首页> 外文OA文献 >Techniques of seismic retrofitting for concrete structures
【2h】

Techniques of seismic retrofitting for concrete structures

机译:混凝土结构抗震加固技术

摘要

Recent earthquakes, starting with the 1971 San Fernando Earthquake in California, left major destructions, damaged the infrastructure, and raised questions about the vulnerability and design practice of structures, especially concrete structures. Design codes have being updated to include seismic previsions but structures build before 1971 have to be retrofitted. The focus of this paper is concrete structures. Surveys done after earthquakes have shown that the major problem with concrete structures is columns. Pre- 1971 detailing left column with lack of confinement as well as lap-slice in plastic hinge regions creating potential failures in flexure strength and/or ductility, and in shear. Other critical structural elements include, but are not limited to, gravity design frames, footings, shear walls, connections, and beams. There are two major categories of retrofit options for concrete structure; local and global methods. Local methods focus at the element level on a particular member that is deficient and in improving it to perform better. Those methods include adding concrete, steel, or composite to the outside of the member. All three methods are effective but each present some disadvantages: concrete is labor intensive, steel requires heavy construction equipments, and composites have high initial cost. Global methods concentrate at the structure level and retrofit to obtain a better overall behavior of the entire structure. The different global techniques are addition of shear walls or steel bracings, and base isolation. All three methods are effective. Shear walls are usually an expensive solution but they are flexible in their distribution allowing them to be hidden in the architecture. Steel bracings allow for openings but their connections to the existing structure can be problematic. Finally, base isolation is an option that is becoming increasingly popular and that provides good behavior in earthquake for low to mid high structures. The different systems presented all have some advantages and disadvantages and the option chosen for the retrofit depends on the existing structure requirement. The different system presented can be combined to provide more efficient and more flexible retrofit schemes.
机译:最近的地震始于1971年加利福尼亚的圣费尔南多地震,造成了严重的破坏,破坏了基础设施,并引发了对结构,特别是混凝土结构的脆弱性和设计实践的质疑。设计规范已更新为包括地震预案,但必须对1971年之前建造的结构进行翻新。本文的重点是混凝土结构。地震后进行的调查表明,混凝土结构的主要问题是圆柱。 1971年前,详细介绍了左柱缺乏限制以及塑料铰链区域中的搭接片,从而在弯曲强度和/或延展性以及剪切方面造成了潜在的故障。其他关键的结构元素包括但不限于重力设计框架,基础,剪力墙,连接件和梁。混凝土结构的改造选项主要有两类:本地和全局方法。局部方法将重点放在元素级别上的特定成员上,该成员是有缺陷的,并对其进行改进以使其表现更好。这些方法包括在构件的外部添加混凝土,钢或复合材料。这三种方法都是有效的,但每种方法都存在一些缺点:混凝土是劳动密集型的,钢需要重型建筑设备,而复合材料的初始成本很高。全局方法集中在结构级别并进行改造以获得整个结构的更好的整体行为。不同的全局技术是添加剪力墙或钢支撑以及基础隔离。这三种方法都是有效的。剪力墙通常是一种昂贵的解决方案,但它们的分布灵活,可以将其隐藏在体系结构中。钢支撑允许开口,但是它们与现有结构的连接可能会出现问题。最后,基础隔离是一种越来越普遍的选择,它在地震中为中低层结构提供了良好的性能。所展示的不同系统都具有一定的优点和缺点,并且为改造选择的选项取决于现有的结构要求。可以将提供的不同系统组合在一起,以提供更高效,更灵活的改造方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号