首页> 中国专利> 胶结矿柱支护下金属矿采空区覆岩失稳突变判别方法

胶结矿柱支护下金属矿采空区覆岩失稳突变判别方法

摘要

胶结矿柱支护下金属矿采空区覆岩失稳突变判别方法,先建立采空区覆岩空间应力模型,计算只有重力和梁支撑力作用时,各项应力分量;当覆岩只有构造应力作用时,计算得出各项应力分量;当矿柱采用胶结矿柱时,计算得出各项应力分量;根据突变理论建立人工矿柱支护下覆岩失稳破坏的突变模型:分别进行尖点突变分析,得出覆岩稳定性判断依据。本发明可根据覆岩失稳破坏的突变理论判据得出胶结矿柱支护下金属矿山开采覆岩破坏与采空区的跨度和开采深度对空区顶板稳定性定量关系,进而得出覆岩破坏与采空区的开采跨度与开采深度之间的定量关系,为金属矿山深部的开采参数设计提供依据。

著录项

  • 公开/公告号CN109681272A

    专利类型发明专利

  • 公开/公告日2019-04-26

    原文格式PDF

  • 申请/专利权人 江西理工大学;

    申请/专利号CN201811580815.6

  • 申请日2018-12-24

  • 分类号E21F17/00(20060101);

  • 代理机构53106 昆明大百科专利事务所;

  • 代理人李云

  • 地址 341000 江西省赣州市红旗大道86号

  • 入库时间 2024-02-19 08:51:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-28

    授权

    授权

  • 2019-05-21

    实质审查的生效 IPC(主分类):E21F17/00 申请日:20181224

    实质审查的生效

  • 2019-04-26

    公开

    公开

说明书

技术领域

本发明属于金属矿山采矿安全防控技术领域,具体涉及在胶结矿柱支护下金属矿山采空区覆岩失稳突变的判别方法,可为金属矿山深部开采,开采深度与采空区跨度的参数设计提供参考依据。

背景技术

采空区突发性大面积顶板垮落属于岩体系统突发性动力失稳问题,岩体系统突发性动力失稳灾害的孕育阶段是准静态的,但是其发生是动态的,伴有大量弹性能释放,造成岩体动力破碎、围岩振动,是一种高度非线性状态下的复杂行为,失稳之后的系统处于一种新的稳定状态。近年来多用突变理论研究参数连续变化导致系统状态突变。突变理论由Thom最先提出,它以不连续现象为研究对象,运用拓扑学、奇点理论和结构稳定性等数学工具,研究某种系统(过程)从一种稳定状态到另一种稳定状态的跃迁,讨论动力学系统中状态发生跳跃性变化的一般规律。其主要阐述不同参数的连续性的变化是如何导致不连续现象的产生。尖点突变模型(图1)是矿山最常用的模型,其势能函数标准形式为:

V(x)=x4+ux2+vx(A)

(A)式中x为状态变量,u和v为两个控制变量。其中x表示系统当前所处的状态情况;u和v是表示顶板或围岩的变量,对(A)式求导,可得尖点突变模型的平衡曲面方程:

V″(x)=12x2+2u=0(B)

式(B)是系统处于平衡位置的临界点方程,可得u-v平面上各区域的V(x)图形即尖点突变参数平面图(见图2)。从图1中可知,在(x,u,v)三维空间中的图形是由上、中、下三叶组成的具有褶皱的光滑曲面图,上、下两叶是稳定的、中叶为不稳定的,尖拐点或折叠的集合称为奇点集,其在u-v平面的投影称为分叉集。把V′(x)=0和V″(x)=12x2+2u=0联立消去x,可得分叉集方程为:

D=8u3+27v2=0(C)

图1表明,势V由上叶向下叶的变化时,控制变量u>0系统是稳定的;u<0时,系统从一种状态演化到另一种状态,必须穿越分叉集曲线,必然有个突变过程,系统是不稳定的。

在地下矿山开采中,影响顶板稳定的因素较复杂,包括地质与构造、地层与岩性、地应力、工程环境、地下水、开采方法、采空区结构特征、支护与空区处理和时间因素等。另外这些因素中不同的因素随时在不停的变化,直到达到临界点,此段时间是顶板失稳的量变过程。临界点过后,当其中一个或多个因素向有利于顶板失稳发生的方向变化时,顶板就发生失稳冒落,此过程是顶板失稳的质变过程。也即在穿越分叉集时,系统的状态(具体为状态变量x)将发生一个突跳,表明从量变到质变的过程中必然存在一个突变。

金属矿山地质构造及矿体形态不同与层状的煤矿,由于金属矿山埋藏条件复杂,重力和构造应力成为采矿开采过程中重要影响因素,但是在金属矿山覆岩岩体移动破坏研究中,构建地质及力学模型时将构造应力作为重要考虑因素的较少。同时,由于金属矿产资源日益枯竭,为了充分回收矿产资源,矿山企业常用矿山尾矿废弃材料、胶结成人工矿柱代替原生矿柱来支撑采空区覆岩的稳定,因此,胶结矿柱支撑覆岩的稳定性是工程技术人员关注的焦点。

发明内容

本发明的目的是提供胶结矿柱支护下金属矿采空区覆岩失稳突变的判别方法,针对金属矿山实际地质情况,在采用矿山在考虑自重应力场和构造应力的条件下,建立采空区覆岩空间应力模型,通过系统性分析型的受力情况及边界条件,计算得到覆岩总势能,确定总势能满足尖点突变模型,从而得到覆岩失稳破坏的突变理论判断依据。进而得出了覆岩破坏与采空区的开采跨度与开采深度之间的定量关系,为金属矿山深部的开采参数设计提供依据。

本发明采取的技术方案如下:

胶结矿柱支护下金属矿采空区覆岩失稳突变判别方法,包括如下步骤:

第一步:建立采空区覆岩空间应力模型,计算只有重力和梁支撑力作用时,各项应力分量;

假设势函数为

则有

边界条件为:

式中,h为开采深度,m;

a为开采跨度,m;

b为开采厚度,m;

ρ为岩石容重,kg/m3

g为重力加速度m/s2

x为x轴上的坐标;

y为y轴上的坐标;

z为z轴上的坐标;

c1、c2、c3、c4分别代表函数方程的引入常数;

从而求得覆岩各项应力为:

第二步:当覆岩只有构造应力作用时,分析边界条件,计算得出各项应力分量;

其边界条件为:

从而解得:

式中:h为开采深度,m;

a为开采跨度,m;

b为开采厚度,m;

k为覆岩所受构造应力作用力与深度成正比的比例系数;

μ为泊松比;

第三步:当矿柱采用胶结矿柱时,周边对岩体有剪应力作用,假设剪应力与岩体深度成正比,比例系数为p,分析边界条件,计算得出各项应力分量;

其边界条件为:

从而解得:

第四步:当岩体受支撑力和构造应力共同作用时有各项应力分量:

最终得出整个覆岩势能:

式中h为开采深度,m;

a为开采跨度,m;

b为开采厚度,m;

ρ为岩石容重,kg/m3

g为重力加速度m/s2

p为剪应力与岩体深度成正比的比例系数;

k为覆岩所受构造应力作用力与深度成正比的比例系数。E为杨氏弹性模量,MPa;G为剪切模量,MPa;

μ为泊松比;

第五步:对于空间岩体应力模型中的岩体总势能,假设根据突变理论建立人工矿柱支护下覆岩失稳破坏的突变模型:

Π=x4+ax2+bx(12)

第六步:分别对f1(x)和f2(x)进行尖点突变分析,得出覆岩稳定性判断依据;

(一)f1(x)的稳定性分析:

将f1(x)变形得:

上式中,E表示杨氏弹性模量;G表示剪切模量;

稳定条件为:

(二)f2(x)的稳定性分析

将f2(x)变形得:

稳定条件为:

覆岩稳定的条件为:

只有上述式(14)和式(16)同时大于0时,采空区覆岩才能确保稳定;如果有其中任意一式等于0时,表示该覆岩处于稳定临界状态;如果有其中任意一式小于0时,表示该覆岩处于失稳破坏状态;

第七步:根据覆岩失稳破坏的突变理论判据得出胶结矿柱支护下金属矿山开采覆岩破坏与采空区的跨度和开采深度对空区顶板稳定性定量关系。

本发明具有以下有益效果:

(1)从应力分布情况得到覆岩势能,根据突变理论建立了胶结矿柱支护下覆岩失稳破坏的突变模型,得出了覆岩失稳破坏的突变理论判据。

(2)根据覆岩失稳破坏的突变理论判据得出了胶结矿柱支护下金属矿山开采覆岩破坏与采空区的跨度和开采深度对空区顶板稳定性关系。

(3)根据建立的胶结矿柱支护下金属矿采空区覆岩失稳突变模型判据,可在金属矿山深部开采中随着开采深度的增加,采空区跨度的变化进行安全设计,该方法简便、实用、经济,为矿山绿色提供指导。

(4)构建采空区覆岩空间应力模型时,将金属矿山顶板视为“四周固支板”,且视胶结矿柱支护下的覆岩为“厚板”,从应力分布情况得到覆岩势能,进而确定其稳定性。这样就与工程实际情况相似,更具有现实意义,更符合当前金属矿山向深部开采的趋势。

附图说明

图1为尖点突变模型示意图;

图2为尖点突变参数平面图(E、J表示两个区域);

图3为采空区立体示意图;

图4为矿房开采跨度与开采深度关系。

具体实施方式

采用本发明所述胶结矿柱支护下金属矿采空区覆岩失稳突变的判别方法在国内某大型金属矿山进行采空区上覆岩体稳定性的不公开测试,为矿山采空区上覆岩体稳定性规律与开采深度和矿房跨度的失稳突变判别方法提供参考。实施步骤如下:

第一步:建立采空区覆岩空间应力模型,如图3所示,考虑重力因素的同时考虑构造应力,对该模型的受力情况和边界条件进行系统分析和研究,计算只有重力和梁支撑力作用时各项应力分布分量。

假设势函数为

则有

边界条件为:

式中h为开采深度,m;a为开采跨度,m;b为开采厚度,m;ρ为岩石容重,kg/m3;g为重力加速度m/s2

x为x轴上的坐标;

y为y轴上的坐标;

z为z轴上的坐标;

c1、c2、c3、c4分别代表函数方程的引入常数;

从而求得覆岩各项应力为:

第二步:计算当覆岩只有构造应力作用时,其边界条件为:

从而解得:

式中:h为开采深度,m;a为开采跨度,m;b为开采厚度,m;k为覆岩所受构造应力作用力与深度成正比的比例系数;μ为泊松比。

第三步:当矿柱采用人工胶结矿柱时,周边对岩体有剪应力作用,假设剪应力与岩体深度成正比,比例系数为p,则其边界条件为:

从而解得:

第四步:当岩体受支撑力和构造应力共同作用时有:

整个岩体的势能:

式中:h为开采深度,m;a为开采跨度,m;b为开采厚度,m;ρ为岩石容重,kg/m3;g为重力加速度m/s2;p为剪应力与岩体深度成正比的比例系数;k为覆岩所受构造应力作用力与深度成正比的比例系数;E为杨氏弹性模量,MPa;G为剪切模量,MPa;μ为泊松比。

第五步:对于空间岩体应力模型中的岩体总势能,假设根据突变理论建立了人工矿柱支护下覆岩失稳破坏的突变模型:

Π=x4+ax2+bx(12)

第六步:分别对f1(x)和f2(x)进行尖点突变分析,得出覆岩稳定性判断依据。

(一)f1(x)的稳定性分析

将f1(x)变形得:

上式中,E表示杨氏弹性模量;G表示剪切模量;

稳定条件为:

(二)f2(x)的稳定性分析

将f2(x)变形得:

稳定条件为:

所以覆岩稳定的条件为:

只有上述式(14)和式(16)同时大于0时,采空区覆岩才能确保稳定;如果有其中任意一式等于0时,表示该覆岩处于稳定临界状态;如果有其中任意一式小于0时,表示该覆岩处于失稳破坏状态。

第七步:根据国内某金属矿山现场资料,该矿地表标高+160m,目前已设计的开采中段为-390m、-410m、-430m、-460m、-500m、-540m和-580m七个中段,由于在深度-580m~-700m之间初步勘查出有更多具有开采价值的黄金储量,因此本部分对-390m~-700m区间的开采跨度与开采深度之间的关系进行研究,-580m以下中段拟设计以40m一个开采中段,即-620m、-660m、-700m中段。根据室内实验及矿山相关资料,该矿山物理力学参数:弹性模量60GPa,重度28kN/m3,重力加速度9.8m/s2,岩石泊松比0.24,剪应力与岩体深度比例系数取3,构造应力比例系数0.033。当式(13)和式(15)同时大于0时表示覆岩在某一深度和跨度下是稳定的,只要有其中一式等于0就表示处于稳定的临界状态。通过将参数代入上两式进行计算判别,分别得出焦冲金矿在开采深度为550m~860m时,其覆岩稳定的矿房跨度临界值(表1)。

表1开采深度与矿房跨度关系表

开采深度/m550570590620660700740780820860矿房跨度/m23.320.918.916.313.511.39.68.176

第八步:通过数据的计算和拟合后,得出开采跨度与开采深度的关系式:

y=5×109x-3.0245(16)

其中相关系数R2=0.999,x为开采深度,y为矿房开采跨度。

从图4的拟合曲线)和式(16)分析可知,随着开采深度的增加,开采跨度安全临界值是逐渐减小的,在深度较浅的开采区域,跨度随开采深度增加减小的趋势较快,在开采深度超过780m深度后,开采跨度的减小趋势较缓和。根据矿山深部开采的界定,一般以开采深度超过800m为深部开采,从规律研究表明,矿山在进入深部开采后,其开采安全跨度的变化受深度的影响相对变小。

本发明针对金属矿山实际地质情况,考虑自重应力与构造应力的条件下,建立空间应力模型,从应力分布情况得到覆岩势能,根据突变理论建立胶结矿柱支护下金属矿采空区覆岩失稳破坏的突变模型,得出失稳破坏的突变理论判据,可为金属矿山深部开采,开采深度与采空区跨度的参数设计提供参考依据。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号