石蜡复合相变材料。

经测试,该相变材料具有以下性质,液相不发生泄漏,导热系数:0.2785 W/(m·K)(25℃)。图13为该样品DSC测试图,由图可知,熔化过程起始温度为22.69℃,峰值温度为26.9℃,相变潜热为100.26J/g,凝固过程起始温度为 21.52℃,峰值温度为18.88℃,相变潜热为99.453J/g,该样品具有较高潜热。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号