首页> 外文OA文献 >Fabrication of a luminescent solar concentrator that minimizes self-absorption losses using inter-chromophore energy transfer
【2h】

Fabrication of a luminescent solar concentrator that minimizes self-absorption losses using inter-chromophore energy transfer

机译:制造发光太阳能聚光器,其使用发色团间能量转移使自吸收损失最小化

摘要

The projected need for carbon-free power during this century is immense. Solar power offers the largest resource base to supply this need, but in light of recent silicon shortages, it is an open question whether silicon photovoltaics can keep pace with demand. The development of economical concentrators could relieve this resource pressure. The luminescent solar concentrator (LSC) is an architecture that collects and concentrates light using the luminescent properties of chromophores embedded in a waveguide. This method of concentration alleviates the need for expensive tracking equipment necessary for optical concentration. Combined with the low cost and flexible fabrication of organic materials, this technology is inherently scalable. A major limitation to LSC efficiency is self-absorption between different chromophores within the waveguide. Finding inspiration from the architecture of phycobilisome antenna complexes, a system of chromophores is developed that minimizes self-absorption through Firster energy transfer. Precise control of intermolecular spacing is achieved through thermal evaporation of small molecule organics. A LSC with a geometric gain of 25 is fabricated that employs this optimized system. External quantum efficiencies of 32% are achieved across nearly half the visible spectrum, with a total power conversion efficiency of 1.6%. Additionally, modeling and theory are presented to highlight places for device improvement. It is shown that a simple path integral successfully captures the dynamics of the LSC.
机译:预计本世纪对无碳电力的需求是巨大的。太阳能为满足这种需求提供了最大的资源基础,但是鉴于最近的硅短缺,硅光伏技术能否跟上需求是一个悬而未决的问题。经济选矿厂的发展可以缓解这种资源压力。发光太阳能集中器(LSC)是一种结构,该结构使用嵌入在波导中的发色团的发光特性来收集和聚集光。这种集中方法减轻了对光学集中所需的昂贵跟踪设备的需求。结合低成本和有机材料的灵活制造,该技术具有固有的可扩展性。 LSC效率的主要限制是波导内不同生色团之间的自吸收。从藻胆体天线复合物的结构中获得启发,开发了一种生色团系统,该系统通过Firster能量转移将自吸收降至最低。分子间距的精确控制是通过小分子有机物的热蒸发来实现的。使用该优化系统制造了几何增益为25的LSC。在近一半的可见光谱范围内,外部量子效率达到32%,总功率转换效率为1.6%。此外,还介绍了建模和理论以强调设备改进的地方。结果表明,简单的路径积分成功捕获了LSC的动力学。

著录项

  • 作者

    Currie Michael James;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号