首页> 外文OA文献 >Multi-parameter estimation in glacier models with adjoint and algorithmic differentiation
【2h】

Multi-parameter estimation in glacier models with adjoint and algorithmic differentiation

机译:具有伴随和算法微分的冰川模型中的多参数估计

摘要

The cryosphere is comprised of about 33 million km³ of ice, which corresponds to 70 meters of global mean sea level equivalent [30]. Simulating continental ice masses, such as the Antarctic or Greenland Ice Sheets, requires computational models capturing abrupt changes in ice sheet dynamics, which are still poorly understood. Input parameters, such as basal drag and topography, have large effects on the applied stress and flow fields but whose direct observation is very difficult, if not impossible. Computational methods are designed to aid in the development of ice sheet models, ideally identifying the relative importance of each parameter and formulating inverse methods to infer uncertain parameters and thus constrain ice sheet flow. Efficient computation of the tangent linear and adjoint models give researchers easy access to model derivatives. The adjoint and tangent linear models enable efficient global sensitivity computation and parameter optimization on unknown or uncertain ice sheet properties, information used to identify model properties having large effects on sea-level. The adjoint equations are not always easily obtained analytically and often require discretizing additional PDE's. Algorithmic differentiation (AD) decomposes the model into a composite of elementary operations (+, -, *, /, etc ... ) and a source-to-source transformation generates code for the Jacobian and its transpose for each operations. Derivatives computed using the tangent linear and adjoint models, with code generated by AD, are applied to parameter estimation and sensitivity analysis of simple glacier models. AD is applied to two examples, equations describing changes in borehole temperature over time and instantaneous ice velocities. Borehole model predictions and data are compared to infer paleotemperatures, geothermal heat flux, and physical ice properties. Inversion using adjoint methods and AD increases the control space, allowing inference for all uncertain parameters. The sensitivities of ice velocities to basal friction and basal topography are compared. The basal topography has significantly larger sensitivities, suggesting it plays a larger role in flow dynamics and future work should seek to invert for this parameter.
机译:冰冻圈包含约3300万立方厘米的冰,相当于70米的全球平均海平面当量[30]。模拟大陆冰团,例如南极或格陵兰冰原,需要计算模型来捕捉冰原动力学的突然变化,但人们对此仍然知之甚少。输入参数(例如基础阻力和地形)对所施加的应力和流场有很大影响,但即使不是不可能,也很难直接观察。设计计算方法以帮助开发冰盖模型,理想地确定每个参数的相对重要性,并制定反演方法以推断不确定的参数,从而限制冰盖流量。切线和伴随模型的有效计算使研究人员可以轻松访问模型导数。伴随和切线线性模型可以对未知或不确定的冰盖特性进行有效的全局敏感性计算和参数优化,这些信息用于识别对海平面有较大影响的模型特性。伴随方程并不总是易于通过解析获得,并且经常需要离散化其他PDE。算法微分(AD)将模型分解为基本运算(+,-,*,/等)的组合,并且源到源转换会为Jacobian及其每个运算的转置生成代码。使用正切线性模型和伴随模型计算的导数,以及由AD生成的代码,可用于简单冰川模型的参数估计和敏感性分析。 AD被应用于两个示例,这些方程描述了井眼温度随时间的变化和瞬时冰速。将钻孔模型的预测和数据与推断的古温度,地热通量和物理冰性质进行比较。使用伴随方法和AD进行反演会增加控制空间,从而可以推断所有不确定参数。比较了冰速度对基础摩擦和基础地形的敏感性。基础形貌具有显着更大的敏感性,表明其在流动动力学中起着更大的作用,未来的工作应寻求对该参数进行反演。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号