首页> 外文OA文献 >Three-dimensional finite element analysis of a complex excavation on the MIT campus
【2h】

Three-dimensional finite element analysis of a complex excavation on the MIT campus

机译:麻省理工学院校园复杂开挖的三维有限元分析

摘要

Large excavation projects in urban areas are complex geotechnical problems when it is necessary not only to ensure the stability of the excavation and support system, but also to minimize impacts on adjacent buildings and structures. These problems require more comprehensive analyses that represent the four-dimensional (space-time) processes associated with performance of the excavation support system. The goal of this research is to evaluate the use of three-dimensional finite element analysis in Plaxis 3D 2011 to simulate ground deformations, pore pressures, and diaphragm wall deflections for the very well instrumented excavation for the basement of the Stata Center on the MIT campus. The model predictions are compared with the field measurements that include vertical inclinometers, settlement points, magnet extensometers, and piezometers. The Ray and Maria Stata Center building at MIT was designed with a basement for underground parking requiring a 42 ft deep excavation. The excavation was supported by a perimeter diaphragm wall that formed part of the permanent structure and extended 45 ft into a deep layer of underlying Boston Blue clay. The diaphragm wall was braced by a combination of prestressed tieback anchors, preloaded raker and corner bracing support elements. The control of ground movements was a critical aspect of the subsurface design due to the close proximity of the excavation to the historical MIT Alumni swimming pool building. This study has shown that the three-dimensional finite element analysis can be effectively used for such a complex excavation project and is capable to achieve reasonably consistent predictions of wall deflections, ground movements, and pore pressures for tieback, cornerbraced, and raker supported diaphragm walls despite of simplifications in the base case model. The simulation has also captured the three-dimensional effects causing the induced ground deformations to be smaller near the corner areas. Further numerical analyses are now needed to assess the importance of soil constitutive behavior on the observed field performance of the support system for the Stata Center basement.
机译:在城市地区进行大型挖掘工程时,不仅需要确保挖掘和支撑系统的稳定性,而且还必须尽量减少对相邻建筑物和结构的影响,这是复杂的岩土工程问题。这些问题需要更全面的分析,这些分析代表了与挖掘支持系统的性能相关的三维(时空)过程。这项研究的目的是评估在Plaxis 3D 2011中使用三维有限元分析来模拟地面变形,孔隙压力和隔板壁挠度,以便对MIT校园Stata Center地下室的仪器进行很好的挖掘。将模型预测与包括垂直倾角仪,沉降点,磁体引伸计和压电计在内的现场测量结果进行比较。麻省理工学院的Ray and Maria Stata中心大楼的设计地下室用于地下停车场,需要42英尺深的挖掘。该开挖由形成永久性结构一部分的周向隔板壁支撑,该隔板壁延伸了45英尺,延伸至下面的波士顿蓝粘土的深层。隔膜墙由预应力的后背锚,预加载的耙子和角撑支撑元件组合而成。由于挖掘工作与历史悠久的麻省理工学院校友游泳池建筑非常接近,因此地面运动的控制是地下设计的关键方面。这项研究表明,三维有限元分析可以有效地用于此类复杂的开挖项目,并且能够对绑扎,角撑和倾斜耙支撑的隔板墙的壁弯,地面运动和孔隙压力进行合理一致的预测尽管基本案例模型有所简化。该模拟还捕获了三维效应,这些三维效应导致在拐角区域附近引起的地面变形变小。现在需要进一步的数值分析,以评估土壤本构行为对Stata Center地下室支撑系统实测现场性能的重要性。

著录项

  • 作者

    Orazalin Zhandos Y;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号