首页> 中国专利> 一种水性聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂的制备方法

一种水性聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂的制备方法

摘要

一种水性聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂的制备方法,包括:(1)将水溶性乳化剂溶于去离子水中得到乳化剂水溶液,并调节其pH值到6~10;(2)将表面乙烯基改性的SiO2纳米颗粒均匀分散于部分疏水乙烯基单体中,再加入剩余部分疏水乙烯基单体、极性乙烯基单体、共稳定剂、二异氰酸酯单体和二元醇预聚物,得到SiO2纳米颗粒的单体分散液;(3)将SiO2纳米颗粒的单体分散液加到乳化剂水溶液中,搅拌预乳化得到粗乳液,再在冰水浴中超声处理制得单体细乳液;(4)单体细乳液在氮气保护下经聚合制得聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂。本发明通过水基细乳液聚合一步制得纳米复合黏合剂,其具有胶体稳定性好、固含量高、粘接性佳、胶膜强度大等优点。

著录项

  • 公开/公告号CN109266266A

    专利类型发明专利

  • 公开/公告日2019-01-25

    原文格式PDF

  • 申请/专利号CN201811080302.9

  • 申请日2018-09-17

  • 分类号C09J151/08(20060101);C09J11/04(20060101);C08F291/12(20060101);C08F220/18(20060101);C08F220/14(20060101);C08F220/20(20060101);C08F212/08(20060101);C08F220/06(20060101);C08F222/02(20060101);C08F220/32(20060101);C08G18/42(20060101);C08G18/48(20060101);C08G18/63(20060101);C08G18/67(20060101);C08G18/75(20060101);C08G18/73(20060101);C08G18/76(20060101);C08F2/28(20060101);

  • 代理机构33201 杭州天正专利事务所有限公司;

  • 代理人黄美娟;俞慧

  • 地址 310018 浙江省杭州市下沙高教园区2号街928号

  • 入库时间 2023-06-17 06:42:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-06-19

    授权

    授权

  • 2019-02-26

    实质审查的生效 IPC(主分类):C09J151/08 申请日:20180917

    实质审查的生效

  • 2019-01-25

    公开

    公开

说明书

(一)技术领域

本发明涉及一种水性聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂的制备方法。

(二)背景技术

黏合剂种类繁多,其中聚丙烯酸酯类黏合剂具有配方简单、粘接范围广、耐候性好、成本低等特点,已被广泛用于塑料薄膜、织物、金属箔片和纸张的粘接。与溶剂型聚丙烯酸酯黏合剂相比,水性聚丙烯酸酯类黏合剂具有绿色环保、固含量高、成本低等特点,受到人们的广泛关注。目前,水性聚丙烯酸酯黏合剂仍存在粘结性、胶膜强度、耐水性等性能不如溶剂型聚丙烯酸酯黏合剂的缺陷【Langmuir 2011,27,3878–3888.】。因此常使用聚氨酯树脂、环氧树脂或金属螯合物等改性剂,来提升聚丙烯酸酯黏合剂的成膜性、柔韧性、内聚力、粘接强度、耐热、耐水等性能。

由聚酯或聚醚二(多)元醇与二(多)异氰酸酯反应而成的聚氨酯树脂在分子结构上可设计性强,具有成膜性好、柔韧性佳、粘附力强、耐磨等优点。将聚氨酯与聚丙烯酸酯复合,利用两者各自的特点,能制备兼具高粘接性、高剥离强度、良好柔韧性的聚丙烯酸酯/聚氨酯复合黏合剂。通过不同黏合剂乳液的简单混合虽能方便地制备共混型复合黏合剂,但由于两类聚合物相容性不佳,往往难以充分发挥两类聚合物的协同效应,使得共混型黏合剂的粘结性能不如原位聚合直接合成的纳米复合黏合剂【Journal ofAppliedPolymerScience 2000,78,67-80;Industrial&Engineering Chemical Research 2010,49,7303–7312;European PolymerJournal 2017,87,300–307.】。已有文献报道,在接枝型聚丙烯酸酯/聚氨酯复合黏合剂中,聚丙烯酸酯和聚氨酯以化学键链接,两组分相容性好,能显著提升黏合剂的综合粘接性能【European Polymer Journal 2017,87,300–307.】。

细乳液聚合体系是以单体液滴为分散相,水为连续相的非均相聚合体系。细乳液聚合以单体液滴成核方式形成聚合物粒子,因此液滴相既是单体的储存场所,又是聚合场所。与乳液聚合体系相比,细乳液聚合体系因其独特的单体液滴成核机理,更适合制备多组分复合的纳米材料。将不同聚合机理的单体同时引入细乳液体系的液滴相,再通过同时进行的不同类型的聚合反应,比如同时进行自由基聚合和聚加成反应,能方便地制备聚合物-聚合物复合的纳米粒子【Advances in Colloid and Interface Science 2014,211,47-62.】。Bourgeat-Lami等人在细乳液聚合体系中,通过NCO封端的反应性聚氨酯预聚物、甲基丙烯酸2-羟乙酯、丙烯酸丁酯和甲基丙烯酸甲酯等单体同时进行的聚加成反应和自由基聚合反应,制得接枝型的聚丙烯酸酯/聚氨酯纳米复合黏合剂,并对黏合剂的粘接性能及胶膜的机械性能进行了系统的评估【Macromolecules 2011,44,2632-2642;Macromolecules2011,44,2643-2652.】。Asua等人利用类似的方法合成了一系列接枝型聚丙烯酸酯/聚氨酯纳米复合黏合剂,并系统研究了合成条件对聚丙烯酸酯/聚氨酯纳米复合黏合剂的聚合物结构的影响,建立了聚合物结构与黏合剂粘接性能的对应关系【MacromolecularReactionEngineering 2013,7,504-514;Macromolecular Reaction Engineering 2011,5,352-360;MacromolecularMaterials andEngineering 2013,298,612-623.Langmuir 2011,27,3878-3888.】。综合而言,接枝型聚丙烯酸酯/聚氨酯纳米复合黏合剂两组分间相容性好,性能互补,能在黏性和内聚力方面达到较好的平衡,获得优异的粘接性能。

随着人们对黏合剂性能要求的不断提升,利用无机粒子来进一步增强黏合剂性能的方法日益受到关注。例如,Khan等人以四氢呋喃为溶剂,实现了聚醋酸乙烯酯和石墨烯纳米片的复合,制得粘接强度和韧性均较好的纳米复合黏合剂【ACSAppliedMaterials&Interfaces 2013,5,1423-1428.】。Tomovska等人则采用MoS2纳米片来增强聚丙烯酸酯/聚氨酯纳米黏合剂,结果显示在一定的用量范围内,添加无机纳米填料能提升黏合剂的粘接性能和胶膜的机械性能【ACS>

基于上述分析,本发明提出在水基细乳液聚合体系下,将乙烯基官能化的SiO2纳米颗粒引入丙烯酸酯、含羟基的丙烯酸酯、聚醚或聚酯二元醇、异氰酸酯等单体组成的液滴中,通过同时进行的聚加成反应和自由基聚合反应,原位实现聚丙烯酸酯、聚氨酯和SiO2粒子间的化学复合,一步合成接枝型聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂。

(三)发明内容

本发明提供了一种水性聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂的制备方法,通过水基细乳液聚合一步制得接枝型聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂,产品具有胶体稳定性好、固含量高、粘接性佳和胶膜强度大等优点。

为实现上述发明目的,本文采用的技术方案是:

一种制备水性聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂的方法,所述的方法包括以下步骤:

(1)将水溶性乳化剂溶于去离子水中,得到乳化剂水溶液,其中水溶性乳化剂的质量用量为去离子水质量用量的0.01%~10%,用pH调节剂将乳化剂溶液的pH值调节到6~10;所述水溶性乳化剂,选自下列至少一种:阴离子型乳化剂、阳离子型乳化剂、两性乳化剂、非离子型乳化剂;所述的pH调节剂,选自下列至少一种:磷酸二氢盐及其水合物、磷酸氢二盐及其水合物、柠檬酸钠、硼砂、氢氧化钠、碳酸盐及其水合物、碳酸氢盐、氨水;

(2)将表面乙烯基改性的SiO2纳米颗粒均匀分散于部分疏水乙烯基单体中,再加入剩余部分疏水乙烯基单体、极性乙烯基单体、共稳定剂、二异氰酸酯单体和二元醇预聚物,得到SiO2纳米颗粒的单体分散液,其中表面乙烯基改性的SiO2纳米颗粒的质量用量为疏水乙烯基单体总质量用量的0.1%~10%,共稳定剂的质量用量为疏水乙烯基单体和极性乙烯基单体总质量用量的3%~12%,二异氰酸酯单体和二元醇预聚物的总质量用量为疏水乙烯基单体质量用量的0.5%~20%,极性乙烯基单体的质量用量为疏水乙烯基单体总质量用量的0.5%~15%,所述的极性乙烯基单体包括含羟基的乙烯基单体,所述含羟基的乙烯基单体的质量用量为极性乙烯基单体总质量用量的20%~100%;二异氰酸酯单体含有的NCO基团与二元醇预聚物和含羟基的乙烯基单体含有的羟基的摩尔比为0.25~3.0:1;

所述疏水乙烯基单体为式(I)所示的丙烯酸酯类化合物或式(I)所示的丙烯酸酯类化合物与苯乙烯的混合物;

式(I)中,R1为H或CH3;R2为C1~C20的脂肪直链或支链烷基或-(CH2)3-Si(OCH3)3

所述极性乙烯基单体为式(II)所示的丙烯酸羟烷基酯类化合物或式(II)所示的丙烯酸羟烷基酯类化合物与下列至少一种极性单体的混合物:甲基丙烯酸缩水甘油酯、丙烯酸、甲基丙烯酸、衣康酸;

式(II)中,R3为H或CH3;R4为C1~C4的羟烷基;

所述二异氰酸酯单体选自下列至少一种:芳香族二异氰酸酯、直链脂肪族二异氰酸酯、环脂肪族二异氰酸酯;

所述二元醇预聚物选自下列至少一种:聚酯二元醇、聚醚二元醇;所述二元醇预聚物的数均分子量范围为200~5000g·mol-1

所述共稳定剂选自下列至少一种:C14~C22的脂肪直链或支链烷烃、C14~C22的脂肪醇、甲基丙烯酸C12~C22烷基酯、丙烯酸C12~C22烷基酯;

(3)将步骤(2)得到的SiO2纳米颗粒的单体分散液加到步骤(1)得到的乳化剂水溶液中,其中SiO2纳米颗粒的单体分散液的质量用量为制备乳化剂水溶液所需去离子水质量用量的10%~50%,搅拌预乳化得到粗乳液;再将装有粗乳液的容器置于冰水浴中,在25W~900W的功率下超声处理0.5min~60min,制得单体细乳液;

(4)将单体细乳液置于反应器中,通氮除氧,边搅拌边升温至35℃~95℃,并在氮气保护下恒温聚合反应1h~48h,制得聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂乳液;

并且,通过下列方式a或方式b加入引发剂:

方式a:步骤(2)中,将油溶性的引发剂加入到SiO2纳米颗粒的单体分散液中,其中油溶性引发剂的质量用量为乙烯基单体A总质量用量的0.05%~5%;

方式b:步骤(4)中,将水溶性引发剂直接添加到单体细乳液中,其中水溶性引发剂的质量用量为乙烯基单体A总质量用量的0.05%~5%;

若共稳定剂中不含甲基丙烯酸C12~C22烷基酯和/或丙烯酸C12~C22烷基酯,则所述的乙烯基单体A由疏水乙烯基单体和极性乙烯基单体组成;

若共稳定剂中含有甲基丙烯酸C12~C22烷基酯和/或丙烯酸C12~C22烷基酯,则所述的乙烯基单体A由疏水乙烯基单体和极性乙烯基单体以及共稳定剂中的甲基丙烯酸C12~C22烷基酯和/或丙烯酸C12~C22烷基酯组成。

本发明步骤(1)中,所述阴离子型乳化剂,选自下列至少一种:烷基磺酸盐乳化剂R5-SO3M,其中R5为C10~C20的脂肪链,M为Na+或K+;烷基苯磺酸盐乳化剂R6-C6H4-SO3M,其中R6为C10~C18的脂肪链,M为Na+或K+;烷基硫酸盐乳化剂R7-OSO3M,其中R7为C10~C20的脂肪链,M为Na+或K+;烷基羧酸盐乳化剂R8-COOM,其中R8为C9~C21的脂肪链,M为Na+或K+

本发明步骤(1)中,所述阳离子型乳化剂,选自下列至少一种:烷基三甲基卤化铵乳化剂R9N+(CH3)3X-,其中R9为C12~C20的脂肪链,X为Cl或Br。

本发明步骤(1)中,所述非离子型乳化剂,选自下列至少一种:烷基酚聚氧乙烯醚,其中烷基含碳原子为8~18,乙氧基重复单元数为6~15;高碳脂肪醇聚氧乙烯醚,其中高碳脂肪醇含碳原子数12~18,乙氧基重复单元数为6~15;脂肪酸聚氧乙烯酯,其中脂肪酸含碳原子数12~18,乙氧基重复单元数为6~15。

本发明步骤(1)中,所述两性乳化剂,选自下列至少一种:十二烷基氨基丙酸;羧酸基甜菜碱R10N+(CH3)2CH2COO-,其中R10为C12~C18的脂肪链;磺酸基甜菜碱R11N+(CH3)2CH2CH2SO3-或R12N+(CH3)2CH2CH2CH2SO3-,其中R11和R12各自独立为C12~C18的脂肪链;十八烷基二羟乙基氧化胺。

本发明步骤(1)中,乳化剂的质量用量优选为去离子水质量用量的0.5%~6.0%。

本发明步骤(1)中,综合考虑反应体系的稳定性和二异氰酸酯单体的稳定性,乳化剂水溶液的pH值优选调节至6~9范围内。

本发明步骤(2)中,所述疏水改性后的SiO2纳米颗粒的尺寸范围为10nm~50nm,其修饰程度用偶联密度表述,偶联密度的定义为每单位平方米的SiO2颗粒表面修饰的疏水改性剂的摩尔量,单位为μmol·(m2SiO2)-1,其中偶联密度的范围为0.5μmol·(m2SiO2)-1~4.0μmol·(m2SiO2)-1。所述疏水改性后的SiO2纳米颗粒可通过现有方法制备,例如:(1)用法合成粒径在10nm~50nm的SiO2纳米颗粒或直接购买市售该粒径范围内的SiO2纳米颗粒;(2)根据文献报道的方法对SiO2纳米颗粒进行疏水改性【Colloid>

本发明步骤(2)中,所述芳香族二异氰酸酯单体选自下列至少一种:2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、对苯二异氰酸酯、二甲基联苯二异氰酸酯、多亚甲基多苯基二异氰酸酯、苯二亚甲基二异氰酸酯、四甲基间苯二亚甲基二异氰酸酯。所述直链脂肪族二异氰酸酯单体选自下列至少一种:1,6-六亚甲基二异氰酸酯、三甲基-1,6-六亚甲基二异氰酸酯。所述环脂肪族二异氰酸酯单体选自下列至少一种:异佛尔酮二异氰酸酯、1,4-环己烷二异氰酸酯、二环已基甲烷二异氰酸酯、甲基环已基二异氰酸酯。进一步,所述的二异氰酸酯单体优选为下列至少一种:异佛尔酮二异氰酸酯、1,4-环己烷二异氰酸酯、1,6-六亚甲基二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯。

本发明步骤(2)中,所述聚酯二元醇选自下列至少一种:聚己二酸乙二醇酯二醇、聚己二酸-缩二乙二醇酯二醇、聚己二酸-1,4-丁二醇酯二醇、聚己二酸-1,6-己二醇酯二醇、聚己二酸乙二醇-1,4-丁二醇酯二醇、聚己二酸间苯二甲酸丁二醇酯二醇、聚邻苯二甲酸一缩二乙二醇酯二醇、聚邻苯二甲酸新戊二醇酯二醇、聚己内脂二醇、聚碳酸酯二醇。所述聚醚二元醇选自下列至少一种:聚氧化乙烯二醇、聚氧化丙烯二醇、聚四氢呋喃二醇、苯乙烯-丙烯腈接枝聚醚二元醇、聚三亚甲基醚二醇。进一步,所述的二元醇预聚物优选为下列至少一种:聚己二酸乙二醇酯二醇、聚己内脂二醇、聚氧化乙烯二醇、聚四氢呋喃二醇,其中二元醇预聚物的分子量优选为500~3000g·mol-1

本发明步骤(2)中,综合考虑黏合剂的粘接性能和胶膜强度,所述疏水乙烯基单体化合物优选为下列至少一种或者苯乙烯和下列至少一种的混合物:丙烯酸异辛酯、丙烯酸丁酯、丙烯酸甲酯、甲基丙烯酸甲酯。式(II)所示的丙烯酸羟烷基酯类化合物优选为下列至少一种:甲基丙烯酸2-羟乙酯、丙烯酸2-羟乙酯、甲基丙烯酸2-羟丙酯、丙烯酸2-羟丙酯。

本发明步骤(2)中,考虑到液滴的稳定性,共稳定剂优选为下列至少一种:C16~C22的脂肪直链或支链烷烃、丙烯酸C12~C22烷基酯、甲基丙烯酸C12~C22烷基酯,更优选为正十六烷、丙烯酸十八烷基酯或甲基丙烯酸十八烷基酯。

本发明步骤(2)中,所述油溶性引发剂选自下列至少一种:偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、过氧化二苯甲酰、过氧化二月桂酰。

本发明步骤(3)中,考虑到生产效率,SiO2纳米颗粒的单体分散液的质量用量优选为制备乳化剂水溶液所需去离子水质量用量的20%~50%。

本发明步骤(3)中,为防止超声过程中单体细乳液过热,将装粗乳液的容器置于冰水浴中进行超声处理。超声功率优选60W~500W,超声时间优选0.5min~20min。

本发明步骤(4)中,所述的水溶性引发剂选自下列至少一种:2,2’-偶氮二丁基脒二盐酸盐、过硫酸盐、氧化剂与还原剂构成的氧化还原体系;所述还原剂为亚硫酸盐、硫代硫酸盐、亚硫酸氢盐、草酸、抗坏血酸盐、叔胺醇或伯胺类;所述的氧化剂为过氧化氢、过硫酸盐或氢过氧化物。所述的过硫酸盐一般为过硫酸铵或过硫酸钾。

本发明步骤(4)中,考虑到引发剂的引发温度,聚合反应温度优选为40℃~85℃,反应时间优选1h~24h。

关于本发明,在细乳液的单体液滴内,二异氰酸酯单体能与含羟基乙烯基单体和二元醇预聚物反应生成含乙烯基端基的聚氨酯预聚物,新形成的聚氨酯预聚物能参与与乙烯基单体的共聚合反应,形成具有接枝、交联等结构的复杂聚合物网络。在聚合反应过程中,乙烯基修饰的SiO2纳米颗粒经表面的接枝反应接入聚合物网络,从而形成聚合物/SiO2纳米复合黏合剂。发明人经深入研究发现,乙烯基单体/二异氰酸酯单体/二元醇预聚物的组合及配比、共稳定剂用量、体系pH值和SiO2用量等反应参数均会对细乳液聚合体系的稳定性、所制纳米复合黏合剂粒子的尺寸及其分布、纳米复合黏合剂的微结构和粘接性能等方面产生重要影响。

具体而言,引入二异氰酸酯单体、二元醇预聚物以及SiO2粒子后,单体相的黏度变大,增加了超声分散的难度,因此会引起纳米复合黏合剂粒子的尺寸变大。向细乳液的单体液滴引入一定量的超疏水化合物能有效抑制单体液滴间的物质传递,提高单体液滴的稳定性。体系的pH过高或过低都会导致体系稳定性下降,因此需添加一定量pH调节剂,将单体细乳液的pH值调至近中性或弱碱性。

乙烯基官能化的聚氨酯预聚物通过接枝反应参与聚合物网络的形成,提高了聚氨酯组分与聚丙烯酸酯组分间的相容性,避免胶膜内两组分发生相分离,能获得更好的粘接性能。此外,随乙烯基官能化的聚氨酯组分的增加,纳米复合黏合剂的凝胶率增加,交联程度增加。因此,随聚氨酯组成的增加,黏合剂涂层的内聚力增加,胶膜的剪切强度增加,但聚氨酯组分含量过高,会导致复合黏合剂的黏性变差,剥离强度下降。在一定范围内,随纳米复合黏合剂中SiO2组分含量的增加,胶膜的剪切强度和剥离强度均有一定程度的增加,但SiO2组分含量过高会导致胶膜的综合粘接性能下降。

本发明创新性地提出利用水基细乳液聚合技术,在表面乙烯基修饰的SiO2纳米颗粒存在下,通过同时进行的聚加成反应和自由基聚合反应,合成接枝型聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂。本发明的工艺与传统的细乳液聚合工艺基本相同,只需将表面乙烯基改性的SiO2无机粒子预分散于疏水乙烯基单体中,再与含二异氰酸酯单体、二元醇预聚物的乙烯基单体溶液混合,然后经常规的预乳化、超声、聚合等工序即可制得纳米复合黏合剂,并没有显著增加制备工艺的复杂程度。在本发明中,二异氰酸酯单体、二元醇预聚物和含羟基的乙烯基单体在单体液滴内原位形成乙烯基官能化的聚氨酯预聚物,与直接添加乙烯基官能化的聚氨酯预聚物到单体相的技术相比,采用本发明技术时,不仅能简化制备工艺,而且聚合体系的稳定性更好,形成的聚合物网络结构更均匀,复合黏合剂的综合粘接性能更好。通过乙烯基修饰的SiO2无机粒子表面的接枝反应,将SiO2无机粒子化学链接到黏合剂的聚合物网络中,提升了纳米复合黏合剂的综合粘接性能。此外,细乳液聚合技术具有实施简单,胶体稳定区间大,产品重现性好,适用单体种类丰富,能用于制备各类有机无机复合纳米粒子等优点均能在本发明中很好地体现。

(四)具体实施方式

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不限于此:

实施例1:

分别称取0.3g阴离子乳化剂十二烷基硫酸钠和0.5g的pH调节剂NaHCO3,溶于55g水中,得到pH值为8.4的乳化剂水溶液。

将0.1g乙烯基修饰的SiO2纳米颗粒【数均粒径为15nm,偶联密度为3.2μmol·(m2SiO2)-1】预分散于6g丙烯酸异辛酯,再与4g丙烯酸异辛酯、0.2g甲基丙烯酸甲酯、0.4g甲基丙烯酸、0.88g丙烯酸2-羟乙酯、1.08g聚己内酯二醇(数均分子量为1200g·mol-1)、0.45g异佛尔酮二异氰酸酯、0.5g丙烯酸十八烷基酯和0.34g正十六烷组成的溶液混合,得到SiO2单体分散液。

将SiO2单体分散液加到乳化剂水溶液中,经预乳化得到粗乳液,再将装有粗乳液的容器置于冰水浴中,在250W的功率下超声处理20min,制得稳定的单体细乳液;随后向单体细乳液添加0.47g水溶性引发剂过硫酸钾,通氮除氧后,将反应温度调至70℃,并在氮气保护下反应8h,制得聚丙烯酸酯/聚氨酯/SiO2纳米复合黏合剂乳液。

乳液具有高的胶体稳定性,在5000rpm条件下离心15min后无沉淀生成。用动态光散射纳米粒度仪测得纳米复合黏合剂粒子的Z均粒径为200nm,多分散指数(PDI)为0.124。

将乳液的固含量调至20wt%后,取3g乳液,加入1.5g固含量为3.0wt%的PTE增稠剂(佛山市三水大唐树脂有限公司),制得黏合剂工作液。将聚对苯二甲酸乙二醇酯(PET)薄膜裁剪成20cm×26cm样片,置于等离子体处理设备(HD-1B,常州中科常泰等离子体科技有限公司)中,在氧气气氛和200W的功率下,处理5min,制得PET亲水膜。将PET亲水膜放在自动涂覆机(K control Coater model 202,R K Print Coat Instruments Ltd)上,选取3号滚轮,在100mm·min-1的条件下涂覆黏合剂工作液,随后在100℃条件下烘焙2min。将施胶后的PET膜裁剪成2.5cm×26cm的条形样品,进行面积为2.5cm×25cm的平角对接。用万能拉伸机测定胶膜的剪切强度,结果显示在100mm·min-1的拉伸速率下,胶膜的剪切强度为25.6MPa。将施胶后的PET膜裁剪成2.5cm×12.5cm条形样品,保持胶带的有胶一侧向外,制成周长为98mm的标准环形样品,与GB/T>-1向上拉,测得该样品的初粘力为0.64N。将PET胶膜裁剪成2.5cm×26cm的条形样品,在拉伸速率为300mm·min-1的条件下进行T-剥离强度测试,测得该样品的剥离强度为24.3N·m-1

实施例2:

分别称取0.7g阳离子型乳化剂十八烷基三甲基溴化铵、0.16g二水合磷酸二氢钠和0.18g二水合磷酸氢二钠,溶于70g水中,得到pH值为6.8的乳化剂水溶液。

将0.3g乙烯基修饰的SiO2纳米颗粒【数均粒径为20nm,偶联密度为2.5μmol·(m2SiO2)-1】预分散于12g丙烯酸丁酯中,再与12g丙烯酸丁酯、1.6g苯乙烯、0.06g丙烯酸、0.7g甲基丙烯酸2-羟丙酯、3.48g聚己二酸乙二醇酯二醇(数均分子量为2100g·mol-1)、1.15g的1,4-环己烷二异氰酸酯、1.12g丙烯酸十八烷基酯组成的溶液混合,得到SiO2单体分散液。

将SiO2单体分散液加到乳化剂水溶液中,经预乳化得到粗乳液,再将装有粗乳液的容器置于冰水浴中,在300W的功率下超声处理15min,制得稳定的单体细乳液;随后向单体细乳液添加0.18g水溶性引发剂2,2’-偶氮二丁基脒二盐酸盐,通氮除氧后,将反应温度调至65℃,并在氮气保护下反应20h,制得聚丙烯酸酯/聚氨酯/SiO2纳米复合胶黏剂乳液。

乳液具有高的胶体稳定性,在5000rpm条件下离心15min后无沉淀生成。用动态光散射纳米粒度仪测得纳米复合黏合剂粒子的Z均粒径为280nm,PDI为0.118。采用与实施例1相同的施胶工艺和测试方法,该胶膜的剪切强度为28.4MPa,样品的初粘力和剥离强度分别为0.43N和18.3N·m-1

实施例3:

称取2.4g非离子型乳化剂OP-10和0.67g的pH调节剂柠檬酸钠,溶于48g水中,得到pH值为7.8的乳化剂水溶液。

将0.48g SiO2纳米颗粒【数均粒径为30nm,偶联密度为1.9μmol·(m2SiO2)-1】预分散于10g丙烯酸异辛酯中,再与2.5g丙烯酸异辛酯、0.5g苯乙烯、0.31g甲基丙烯酸2-羟乙酯、0.73g衣康酸、0.7g聚氧化乙烯二醇(数均分子量为1296g·mol-1)、0.35g>2单体分散液。

随后向SiO2单体分散液添加0.33g过氧化二苯甲酰,经预乳化得到粗乳液,再将装有粗乳液的容器置于冰水浴中,在450W的功率下超声处理5min,制得稳定的单体细乳液;通氮除氧后,将反应温度调至80℃,并在氮气保护下反应8h,制得聚丙烯酸酯/聚氨酯/SiO2纳米复合胶黏剂乳液。

乳液具有高的胶体稳定性,在5000rpm条件下离心15min后无沉淀生成。用动态光散射纳米粒度仪测得纳米复合黏合剂的Z均粒径为260nm,PDI为0.210。采用与实施例1相同的施胶工艺和测试方法,该胶膜的剪切强度为20.5MPa,样品的初粘力和剥离强度分别为0.58N和21.2N·m-1

实施例4:

分别称取1.44g两性乳化剂十二烷基二甲基羟丙基磺基甜菜碱、0.2g二水合磷酸二氢钠和0.96g二水合磷酸氢二钠构成的pH调节剂,溶于48g水中,得到pH值为7.4的乳化剂水溶液。

将1g SiO2纳米颗粒【数均粒径为25nm,偶联密度为2.2μmol·(m2SiO2)-1】预分散于10g丙烯酸异辛酯,再与0.8g丙烯酸甲酯、2g甲基丙烯酸甲酯、0.33g甲基丙烯酸缩水甘油酯、0.25g甲基丙烯酸2-羟丙酯、0.8g聚四氢呋喃二醇(数均分子量为1000g·mol-1)、0.64g的4,4’-二苯基甲烷二异氰酸酯、0.7g甲基丙烯酸十八烷基酯组成的溶液混合,得到SiO2单体分散液。

将SiO2单体分散液加到乳化剂水溶液中,经预乳化得到粗乳液,再将装有粗乳液的容器置于冰水浴中,在500W的功率下超声处理2min,制得稳定的单体细乳液;随后向单体细乳液添加0.094g过硫酸铵和0.101g抗坏血酸钠构成的氧化还原引发剂,通氮除氧后,将反应温度调至40℃,并在氮气保护下反应3h,制得聚丙烯酸酯/聚氨酯/SiO2纳米复合胶黏剂乳液。

乳液具有高的胶体稳定性,在5000rpm条件下离心15min后无沉淀生成。用动态光散射纳米粒度仪测得纳米复合黏合剂的Z均粒径为190nm,多分散指数(PDI)为0.106。采用与实施例1相同的施胶工艺和测试方法,该胶膜的剪切强度为22.6MPa,样品的初粘力和剥离强度分别为0.48N和15.8N·m-1

本发明的上述实施例是对本发明的说明而不能限制本发明,在于本发明的权利要求书相当的含义和范围内的任何变化,都应认为是包括在权利要求书的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号