首页> 外文OA文献 >First-principles modeling of thermal stability and morphology control of cathode materials in Li-ion batteries
【2h】

First-principles modeling of thermal stability and morphology control of cathode materials in Li-ion batteries

机译:锂离子电池正极材料热稳定性和形貌控制的第一性原理建模

摘要

We compute the energy of a large number of oxidation reactions of 3d transition metal oxides using the generalized gradient approximation (GGA) to density functional theory and GGA+ U method. Two substantial contributions to the error in GGA oxidation energies are identified. The first contribution originates from the overbinding of GGA in the O₂ molecule and is only present when the oxidant is O₂. The second error occurs in all oxidation reactions and is related to the correlation error in 3d orbitals in GGA. The constant error in the oxidation energy from the O₂ binding error can be corrected by fitting the formation enthalpy of simple non-transition metal oxides. Removal of the 02 binding error makes it possible to address the correlation effects in 3d transition metal oxides with the GGA+U method. Building on the previous success of obtaining accurate oxidation energies from first-principles calculations, we present a new method for predicting the thermodynamics of thermal degradation of charged cathode materials for rechargeable Li batteries and demonstrate it on three cathode materials, LixNiO₂, LixCoO₂, and LiMn2O₂. The calculated decomposition heat for the three systems is in good agreement with experiments. The electrolyte can act as a sink for the oxygen released from the cathode. Although oxygen release from the cathode is generally endothermic, its combustion with the electrolyte leads to a highly exothermic reaction, which is the main source of safety problems with lithium batteries. This thesis also studies surface properties and morphology control of olivine structure LiMPO₄ (M=Fe, Mn). The calculated surface energies and surface redox potentials are very anisotropic. With the calculated surface energies, we provide the thermodynamic equilibrium shape of a LiMPO₄ crystal under vacuum. We furthermore establish an ab initio approach to study surface adsorption and Li dissolution in aqueous solutions. We demonstrate for LiFePO₄ that ab initio calculations can be used effectively to investigate the crystal shape dependency on practical solution parameters, such as electric potential E and solution pH. Our first-principles work is helpful in finding a synthesis condition that favors the production of platelet shape LiFePO₄ with large area of reaction active (010) surface.
机译:我们使用密度泛函理论和GGA + U方法的广义梯度近似(GGA),计算了3d过渡金属氧化物的大量氧化反应的能量。确定了GGA氧化能误差的两个重要原因。第一个贡献来自于O 2分子中GGA的过度结合,并且仅在氧化剂为O 2时才存在。第二个误差发生在所有氧化反应中,并且与GGA中3d轨道的相关误差有关。由O 2键合误差引起的氧化能恒定误差可以通过拟合简单的非过渡金属氧化物的形成焓来校正。消除O 2结合错误使得可以使用GGA + U方法解决3d过渡金属氧化物中的相关效应。基于先前从第一性原理计算获得准确氧化能的成功经验,我们提出了一种预测可充电锂电池充电正极材料热降解热力学的新方法,并在三种正极材料LixNiO 2,LixCoO 2和LiMn2O 2上进行了演示。 。计算出的三个系统的分解热与实验非常吻合。电解质可以充当从阴极释放的氧气的吸收器。尽管从阴极释放的氧气通常是吸热的,但其与电解质的燃烧会导致高度放热的反应,这是锂电池安全问题的主要根源。本文还研究了橄榄石结构LiMPO 3(M = Fe,Mn)的表面性质和形貌控制。计算出的表面能和表面氧化还原电势非常各向异性。利用计算出的表面能,我们提供了LiMPO 3晶体在真空下的热力学平衡形状。我们还建立了一个从头开始的方法来研究表面吸附和Li在水溶液中的溶解。对于LiFePO 3,我们证明了从头算可以有效地研究晶体形状对实际溶液参数(例如电势E和溶液pH)的依赖性。我们的第一性原理工作有助于找到有利于生产具有大面积反应活性表面(010)的片状LiFePO 3的合成条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号