首页> 中国专利> 一种车载式工程建设空气质量监测方法

一种车载式工程建设空气质量监测方法

摘要

一种车载式工程建设空气质量监测方法,其特征是采用一种车载式工程建设空气质量监测系统进行空气质量监测,该系统包括车载系统,粉尘监测装置(1),PM2.5监测装置(2),CO

著录项

  • 公开/公告号CN109239271A

    专利类型发明专利

  • 公开/公告日2019-01-18

    原文格式PDF

  • 申请/专利权人 中国科学院地质与地球物理研究所;

    申请/专利号CN201811105160.7

  • 发明设计人 李志清;

    申请日2018-09-21

  • 分类号

  • 代理机构

  • 代理人

  • 地址 100029 北京市朝阳区北土城西路19号

  • 入库时间 2024-02-19 07:41:09

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-06-30

    授权

    授权

  • 2019-02-19

    实质审查的生效 IPC(主分类):G01N33/00 申请日:20180921

    实质审查的生效

  • 2019-01-18

    公开

    公开

说明书

技术领域

本发明涉及工程建设领域,尤其是公路工程领域,具体涉及一种车载式工程建设空气质量监测方法。

背景技术

高速公路建设不可避免地在一定程度上对环境造成直接或间接的影响,特别是它改变了现有自然环境的连续性和整体性,破坏了自然环境保护的生态平衡。通过在工程建设过程中安装各类大气环境监测探头与系统的方式,可以有效监督工程建设对环境的污染。但对于像公路工程或铁路工程这样的线性工程,长达几百米远,显然全线覆盖大气环境监测点,不仅造价高,维护成本非常昂贵,如何能够研发一套车载移动装置,可以根据环境污染的度与需求进行移动式环境监测,将极大程度上降低大气环境监测的成本。

本发明就是一种车载式工程建设空气质量监测方法。

发明内容

本发明目的是提供一种车载式工程建设空气质量监测方法,用于解决公路工程、铁路工程等线性工程大气环境监测。

发明的技术解决方案,其特征是采用一种车载式空气质量监测系统进行空气质量监测,该系统包括车载系统,粉尘监测装置1,PM2.5监测装置2,CO2监测装置3,风速风向监测装置4,温度湿度监测装置5,数据采集存储装置6,数据传输装置7,供电系统,数据展示系统。粉尘监测装置1,PM2.5监测装置2,CO2监测装置3,风速风向监测装置4和温度湿度监测装置5均与数据采集存储装置6连接,数据采集存储装置6连接数据传输装置7,数据传输装置7将采集存储的数据经无线网传递给数据展示系统,供电系统采用太阳能电池板或蓄电池供电。

车载系统包括机动车8,监测设备固定框架9,减震台10,避雷针11,地线装置12。机动车8顶部连接减震台10,减震台10顶部连接监测设备固定框架9,监测设备固定框架9内放置粉尘监测装置1,PM2.5监测装置2,CO2监测装置3,风速风向监测装置4,温度湿度监测装置5,数据采集存储装置6和数据传输装置7,监测设备固定框架9连接避雷针11,监测设备固定框架9通过机动车8连接地线装置12。

粉尘监测装置1包括粉尘设备箱13,第一受光元件14,第一接收板15,散射板16,第一发光元件17,第一排气管路18,第二排气管路19,第一风扇电机20,第二风扇电机21,第一排气口22,第二排气口23,第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一采气口28,第二排气管路19具有自动过滤功能。粉尘设备箱13连接第一进气口26,第二进气口27,第一采气口28,第一受光元件14和第一发光元件17,第一采气口28连接散射板16,第一受光元件14连接第一接收板15,粉尘设备箱13内气体通过第一排气通道24和第二排气通道25排出,第一排气通道24连接第一排气管路18,第一排气管路18内安装有第一风扇电机20,第一排气管路18连接第一排气口22,第二排气通道25连接第二排气管路19,第二排气管路19内安装有第二风扇电机21,第二排气管路19连接第二排气口23,第二排气口23连接第一进气口26和第二进气口27。

PM2.5监测装置2包括粉尘设备箱13,第一受光元件14,第一接收板15,散射板16,第一发光元件17,第一排气管路18,第二排气管路19,第一风扇电机20,第二风扇电机21,第一排气口22,第二排气口23,第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一采气口28,送气通道29,第二采气口30,分气通道31,粒子滞留器32,第二排气管路19具有自动过滤功能。粉尘设备箱13连接第一进气口26,第二进气口27,第一采气口28,第一受光元件14和第一发光元件17,第一采气口28连接散射板16,第一受光元件14连接第一接收板15,粉尘设备箱13内气体通过第一排气通道24和第二排气通道25排出,第一排气通道24连接第一排气管路18,第一排气管路18内安装有第一风扇电机20,第一排气管路18连接第一排气口22,第二排气通道25连接第二排气管路19,第二排气管路19内安装有第二风扇电机21,第二排气管路19连接第二排气口23,第二排气口23连接第一进气口26和第二进气口27。第一采气口28连接送气通道29,送气通道29连接分气通道31,分气通道31分别连接第二采气口30和粒子滞留器32,粒子滞留器32可手动拆开,便于清洗。

CO2监测装置3包括第三采气口33,第三进气口34,CO2设备箱35,第二受光元件36,第三排气口37,第三风扇电机38,第三排气管路39,第四排气管路40,第四风扇电机41,第四排气口42,第二发光元件43,第二接收板44,第三排气通道45,第四排气通道46,第三排气管路39具有自动过滤功能。CO2设备箱35连接第三采气口33,第三进气口34,第二受光元件36和第二发光元件43,第二受光元件36连接第二接收板44,CO2设备箱35内气体通过第三排气通道45和第四排气通道46排出,第四排气通道46连接第四排气管路40,第四排气管路40内安装有第四风扇电机41,第四排气管路40连接第四排气口42,第三排气通道45连接第三排气管路39,第三排气管路39内安装有第三风扇电机38,第三排气管路39连接第三排气口37,第三排气口37连接第三进气口34。

一种车载式公路建设空气质量监测方法所用空气质量监测系统进行粉尘监测方法如下:

(1)将机动车8开到需要监测空气质量的位置,进行粉尘监测时,关闭第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一排气口22和第二排气口23。

(2)打开数据采集系统与供电系统。

(3)打开第一采气口28,使得要采集的粉尘气体进入粉尘设备箱13,散射板16将粉尘气体分散,第一发光元件17发光后使得粉尘气体发生光散射,经第一接收板15,由第一受光元件14接收光散射气体的浓度信息,将数据储存在数据采集存储装置6,经数据传输装置7传输给数据展示系统进行数据展示。

(4)数据采集完毕后,关闭第一采气口28,打开第二排气通道25,第一进气口26和第二进气口27,粉尘气体进入第二排气通道25,经过第二风扇电机21,由第二排气管路19自动过滤,清洁后的气体经过第二排气口23,进入第一进气口26和第二进气口27,打开第一排气通道24,将粉尘设备箱13内的粉尘气体经第一风扇电机20,由第一排气口22排出。

(5)往复3个循环后,粉尘设备箱13内的粉尘气体被自动清洁。

(6)关闭第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一排气口22和第二排气口23,打开第一采气口28,再次进行粉尘气体浓度量测。

一种车载式公路建设空气质量监测方法所用空气质量监测系统进行PM2.5监测方法如下:

(1)将机动车8开到需要监测空气质量的位置,进行PM2.5监测时,关闭第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一排气口22和第二排气口23。

(2)打开数据采集系统与供电系统。

(3)打开第一采气口28和第二采气口30,使得气体通过第二采气口30进入分气通道31,分气通道31经离心分离,将去除PM2.5后的气体筛分至粒子滞留器32,将PM2.5气体筛分至送气通道29,通过第一采气口28送至粉尘设备箱13;散射板16将PM2.5气体分散,第一发光元件17发光后使得PM2.5气体发生光散射,经第一接收板15,由第一受光元件14接收光散射气体的浓度信息,将数据储存在数据采集存储装置6,经数据传输装置7传输给数据展示系统进行数据展示。

(4)数据采集完毕后,关闭第一采气口28,打开第二排气通道25,第一进气口26和第二进气口27,PM2.5气体进入第二排气通道25,经过第二风扇电机21,由第二排气管路19自动过滤,清洁后的气体经过第二排气口23,进入第一进气口26和第二进气口27,打开第一排气通道24,将粉尘设备箱13内的粉尘气体经第一风扇电机20,由第一排气口22排出。

(5)往复3个循环后,粉尘设备箱13内的PM2.5气体被自动清洁。

(6)关闭第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一排气口22和第二排气口23,打开第一采气口28和第二采气口30,再次进行PM2.5气体浓度监测。

一种车载式公路建设空气质量监测方法所用空气质量监测系统进行CO2监测方法如下:

(1)将机动车8开到需要监测空气质量的位置,进行CO2监测时,关闭第三排气通道45,第四排气通道46,第三进气口34,第三排气口37和第四排气口42。

(2)打开数据采集系统与供电系统。

(3)打开第三采气口33,使得气体进入CO2设备机箱35,第二发光元件43发出红外光后使得CO2气体发生光散射,经第二接收板44,由第二接收板44接收光散射气体的浓度信息,将数据储存在数据采集存储装置6,经数据传输装置7传输给数据展示系统进行数据展示。

(4)数据采集完毕后,关闭第三采气口33,打开第三排气通道45,第三进气口34,CO2气体进入第三排气通道45,经过第三风扇电机38,由第三排气管路39自动过滤,清洁后的气体经过第三排气口37,进入第三进气口34,打开第四排气通道46,将CO2设备箱35内的CO2气体经第二风扇电机41,通过第四排气口42排出。

(5)往复3个循环后,CO2设备机箱35内的CO2气体被自动清洁。

(6)关闭第三排气通道45,第四排气通道46,第三进气口34,第三排气口37和第四排气口42,打开第三采气口33,可以再次进行CO2气体浓度量测。

本发明优点:

该方法操作简单,测量精度高,满足粉尘、PM2.5、CO2等重污染条件下设备的自清洁功能。可以进行独立量测大气环境气体浓度与气象信息,也可以进行车载移动式大气浓度与气象信息量测。

本发明适用范围:

适用于土木工程、公路工程、铁路工程等各类工程建设中,由于施工造成的粉尘污染,实时监测大气环境气体浓度和气象信息变化。

附图说明:

图1是监测设备固定框架9平面示意图。其中有:粉尘监测装置1,PM2.5监测装置2,CO2监测装置3,风速风向监测装置4,温度湿度监测装置5,数据采集存储装置6,数据传输装置7。

图2是一种车载式公路建设空气质量监测方法所用监测系统示意图。其中有:机动车8,监测设备固定框架9,减震台10,避雷针11,地线装置12。

图3是粉尘监测装置1示意图。其中有:粉尘设备箱13,第一受光元件14,第一接收板15,散射板16,第一发光元件17,第一排气管路18,第二排气管路19,第一风扇电机20,第二风扇电机21,第一排气口22,第二排气口23,第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一采气口28。

图4是PM2.5监测装置示意图。其中有:粉尘设备箱13,第一受光元件14,第一接收板15,散射板16,第一发光元件17,第一排气管路18,第二排气管路19,第一风扇电机20,第二风扇电机21,第一排气口22,第二排气口23,第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一采气口28,送气通道29,第二采气口30,分气通道31,粒子滞留器32。

图5是CO2监测装置示意图。其中有:第三采气口33,第三进气口34,CO2设备箱35,第二受光元件36,第三排气口37,第三风扇电机38,第三排气管路39,第四排气管路40,第四风扇电机41,第四排气口42,第二发光元件43,第二接收板44,第三排气通道45,第四排气通道46。

具体实施方式:

实施例:采用车载式工程建设空气质量监测方法监测粉尘方法如下,

(1)将机动车8开到需要监测空气质量的位置,进行粉尘监测时,关闭第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一排气口22和第二排气口23。

(2)打开数据采集系统与供电系统。

(3)打开第一采气口28,使得要采集的粉尘气体进入粉尘设备箱13,散射板16将粉尘气体分散,第一发光元件17发光后使得粉尘气体发生光散射,经第一接收板15,由第一受光元件14接收光散射气体的浓度信息,将数据储存在数据采集存储装置6,经数据传输装置7传输给数据展示系统进行数据展示。

(4)数据采集完毕后,关闭第一采气口28,打开第二排气通道25,第一进气口26和第二进气口27,粉尘气体进入第二排气通道25,经过第二风扇电机21,由第二排气管路19自动过滤,清洁后的气体经过第二排气口23,进入第一进气口26和第二进气口27,打开第一排气通道24,将粉尘设备箱13内的粉尘气体经第一风扇电机20,由第一排气口22排出。

(5)往复3个循环后,粉尘设备箱13内的粉尘气体被自动清洁,待监测数据稳定即可停止。

(6)关闭第一排气通道24,第二排气通道25,第一进气口26,第二进气口27,第一排气口22和第二排气口23,打开第一采气口28,再次进行粉尘气体浓度量测。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号