首页> 外文OA文献 >Inverse Monte Carlo simulation of biomolecular conformation and coarse-grained molecular modeling of chondroitin sulfate conformation, titration, and osmotic pressure
【2h】

Inverse Monte Carlo simulation of biomolecular conformation and coarse-grained molecular modeling of chondroitin sulfate conformation, titration, and osmotic pressure

机译:生物分子构象的逆蒙特卡罗模拟和硫酸软骨素构象,滴定和渗透压的粗粒度分子模拟

摘要

The first part of this thesis is concerned with the solution structure determination problem. Whereas many biomacromolecules, such as proteins, can be adequately characterized by a single conformation in solution, numerous other important molecules (e.g., nucleic acids, carbohydrates, and polypeptides) exhibit conformational isomerism and disorder. For these molecules, the term "structure" does not correspond to a single conformation but rather to an ensemble of conformations. Given a molecular model and experimental data, the goal of the structure determination problem is to solve for an ensemble of conformations that is consistent with the data. Traditional computational procedures such as simulated annealing, however, are not guaranteed to generate a unique ensemble. The computed ensemble is often simply dependent on the user-specific protocol employed to generate it. As an alternative, a numerical method for determining the conformational structure of macromolecules is developed and applied to idealized biomacromolecules in solution. The procedure generates unique, maximum entropy conformational ensembles that reproduce thermodynamic properties of the macromolecule (mean energy and heat capacity) in addition to the target experimental data. As an evaluation of its utility in structure determination, the method is applied to a homopolymer and a heteropolymer model of a three-helix bundle protein. It is demonstrated that the procedure performs successfully at various thermodynamic state points, including the ordered globule, disordered globule, and random coil states. In the second part of this thesis, a molecular model is developed and used to investigate the properties of anionic glycosaminoglycan (GAG) molecules. GAGs are critically important to the structure and biomechanical properties of articular cartilage, an avascular tissue that provides a low-friction, protective lining to the ends of contacting bones during join locomotion.
机译:本文的第一部分涉及解决方案结构确定问题。尽管许多生物大分子,例如蛋白质,可以通过溶液中的单一构象来适当地表征,但是许多其他重要的分子(例如,核酸,碳水化合物和多肽)表现出构象异构性和无序性。对于这些分子,术语“结构”不对应于单一构象,而是对应于构象的整体。给定分子模型和实验数据,结构确定问题的目的是解决与数据一致的构象整体。但是,不能保证诸如模拟退火之类的传统计算程序会产生唯一的整体。计算出的集合通常仅取决于生成它所使用的用户特定协议。作为替代方案,开发了一种确定大分子构象结构的数值方法,并将其应用于溶液中理想化的生物大分子。该程序生成独特的,最大熵构象的集合体,除了目标实验数据外,还可以再现大分子的热力学性质(平均能量和热容量)。作为对其在结构确定中的效用的评价,该方法被应用于三螺旋束蛋白的均聚物和杂聚物模型。证明了该程序在各种热力学状态点成功执行,包括有序球状,无序球状和无规卷曲状态。在论文的第二部分,建立了分子模型并用于研究阴离子糖胺聚糖(GAG)分子的性质。 GAG对关节软骨的结构和生物力学特性至关重要,后者是一种无血管组织,在关节运动过程中为接触骨头的末端提供了低摩擦的保护性衬里。

著录项

  • 作者

    Bathe Mark 1975-;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号